Global Dynamics, Phase Space Transport, Orbits Homoclinic to Resonances, and Applications

Stephen Wiggins
Global Dynamics, Phase Space Transport, Orbits Homoclinic to Resonances, and Applications

Stephen Wiggins
The Fields Institute
for Research in Mathematical Sciences

The Fields Institute is named in honour of the Canadian mathematician John Charles Fields (1863–1932). Fields was a remarkable man who received many honours for his scientific work, including election to the Royal Society of Canada in 1909 and to the Royal Society of London in 1913. Among other accomplishments in the service of the international mathematics community, Fields was responsible for establishing the world's most prestigious prize for mathematics research—the Fields Medal.

The Fields Institute for Research in Mathematical Sciences is supported by grants from the Ontario Ministry of Education and Training and the Natural Sciences and Engineering Research Council of Canada. The Institute is sponsored by McMaster University, the University of Toronto, and the University of Waterloo and has affiliated universities in Ontario and across Canada.

The author received support for this volume from the National Science Foundation, Grant MSS-8958344, and from the Office of Naval Research, Grant N000148J3023.

1991 Mathematics Subject Classification. Primary 58Fxx

Library of Congress Cataloging-in-Publication Data
Wiggins, Stephen.
 Global dynamics, phase space transport, orbits homoclinic to resonances, and applications/Stephen Wiggins.
 p. cm.—(Fields Institute monographs, ISSN 1069-5273)
 Includes bibliographical references and index.
 ISBN 0-8218-9202-9 (acid-free paper)
 1. Differentiable dynamical systems. 2. Global analysis (Mathematics) I. Title.
II. Series.
QA614.8.W535 1993 93-36767
514'.74—dc20 CIP

© Copyright 1993 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.
⊕ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Information on copying and reprinting can be found in the back of this volume.

This publication was prepared by the Fields Institute.

10 9 8 7 6 5 4 3 2 1 98 97 96 95 94 93
Dedication

This book is dedicated to Pat Sethna, in honor of his many contributions to applied nonlinear dynamics.
This page intentionally left blank
Contents

List of Figures vii

Preface xi

1. Introduction 1

2. Homoclinic Tangles and Transport in Two-Dimensional, Time-Periodic Vector Fields 7
 2.1 Introduction ... 7
 2.2 Melnikov’s Method for Time-Periodically Forced One Degree-of-Freedom Hamiltonian Systems .. 7
 2.3 Dynamics in Homoclinic Tangles 12

3. Transport in Cellular Flows 19

4. Homoclinic Tangles and Transport in Two-Dimensional, Time-Quasiperiodic Vector Fields 29
 4.1 Introduction .. 29
 4.2 Melnikov’s Method for Two-Dimensional Quasiperiodically Time-Dependent Vector Fields .. 29
 4.3 The Geometry of Manifold Intersections 33
 4.4 Lobes and Flux .. 35

5. Phase Space Transport in the Quasiperiodically Forced Morse Oscillator 47
 5.1 Introduction ... 47
 5.2 The Morse Oscillator .. 47
 5.3 Set-Up of the Transport Problem 50
 5.4 Fluxes and Dissociation rates .. 52

6. Adiabatic Dynamical Systems 57

 7.1 Introduction ... 63
 7.2 The Eccentric Journal Bearing Flow 63

8.1 The Basic Perturbed, Two-Degree-of-Freedom Integrable Hamiltonian System .. 81
8.2 The Analytic and Geometric Structure of the Unperturbed Equations ... 82
 8.2.1 The Dynamics of the Unperturbed System Restricted to \mathcal{M} .. 83
 8.2.2 The Dynamics in Γ and its Relation to the Dynamics in \mathcal{M} ... 83
8.3 The Analytic and Geometric Structure of the Perturbed Equations .. 84
 8.3.1 The Persistence of \mathcal{M} and its Stable and Unstable Manifolds ... 84
 8.3.2 The Dynamics on \mathcal{M}_ε near the Resonance .. 88
 8.3.3 The Fibering of $W^s(\mathcal{A}_\varepsilon)$ and $W^u(\mathcal{A}_\varepsilon)$: The Singular Perturbation Nature 98
8.4 Melnikov’s Method for Detecting Orbits Homoclinic and Heteroclinic to Invariant Sets in \mathcal{A}_ε 103
8.5 An Example: Dynamics of a Modal Truncation of the Nonlinear Schrödinger Equation 126
 8.5.1 The Unperturbed Structure ... 129
 8.5.2 The Perturbed Structure .. 133
 8.5.3 Orbits Homoclinic to p_ε: Non-Hamiltonian Perturbations .. 140
 8.5.4 Orbits Homoclinic to q_ε: Non-Hamiltonian Perturbations .. 141
 8.5.5 Orbits Homoclinic to Internal Orbits: Hamiltonian Perturbations ... 143

References .. 147

Index .. 153
List of Figures

2.1 Unperturbed homoclinic manifold in the phase plane. 8
2.2 Unperturbed homoclinic manifold in the extended phase space. 9
2.3 Behavior of the homoclinic manifold under perturbation. 9
2.4 Intersection of the perturbed stable and unstable manifolds with the homoclinic coordinate system. 11
2.5 Pip's, sip's, and lobes. 13
2.6 The curve B. 14
2.7 The turnstile. 15
2.8 The partition of phase space into regions and the turnstiles associated with the region boundary components q_0, \ldots, q_5 are pip's that are the endpoints of segments of stable and unstable manifolds of hyperbolic points that are used to form segments of the boundaries of the regions. The turnstiles are then constructed as described. 16
3.1 Streamlines for the steady, cellular flow. 21
3.2 The behavior of the stable and unstable manifolds on the walls of the convection cell under the time-periodic perturbation – the heteroclinic tangle, numerically calculated for $\epsilon = 0.1, \omega = 0.6, A = 0.1$. 22
3.3 Roll boundaries for the unsteady flow (for the associated Poincaré map). 23
3.4 The turnstile lobes associated with roll-to-roll transport. 23
3.5 An illustration of the signatures of the heteroclinic tangle associated with the roll boundaries. 25
3.6 Comparison of lobe dynamic transport results (solid) with transport taking into effect molecular diffusivity (dashed) for the three cases. a) $A = 0.1, \omega = 0.6, \epsilon = 0.1$, b) $A = 0.1, \omega = 0.6, \epsilon = 0.01$. 28
4.1 Homoclinic manifold connecting the normally hyperbolic invariant two-torus in the unperturbed problem. 30
4.2 Behavior of the homoclinic manifold under perturbation (in the Poincaré section). 31
4.3 The perturbed manifolds and the homoclinic coordinates. 32
4.4 Geometrical transformations involved in visualizing manifold intersections. 34
4.5 Zero sets of the two-frequency quasiperiodic Melnikov function. The dashed lines represent possible choices for primary intersection manifolds (pim's). 36
4.6 Geometry behind the turnstile construction. 41
4.7 Turnstile dynamics for the various parameter values of the general quasiperiodic Melnikov function given earlier. The points labeled \(n = 0, 1, 2 \) are some points of the forward orbit (starting at \(n = 0 \)) of a representative point. (Continued on next page.)

5.1 Phase space structure for the unperturbed Poincaré map. Also shown is the parametrization for the homoclinic coordinates.

5.2 An illustration of the division of the Poincaré section, and the phase slices, into regions for a) a toral pim, and b) a spiral pim.

5.3 Illustration of the turnstile construction, and their dynamics, for the case of a toral pim.

5.4 Infinite-time average flux as a function of \(E_1d \), with \((E_1^2 + E_2^2)d^2 \equiv E^2d^2\). The frequency \(\omega_1 \) is fixed at \(\omega_0 \); the frequency \(\omega_2 \) is \(\frac{7}{5} \omega_0 \) (dashed), \(\omega_0/g \) (solid), and \(\frac{10}{9} \omega_0 \) (dashed-dotted). The flux is per unit \(\epsilon \frac{2\pi}{a} Ed \), and \(\theta_{10} = \theta_{20} = 0 \).

5.5 The variation of convergence rate for finite-time average flux. The black dots correspond to escape, the white dots to capture, and the flux is per unit \(\epsilon \mathcal{A} \). For this example \((A_1, A_2) \equiv -(-A, A), A \equiv -\frac{2\pi}{a} Ed e^{-\omega_1/\omega_0} \), and (a) \((\omega_1, \omega_2) = (g, 1) \omega_0, (\theta_{10}, \theta_{20}) = (\pi, 0)\), (b) \((\omega_1, \omega_2) = (0.231, 2.618) \omega_0, (\theta_{10}, \theta_{20}) = (\frac{35}{12} \pi, \frac{7}{3} \pi)\).

5.6 Plot of \(M_{max} \) as a function of \(E_1d \), with \((E_1^2 + E_2^2)d^2 \equiv E^2d^2\). The parameters are identical to those in the plot of the infinite-time average flux. \(M_{max} \) is per unit \(\frac{2\pi}{a} Ed \).

6.1 The parametrization of \(\Gamma \) for an adiabatically time-varying vector field.

6.2 Self-intersecting turnstile for the parametrically, adiabatically forced pendulum (computation by T. Kaper and D. Hobson).

7.1 Steady state counterrotating eccentric journal bearing flow, with \(\bar{e} = 0.5, R_1 = 1.0, R_2 = 0.3, \bar{r} = 0.3 \), (where for Ball and Rivlin \(\xi_1 = -0.9397, \xi_2 = -1.9966 \)). The cylinders are the darkest circles. The inner circle rotates clockwise with \(\Omega_2 = -4 \), and the outer circle rotates counterclockwise with \(\Omega_1 = 1 \).

7.2 Potential mixing zones (all with \(\bar{r} = 0.3 \)). a) \(\bar{e} = 0.1 \) with (MP1); b) \(\bar{e} = 0.1 \) with (MP2); c) \(\bar{e} = 0.75 \) with (MP1). Note that in c) \(\Gamma^0 \) and \(\Lambda^s \) nearly coincide with the inner and outer cylinders, respectively.

7.3 \(\bar{e} = 0.1, \bar{r} = 0.3, \epsilon = \frac{2\pi}{40} \), and (MP1). a) Segments of the stable and unstable manifolds, the pip’s \(h_i \) for \(i = -1, 0, 1 \). \(h_1 \) and \(h_{-1} \) are exponentially close (in \(\epsilon \)) to \(X_\epsilon \). b) The regions \(R_1 - R_3 \), for \(z = 0 \) in the top picture and for \(z = \pi \) in the bottom frame. AT denotes the extremal Arnold torus. The annular regions between the cylinders and these extremal tori (i.e., complementary to \(R_1 - R_3 \)) are regular zones filled with tori exponentially close to each other. c) A schematic of the homoclinic tangle formed by \(\Lambda^U \) and \(\Lambda^S \).
7.4 The turnstile lobes when $\tilde{e} = 0.1$, $\tilde{r} = 0.3$, $\epsilon = \frac{2\pi}{40}$, and (MP1) is used. a) The turnstile lobe $L_{2,1}(1)$ of the Γ-tangle. The “tip” of the lobe is in the upper right quadrant of the domain, and the “base” point is the midpoint of the segment of $\Gamma^0(X_\epsilon)$ between h_{-1} and h_0. b) A schematic of frame a). c) The turnstile lobe $L_{3,2}(1)$ of the Λ-tangle. d) The intersection of $L_{3,2}(1)$ and $L_{2,1}(1)$ is shaded. 73

7.5 Transport in half-period intervals via the turnstile mechanism in the case $\tilde{e} = 0.1$, $\tilde{r} = 0.3$ $\epsilon = \frac{2\pi}{40}$, and (MP1). a) All tracer particles at $z = 0$ lie in lobe $L_{2,1}(1)$, which is shaded. b) At $z = \pi$, all tracer particles lie in R2, in the half-period image of the lobe $L_{2,1}(1)$. Enlargement of frame b) shows that all of the particles lie inside the half-period image of the lobe, which has a solid boundary. c) Schematic of frame b). 75

8.1 a) Geometry of \mathcal{M} and the stable and unstable manifolds of \mathcal{M}. b) The dynamics on \mathcal{M}. c) The geometry of trajectories homoclinic to the periodic orbits on \mathcal{M} and orbits heteroclinic to fixed points on the resonant circle of fixed points. .. 85

8.2 The dynamics associated with the leading order Hamiltonian vector field restricted to \mathcal{M}_ϵ described in Assumption 3. 91

8.3 The dynamics near the resonance of the vector field restricted to \mathcal{M}_ϵ for the full vector field. 93

8.4 The basin of attraction of p_ϵ and its comparison with the unperturbed structure (for the “slow time” system) near the resonance. 94

8.5 The geometry associated with trajectories leaving a neighborhood of \mathcal{M}_ϵ, i.e., the points \hat{p}_ϵ and \hat{p}_0, (with the θ coordinates suppressed). 107

8.6 The geometry associated with trajectories returning to a neighborhood of \mathcal{M}_ϵ, i.e., the points p^T_ϵ and p^T_0, (with the θ coordinates suppressed). 107

8.7 a) The geometry associated with the return of a trajectory to a neighborhood of \mathcal{A}_ϵ that is homoclinic to p_ϵ. b) The perturbed and unperturbed fibers. 108

8.8 Possible geometrical configurations for the unperturbed (on the “slow time” scale) homoclinic orbit on \mathcal{A}_ϵ that connects p_0. 110

8.9 Local representation of a segment of $W^u(q_\epsilon)$ as a graph. 112

8.10 The fiber representation of the sets $W^u_{\text{res}}(q_\epsilon)$, $W^u_{\text{res}}(q_0)$, and $W^u_{\text{res}}(I, \theta; \mu), I = I^r, \theta$ in C^5. 114

8.11 a) $\Delta \mathcal{H} < 0$ b) $\Delta \mathcal{H} > 0$ c) $\Delta \mathcal{H} \approx 0$ (Continued on next page.) 117

8.12 Visualization of assumptions (A1) to (A3) in Theorem 8.4.4. 123

8.13 Statement 2 of Theorem 8.4.4. 124

8.14 Transverse heteroclinic orbits connecting periodic solutions. 125

8.15 Transverse homoclinic orbit to a saddle point. 125

8.16 Transverse heteroclinic orbits between periodic solutions and between a saddle point and a periodic solution. 126

8.17 The invariant manifold structure that plays a role in our analysis. The outer paraboloid represents the boundary on which the variables (x, y, I, θ) become singular. 130

8.18 The graph of $\Delta \theta$ as a function of k for $\frac{1}{2} < k < \sqrt{2}$. 133
8.19 The structure of the phase portrait of the leading order approximate Hamiltonian equations for $0 < \chi_\alpha < 1$.. 135
8.20 An approximate phase portrait for a typical value of Γ and α 136
8.21 The phase portrait of the reduced system ... 137
8.22 Graphs of θ_{q_0}, θ_n, and $\theta_{p_0} + \Delta \theta$ 141
8.23 Parameter values in the $q_0 - \frac{\pi}{k}$ plane (with $k = 1$) for which orbits homoclinic to p_ϵ exist, $\frac{\pi}{\Gamma} < .13$... 142
8.24 The energy-phase criterion for $\Delta \theta \in (0, \pi)$ 145
8.25 The energy-phase criterion for $\Delta \theta = \pi$ 145
8.26 The energy-phase criterion for $\Delta \theta \in (\pi, 2\pi)$ 146
Preface

This monograph consists of a series of weekly lectures that I gave at the Fields Institute during January through March of 1993. All of the material presented here represents joint work with colleagues Tony Leonard, Dave McLaughlin, Ed Overman II, and C. Xiong, and former Caltech students Darin Beigie, Roberto Camassa, György Haller, Tasso Kaper, Gregor Kovačić, and Vered Rom-Kedar.

I would like to thank the organizers of the Dynamical Systems and Bifurcation Theory year at the Fields Institute, John Chadam, Leon Glass, Bill Langford, Jerry Marsden, and Bill Shadwick, for making it possible for me to spend time at the Fields Institute and to give these lectures. I would like to thank Wayne Nagata and Dan Rusu for providing an early draft of the lectures. I would like to also acknowledge the wonderful help and support from the Fields Institute staff, Sheri Albers, Ron Hosler, Judy Motts, and Jaqua Taylor. Their efforts, in too many areas to mention, made my visit both very pleasant and productive. My thanks to Willem Sluis and Robin Skinner of the Fields Institute for their proofreading. I am very grateful to Brenda Law of the University of Waterloo and Liz Reidt for taking my rough \LaTeX files and transforming them into a beautiful, typeset quality form. Also, my thanks to Sue Embro and Sandra Valeriote of the Fields Institute for their coordinating efforts towards the final production of this document. I would like to thank my graphic artist at Caltech, Cecelia Lin, for her work on the many figures under a very tight deadline. None of these lectures would have been given without the support of my colleague, in Applied Mechanics at Caltech, Jim Knowles. Jim took over my teaching load, on top of his own, so that I could spend three months at the Fields Institute.

The research contained in this monograph has been very generously supported by the Office of Naval Research and the National Science Foundation.

The Fields Institute for Research in Mathematical Sciences is supported by the Ontario Ministry of Education and Training and the Natural Sciences and Engineering Research Council of Canada.

Steve Wiggins
References

REFERENCES

Index

A
adiabatic
 chaos, 60
dynamical systems, 57–59, 61–64,
 66, 70, 76, 78
forced systems, 60
Hamiltonian systems, 66
invariance, 66, 67
invariant, 60, 61
Melnikov function, 59, 60, 62, 78,
 79
Melnikov theory, 78
Arnold
 conjecture, 5
diffusion, 4
extension of KAM theorem, 66
theorem, 61
tori, 61, 79
torus, 71, 72
Arnold, 4, 61
average flux
 finite-time, 52–54
 infinite-time, 53–55
average flux, 42, 45, 53
B
base points of fibers of $W^s(A_c)$, 115
base point, 101, 102, 113, 115, 116,
 119
breather, 127
bump functions, 87
C
Cantori, 3, 19
cellular flow, 19–21
chaotic advection of fluids, 17
coherent structures, 19
conservation of area, 18
conservation of species, 18
D
dividing surface, 38
double phase slice method, 45, 53
dynamics
 lobe, 17, 25, 27, 28, 60, 69
dynamics, 1, 5, 7, 8, 12, 17–19, 26
 30, 51, 60, 82, 84, 85, 88–96
 96–100, 118, 119, 123, 127
 130, 134–136
E
eccentric journal bearing flow, 63, 6:
effective diffusivity, 21
equilibrium tori, 2
energy-difference function, 121, 123
energy-phase criterion, 122, 143, 145
 146
even oscillatory roll instability, 21
F
fibering
 stable and unstable manifolds
 100, 101
 stable manifold, 101
flux, 12, 14, 17, 18, 21, 24, 35, 42, 50
 52–55, 69
G
Gaussian probability distribution, 21
gaussian singularity perturbation
 methods, 81
 theory, 62
global
 bifurcation, 3
dynamics, 1, 5
global, 7, 81, 84, 87

H
heteroclinic
 manifolds, 33
 orbits, 12, 20, 21, 33, 85, 91, 98,
 100, 101, 103, 124–126, 140
homoclinic
 coordinates, 10, 11, 31, 32, 49,
 59, 103, 104
 manifold, 8, 9, 30, 31, 58, 83, 104
 orbits, 7, 10, 29, 58–60, 78, 81–
 83, 90–92, 94, 98, 103, 104,
 106, 109, 110, 115, 116, 119,
 124, 125, 130–132, 135, 136,
 140–142, 144
tangle, 7, 12, 29, 60, 69–71
hyperbolic (or whiskered) tori, 3

I
instantaneous
 flux, 42, 45, 52
saddle, 66
 stagnation points, 66
 stagnation streamline, 67, 78
 stagnation, 79
streamline, 66, 79
internal orbits
 the energy-phase criterion, 122
internal orbit, 98

K
KAM
 approach, 5
 theorem, 2–5, 61
tori, 3, 19, 60

L
Lagrange-Dirichlet theorem, 4
linear variational equations, 11
lobe
 area, 24, 42, 62, 69, 76, 79
dynamics, 17, 25, 27, 28, 60, 69
turnstile, 17, 24, 39, 40, 51, 52,
 60, 69, 72–74, 76, 77
lobe, 13–15, 17, 22, 24–27, 35, 38, 39,
 45, 51–53, 60, 69, 72, 74–76
locally invariant, 86, 87
Lorenz equations, 119

M
Melnikov
 classical method, 7
 function, 11, 12, 15, 22, 24, 26,
 53, 59, 104, 106, 116, 118,
 119, 130, 137, 139–142
 method, 7, 22, 29, 57, 103
 trick, 11, 32, 59, 104
 modulation protocol, 63, 64
modulation diffusion, 19, 21, 22, 26, 27
Morse
 oscillator, 47–49
 potential parameters, 48
 potential, 47, 48
multi-lobe turnstiles, 14
multiplicity of a resonance, 2

N
Nekhoroshev’s theorem, 3, 5, 6
nonlinear Schrödinger equation, 126,
 127
normal hyperbolicity, 3, 82
normally elliptic invariant manifolds,
 3, 5
normally hyperbolic invariant
 manifolds, 3, 8, 30, 59, 62, 83,
 103, 106, 129
 one-torus, 33, 58
two-torus, 30

O
orbit
 heteroclinic, 12, 20, 21, 33, 85,
 91, 98, 100, 101, 103, 124–
 126, 140
 homoclinic, 7, 10, 29, 58–60, 78,
 81–83, 90–92, 94, 98, 103,
 104, 106, 109, 110, 115, 116,
 119, 124, 125, 130–132, 135,
 140–142, 144
periodic, 2–5, 8, 12, 60, 70, 83–85, 98, 124, 126, 130, 143, 144
orbit, 1, 43, 59, 64, 66, 74, 78, 83, 98, 106, 115, 120, 121, 124, 130, 136

P
passive scalar, 19, 20, 24, 25
pathologies, 14
pendulum subject to a constant force, 134
pendulum, 60
periodic orbit, 2–5, 8, 12, 60, 70, 83–85, 98, 124, 126, 130, 143, 144
perturbed energy surface, 120
phase slice, 38–40, 42, 45, 50, 51
pim(primary intersection manifold), 35–38, 50, 51
pip(primary intersection point), 12, 13, 16, 22, 35, 38, 39, 45, 70, 71, 76, 78
Poincaré map, 4, 8, 10, 12, 19, 21–23, 30, 33, 35, 38–40, 42, 45, 48, 49, 60, 66, 69, 70, 78
potential mixing zone, 66–68
primary intersection
manifolds(pim), 35–38
points(pip), 12, 13, 16, 22, 35, 38, 39, 45, 70, 71, 76, 78

Q
quasilinear partial differential equations, 88, 103
quasiperiodic Melnikov function, 32, 33, 35, 36, 39, 42, 43, 45, 49, 55

R
reduced system, 97, 98, 120, 123, 136, 137
relative
 equilibria, 5
 scaling factor, 49, 53
 scaling function, 49, 50
resonance bands, 17, 19
resonant
circle of fixed points, 84
fixed points, 83, 85, 97
tori, 2
restricted system, 97, 120

S
saddle-node bifurcation of homoclinic orbits, 144
secondary intersection
 manifolds(sim), 37
 points(sip), 13, 38
self-intersecting turnstiles, 14, 60
Shooting Argument, the, 118
signatures, 25, 26
Silnikov type homoclinic orbits, 109
sim(secondary intersection manifolds), 37
simple homoclinic orbit, 109
Sine-Gordon equation, 126, 127
singular perturbation theory, 98
sip(secondary intersection point), 13, 38
Smale-Birkhoff homoclinic theorem, 12
Smale horseshoes, 19, 60, 109, 119, 126, 142
smoothness assumptions, 6
species of a point, 15
stable fibers, 101, 102, 113, 116, 118
Stokes
 flow, 63, 64, 66
 number, 64
stream function, 19

T
turnstile lobes, 17, 22–24, 26, 39, 42, 51, 52, 69, 72
turnstile, 13–16, 18, 22, 35, 38, 40, 43, 50–53, 55, 60, 61, 69, 72–77
two-mode model, 127, 131
COPYING AND REPRINTING. Individual readers of this publication, and non-profit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Manager of Editorial Services, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@math.ams.org.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that a fee of $1.00 plus $.25 per page for each copy be paid directly to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, Massachusetts 01923. When paying this fee please use the code 1069-5273/93 to refer to this publication. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.
Global Dynamics, Phase Space Transport, Orbits Homoclinic to Resonances, and Applications
Stephen Wiggins

This monograph, a series of lectures delivered by Stephen Wiggins at the Fields Institute in early 1993, is concerned with the geometrical viewpoint of the global dynamics of nonlinear dynamical systems. With appropriate examples and concise explanations, Wiggins unites many different topics into one volume and makes a unique contribution to the field. Engineers, physicists, chemists, and mathematicians who work on issues related to the global dynamics of nonlinear dynamical systems will find these lectures very useful.