Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback

Tibor Krisztin
Hans-Otto Walther
Jianhong Wu
Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback

Tibor Krisztin
Hans-Otto Walther
Jianhong Wu
The Fields Institute
for Research in Mathematical Sciences

The Fields Institute is named in honour of the Canadian mathematician John Charles Fields (1863–1932). Fields was a visionary who received many honours for his scientific work, including election to the Royal Society of Canada in 1909 and to the Royal Society of London in 1913. Among other accomplishments in the service of the international mathematics community, Fields was responsible for establishing the world’s most prestigious prize for mathematics research—the Fields Medal.

The Fields Institute for Research in Mathematical Sciences is supported by grants from the Ontario Ministry of Education and Training and the Natural Sciences and Engineering Research Council of Canada. The Institute is sponsored by McMaster University, the University of Toronto, the University of Waterloo, and York University and has affiliated universities in Ontario and across Canada.

1991 Mathematics Subject Classification. Primary 34K15; Secondary 38F12, 38F22, 34C30.

Library of Congress Cataloging-in-Publication Data
Krisztin, Tibor, 1956–
Shape, smoothness, and invariant stratification of an attracting set for delayed monotone positive feedback / Tibor Krisztin, Hans-Otto Walther, Jianhong Wu.
p. cm. — (Fields institute monographs, ISSN 1069-5273 ; 11)
Includes bibliographical references and index.
ISBN 0-8218-1074-X (alk. paper)
QA371.K735 1999
515'.35—dc21
98-44070
CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

© 1999 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
This publication was prepared by The Fields Institute.
Visit the AMS home page at URL: http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 04 03 02 01 00 99
Contents

Preface

Chapter 1 Introduction 1

Chapter 2 The delay differential equation and the hypotheses 9

Chapter 3 The separatrix 15

Chapter 4 The leading unstable set of the origin 19

Chapter 5 Oscillation frequencies 27

Chapter 6 Graph representations 33

Chapter 7 Dynamics on \overline{W} and disk representation of $\overline{W} \cap S$ 41

Chapter 8 Minimal linear instability of the periodic orbit \mathcal{O} 51

Chapter 9 Smoothness of $W \cap S$ in case \mathcal{O} is hyperbolic 57

Chapter 10 Smoothness of $W \cap S$ in case \mathcal{O} is not hyperbolic 63

Chapter 11 The unstable set of \mathcal{O} contains the nonstationary points of bdW 67

Chapter 12 bdW contains the unstable set of the periodic orbit \mathcal{O} 75

Chapter 13 $H \cap \overline{W}$ is smooth near p_0 95

Chapter 14 Smoothness of \overline{W}, bdW and $\overline{W} \cap S$ 113

Chapter 15 Homeomorphisms from bdW onto the sphere and the cylinder 125

Chapter 16 Homeomorphisms from \overline{W} onto the closed ball and the solid cylinder 135

Chapter 17 Resumé 161
Appendix I. Equivalent norms, invariant manifolds, Poincaré maps and asymptotic phases 167
Appendix II. Smooth center-stable manifolds for C^1-maps 173
Appendix III. Smooth generalized center-unstable manifolds for C^1-maps 189
Appendix IV. Invariant cones close to neutrally stable fixed points with 1-dimensional center spaces 197
Appendix V. Unstable sets of periodic orbits 205
Appendix VI. A discrete Lyapunov functional and a-priori estimates 211
Appendix VII. Floquet multipliers for a class of linear periodic delay differential equations 221
Appendix VIII. Some results from topology 237
Bibliography 239
Index 243
Preface

This book contains recent results about the global dynamics defined by a class of delay differential equations which model basic feedback mechanisms and arise in a variety of applications such as neural networks. We describe in detail the geometric structure of a fundamental invariant set, which in special cases is the global attractor, and the asymptotic behaviour of solution curves on it.

Our approach makes use of advanced tools which in recent years have been developed for the investigation of infinite-dimensional dynamical systems: Local invariant manifolds and inclination lemma for noninvertible maps, Floquet theory for delay differential equations, a-priori estimates controlling the growth and decay of solutions with prescribed oscillation frequency, a discrete Lyapunov functional counting zeros, methods to represent invariant sets as graphs, Poincaré–Bendixson techniques for classes of delay differential systems.

Several appendices provide the general results needed in our case study, so that the presentation is self-contained. Some of these general results seem not to be available elsewhere in the literature. We mention in particular Appendix II on smooth infinite-dimensional center-stable manifolds for maps. We believe that the results in the appendices will be useful also for future studies of more complicated attractors of delay and partial differential equations.

A brief description of a part of our main result is that for the delay differential equation \(\dot{x}(t) = -\mu x(t) + f(x(t-1)) \) with \(\mu > 0 \) and increasing bounded \(C^1 \)-function \(f : \mathbb{R} \to \mathbb{R} \) with \(f(0) = 0 \), under natural and mild additional conditions, the leading 3-dimensional local unstable manifold at the stationary point 0 extends in forward time to a smooth solid spindle with singularities at its tips, which are further stationary points, both stable and attractive; an invariant smooth disk of solution curves winding from 0 towards a bordering unstable periodic orbit splits the spindle into invariant halves each of which is attracted to one of its tips.

The major part of this work was carried out while T. Krisztin and J. Wu were supported by the Alexander von Humboldt Foundation during their guest stay with Humboldt fellowships at the University of Giessen in 1996–97. Both are indebted to the Foundation for its generous support and to the Institute of Mathematics at the University of Giessen for the kind hospitality during their visit. We are grateful to Professor J. Kincses for calling our attention to some topological results used in Chapter 16.

We would like to acknowledge the support from the Hungarian National Foundation for Scientific Research (T. Krisztin), and from the Natural Sciences and Engineering Research Council of Canada (J. Wu).

T. Krisztin, H. O. Walther and J. Wu
June 1998
This page intentionally left blank
Bibliography

This page intentionally left blank
Index

a-limit set 7
β-unstable set 19, 169
C^1-map η 45
ω-limit set 7
above S 2, 18
adjoint operator 138
asymptotic phase 5, 53, 171
below S 2, 18
boundary bd M 6
canonical curve 41
center manifold 201
center-stable manifold 5, 64, 173
characteristic function 3, 11
closure (of M): \overline{M} 6
closed set D_W 4, 161
closed unit ball D^n 6
compact set D_S 4, 161
compactness 10, 19
complementary space E 4, 161
cone invariance 198
cone K 2, 11, 161
continuous dependence 9
decomposition 17
dual space 138

equivalent norm 5, 30, 137, 167
exterior (of a simple closed curve c): $\text{ext}(c)$ 6
feedback 1
Floquet multiplier 5, 51, 170, 221
flow F_W 4, 22, 162
flowline 10
generalized center-unstable manifold 5, 189
generator 3, 11, 138
global attractor 2, 163
graph representation 17, 23, 36
growth bound 10
heteroclinic connection 4, 19, 165
homeomorphism \(h \) 48
hyperbolic 51, 168
hyperplane \(H \) 41
instability 11, 51
interior (of \(M \)): \(\overset{\circ}{M} \) 6
interior (of a simple closed curve \(c \)): \(\text{int}(c) \) 6
intersection map 41
invariance 7, 11, 19
invariant cone 5
invariant layer 165
Jordan–Brouwer separation theorem 145, 237
Jordan curve theorem 6, 237
leading unstable manifold 5, 169
leading unstable set 19
linear functional \(c_P \) 26
linear map \(\Pi_2 \) 33
linear map \(\Pi_3 \) 33
Lyapunov functional 5, 27, 211
map \(w \) 4, 36, 161
map \(w_S \) 4, 36, 161
minimal linear instability 5, 51
monodromy operator 170, 221
monotone 2, 161
monotone feedback 1
Morse decomposition 165
negatively invariant 7
neural networks 1
neutrally stable 197
nonordering 15
ordering 2
oscillation frequency 28, 223
periodic orbit \(\mathcal{O} \) 4, 44, 162
phase curve 7, 169, 205
Poincaré map 5, 53, 57, 63, 75, 169, 170
positively invariant 7
projection 6
projection \(P_2 \) 36
projection \(P_3 \) 36
realified eigenspace 3, 224
realified generalized eigenspace 12, 52, 138, 224, 237
Schoenfiess theorem 5, 237
segment \(x_t \) 7
semicontinuous 27
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>semiflow F</td>
<td>2, 9, 161</td>
</tr>
<tr>
<td>semigroup</td>
<td>3, 11, 137, 138</td>
</tr>
<tr>
<td>separatrix</td>
<td>2, 15, 161</td>
</tr>
<tr>
<td>set R</td>
<td>27, 211</td>
</tr>
<tr>
<td>sign change</td>
<td>5, 27, 211</td>
</tr>
<tr>
<td>simple closed curve</td>
<td>6</td>
</tr>
<tr>
<td>singularity</td>
<td>163</td>
</tr>
<tr>
<td>solution</td>
<td>7</td>
</tr>
<tr>
<td>space C</td>
<td>6</td>
</tr>
<tr>
<td>space C^1</td>
<td>6</td>
</tr>
<tr>
<td>space L</td>
<td>12</td>
</tr>
<tr>
<td>space $L(E, F)$</td>
<td>6</td>
</tr>
<tr>
<td>space Q</td>
<td>12</td>
</tr>
<tr>
<td>spectrum</td>
<td>6</td>
</tr>
<tr>
<td>spindle</td>
<td>5</td>
</tr>
<tr>
<td>stable manifold</td>
<td>5, 53, 58, 202</td>
</tr>
<tr>
<td>stationary point</td>
<td>2, 9, 11</td>
</tr>
<tr>
<td>stratification</td>
<td>162</td>
</tr>
<tr>
<td>strong stable manifold</td>
<td>169</td>
</tr>
<tr>
<td>strong unstable manifold</td>
<td>67, 169</td>
</tr>
<tr>
<td>submanifold</td>
<td>4, 5, 19, 172</td>
</tr>
<tr>
<td>subspaces G_1, G_2, G_3</td>
<td>4, 36, 161</td>
</tr>
<tr>
<td>substitution operator</td>
<td>175</td>
</tr>
<tr>
<td>sun dual</td>
<td>137</td>
</tr>
<tr>
<td>sun-reflexive</td>
<td>138</td>
</tr>
<tr>
<td>synchronized solution</td>
<td>1</td>
</tr>
<tr>
<td>tangent vector</td>
<td>6</td>
</tr>
<tr>
<td>threshold</td>
<td>1</td>
</tr>
<tr>
<td>tip</td>
<td>5</td>
</tr>
<tr>
<td>topological boundary (of M): ∂M</td>
<td>6</td>
</tr>
<tr>
<td>trajectory</td>
<td>6</td>
</tr>
<tr>
<td>transversal</td>
<td>5, 41, 58, 65</td>
</tr>
<tr>
<td>uniformly locally 1-connected</td>
<td>145, 237</td>
</tr>
<tr>
<td>unit circle S^1_C</td>
<td>6</td>
</tr>
<tr>
<td>unit sphere S^n</td>
<td>6</td>
</tr>
<tr>
<td>unstable set</td>
<td>2, 206</td>
</tr>
<tr>
<td>unstable set $W^u(O)$</td>
<td>67</td>
</tr>
<tr>
<td>variation-of-constants formula</td>
<td>9, 137, 221</td>
</tr>
<tr>
<td>variational equation</td>
<td>9, 51</td>
</tr>
<tr>
<td>weak-star integral</td>
<td>139</td>
</tr>
</tbody>
</table>