Lectures on Operator Theory

B. V. Rajarama Bhat
George A. Elliott
Peter A. Fillmore
Editors
Selected Titles in This Series

13 B. V. Rajarama Bhat, George A. Elliott, and Peter A. Fillmore, Editors, Lectures on operator theory, 2000
12 Salma Kuhlmann, Ordered exponential fields, 2000
11 Tibor Krisztin, Hans-Otto Walther, and Jianhong Wu, Shape, smoothness and invariant stratification of an attracting set for delayed monotone positive feedback, 1999
10 Jiří Patera, Editor, Quasicrystals and discrete geometry, 1998
9 Paul Selick, Introduction to homotopy theory, 1997
8 Terry A. Loring, Lifting solutions to perturbing problems in C^*-algebras, 1997
7 S. O. Kochman, Bordism, stable homotopy and Adams spectral sequences, 1996
6 Kenneth R. Davidson, C^*-Algebras by example, 1996
5 A. Weiss, Multiplicative Galois module structure, 1996
4 Gérard Besson, Joachim Lohkamp, Pierre Pansu, and Peter Petersen
Miroslav Lovric, Maung Min-Oo, and McKenzie Y.-K. Wang, Editors, Riemannian geometry, 1996
3 Albrecht Böttcher, Aad Dijksma and Heinz Langer, Michael A. Dritschel and James Rovnyak, and M. A. Kaashoek
Peter Lancaster, Editor, Lectures on operator theory and its applications, 1996
2 Victor P. Snaith, Galois module structure, 1994
1 Stephen Wiggins, Global dynamics, phase space transport, orbits homoclinic to resonances, and applications, 1993
This page intentionally left blank
Lectures on Operator Theory

B. V. Rajarama Bhat
George A. Elliott
Peter A. Fillmore
Editors
The Fields Institute
for Research in Mathematical Sciences

The Fields Institute is named in honour of the Canadian mathematician John Charles Fields (1863–1932). Fields was a visionary who received many honours for his scientific work, including election to the Royal Society of Canada in 1909 and to the Royal Society of London in 1913. Among other accomplishments in the service of the international mathematics community, Fields was responsible for establishing the world’s most prestigious prize for mathematics research—the Fields Medal.

The Fields Institute for Research in Mathematical Sciences is supported by grants from the Ontario Ministry of Education and Training and the Natural Sciences and Engineering Research Council of Canada. The Institute is sponsored by McMaster University, the University of Toronto, the University of Waterloo, and York University, and has affiliated universities in Ontario and across Canada.

2000 Mathematics Subject Classification. Primary 46L05, 46L10;
Secondary 46L37, 46L80, 46L85.

Library of Congress Cataloging-in-Publication Data
Lectures on operator theory / B. V. Rajarama Bhat, George A. Elliott, Peter A. Fillmore, editors.
p. cm. – (Fields Institute monographs, ISSN 1069-5273 ; 13)
Includes bibliographical references.
QA387.L42 1999
512'.55–dc21 99-052254
CIP

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Assistant to the Publisher, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

© 1999 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
This publication was prepared by The Fields Institute.
Visit the AMS home page at URL: http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 04 03 02 01 00 99
Contents

Preface xi

Part 1. C*-Algebras 1

Chapter 1. C*-Algebras: Definitions and Examples 3
 1.1. Elementary Theory of C*-Algebras 3
 1.2. Examples 4
 1.3. Basic References 6

Chapter 2. C*-Algebras: Constructions 9
 2.1. Injective Morphisms are Isometric 9
 2.2. Tensor Products 9
 2.3. Reduced Group C*-Algebras 13
 2.4. C*-Dynamical Systems and Crossed Products 13
 2.5. Rotation Algebras 14
 2.6. Direct Limits 14

Chapter 3. Positivity in C*-Algebras 17
 3.1. Positive Linear Functionals 17
 3.2. The GNS-Construction 19
 3.3. Positive Linear Maps 20

Chapter 4. K-Theory I 25
 4.1. Cohomology Theory: Definition and Examples 25
 4.2. The Functor K_1 26
 4.3. Half-exactness of K_1 28
 4.4. The Functor K_0 28
 4.5. Bott Periodicity 30

Chapter 5. Tensor Products of C*-Algebras 33
 5.1. The Algebraic Tensor Product 33
 5.2. Representations of $A \otimes_a B$ 33
 5.3. Completing the Algebraic Tensor Product 34
 5.4. Simple C*-Algebras and the Minimal Tensor Product 36
 5.5. Functoriality of the Tensor Product 37
 5.6. Example 38
 5.7. K-Theory of Tensor Products 38
 5.8. Positive Functionals and Traces on $A \otimes_\gamma B$ 40

Chapter 6. Crossed Products I 43
 6.1. Constructing the Crossed Product 43
6.2. Covariant Representations of a C*-Dynamical System Corresponding to Non-Degenerate Representations of the Crossed Product 44
6.3. Reduced Crossed Products 45
6.4. Some Examples and Results 45
6.5. Duality Theory 47

Chapter 7. Crossed Products II: Examples 49
7.1. Notation and Basic Facts 49
7.2. Cyclic Group Actions on the Circle 50
7.3. Bunce-Deddens Algebras I 50
7.4. Bunce-Deddens Algebras II 51
7.5. Toeplitz Algebras 51
7.6. Crossed Products as Continuous Fields 51
7.7. Connes' Analogue of the Thom Isomorphism 52

Chapter 8. Free Products 55
8.1. Independence 55
8.2. Freeness 55
8.3. Free Products of C*-Algebras 56
8.4. K-Theory of Free Products 60

Chapter 9. K-Theory II: Roots in Topology and Index Theory 63
9.1. Characterization of the K-Functors 63
9.2. Some Algebraic K-Theory 64
9.3. The Boundary as Index Map 64
9.4. Fredholm Operators 65
9.5. Sources of A-Fredholm Operators 67
9.6. Some KK-Theory 68

Chapter 10. C*-Algebraic K-Theory Made Concrete, or Trick or Treat with 2 x 2 Matrix Algebras 71
10.1. M_2 as a Subalgebra 71
10.2. M_2 as a Quotient Algebra 71
10.3. Example (see [6]) 72
10.4. Unitary and Projection Structure 73

Chapter 11. Dilation Theory 77
11.1. Unitary Dilations 77
11.2. Representations of $A(D)$ 79
11.3. Generalizations 80
11.4. Operator Spaces 81
11.5. Applications 82
11.6. More Operator Dilations 83

Chapter 12. C*-Algebras and Mathematical Physics 87
12.1. History 87
12.2. Quantum Mechanics 87
12.3. Statistical Mechanics 88
12.4. Systems With Infinite Numbers of Particles 88
12.5. Tomita–Takesaki Theory 90

Chapter 13. C*-Algebras and Several Complex Variables 91
Part 2. Von Neumann Algebras

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Basic Structure of von Neumann Algebras</td>
<td>101</td>
</tr>
<tr>
<td>14.1</td>
<td>Preliminaries</td>
<td>101</td>
</tr>
<tr>
<td>14.2</td>
<td>Ordering of Projections</td>
<td>102</td>
</tr>
<tr>
<td>14.3</td>
<td>Types of Factors</td>
<td>104</td>
</tr>
<tr>
<td>14.4</td>
<td>The Dimension Function on a II$_1$ Factor</td>
<td>105</td>
</tr>
<tr>
<td>15</td>
<td>Von Neumann Algebras (Type II$_1$ Factors)</td>
<td>109</td>
</tr>
<tr>
<td>15.1</td>
<td>Predual</td>
<td>109</td>
</tr>
<tr>
<td>15.2</td>
<td>The Dimension Function and its Extension</td>
<td>110</td>
</tr>
<tr>
<td>15.3</td>
<td>The Standard Form of a Type II$_1$ Factor</td>
<td>111</td>
</tr>
<tr>
<td>15.4</td>
<td>Examples</td>
<td>113</td>
</tr>
<tr>
<td>15.5</td>
<td>Conditional Expectations</td>
<td>114</td>
</tr>
<tr>
<td>16</td>
<td>The Equivalence Between Injectivity and Hyperfiniteness,</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Part I</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>The Equivalence Between Injectivity and Hyperfiniteness,</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Part II</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>On the Jones Index</td>
<td>135</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>135</td>
</tr>
<tr>
<td>18.2</td>
<td>Constructing the Jones Projections</td>
<td>136</td>
</tr>
<tr>
<td>18.3</td>
<td>Iterating the Basic Construction</td>
<td>137</td>
</tr>
<tr>
<td>18.4</td>
<td>Proof of the Theorem</td>
<td>138</td>
</tr>
<tr>
<td>19</td>
<td>Introductory Topics on Subfactors</td>
<td>141</td>
</tr>
<tr>
<td>19.1</td>
<td>Local Index Formulae</td>
<td>141</td>
</tr>
<tr>
<td>19.2</td>
<td>Algebraic Considerations</td>
<td>142</td>
</tr>
<tr>
<td>19.3</td>
<td>The equality $I(R) = {4\cos^2\frac{\pi}{n} \mid n \geq 3} \cup [4, \infty)$</td>
<td>145</td>
</tr>
<tr>
<td>19.4</td>
<td>Commuting Squares</td>
<td>146</td>
</tr>
<tr>
<td>20</td>
<td>The Tomita-Takesaki Theory Explained</td>
<td>151</td>
</tr>
<tr>
<td>20.1</td>
<td>Modular Theory</td>
<td>151</td>
</tr>
<tr>
<td>20.2</td>
<td>Set Up; Standard Representation</td>
<td>151</td>
</tr>
<tr>
<td>20.3</td>
<td>States</td>
<td>152</td>
</tr>
<tr>
<td>20.4</td>
<td>Modular Operators</td>
<td>152</td>
</tr>
<tr>
<td>20.5</td>
<td>A Conjugate Linear Operator</td>
<td>153</td>
</tr>
<tr>
<td>20.6</td>
<td>Down to Earth Structure</td>
<td>154</td>
</tr>
<tr>
<td>21</td>
<td>Free Products of von Neumann Algebras</td>
<td>157</td>
</tr>
<tr>
<td>21.1</td>
<td>Non-Commutative Probability Spaces</td>
<td>157</td>
</tr>
<tr>
<td>21.2</td>
<td>Free Product of von Neumann Algebras</td>
<td>159</td>
</tr>
<tr>
<td>21.3</td>
<td>Freeness in the World of Random Matrices</td>
<td>159</td>
</tr>
<tr>
<td>21.4</td>
<td>Some Properties of $L(\mathbb{F}_n)$</td>
<td>161</td>
</tr>
<tr>
<td>22</td>
<td>Semigroups of Endomorphisms of $B(H)$</td>
<td>163</td>
</tr>
<tr>
<td>22.1</td>
<td>Basics and Numerical Index</td>
<td>163</td>
</tr>
<tr>
<td>22.2</td>
<td>Invariants and Classification</td>
<td>166</td>
</tr>
<tr>
<td>22.3</td>
<td>Path-Spaces</td>
<td>169</td>
</tr>
</tbody>
</table>
Part 3. Classification of C*-Algebras

Chapter 23. AF-Algebras and Bratteli Diagrams
 23.1. AF-Algebras
 23.2. Bratteli Diagrams
 23.3. Characterizing AF-Algebras

Chapter 24. Classification of Amenable C*-Algebras. I
 24.1. Classification of AF-Algebras. Isomorphism Theorem
 24.2. EHS Theorem

Chapter 25. Classification of Amenable C*-Algebras. II
 25.1. Classification of AI-Algebras

Chapter 26. Simple AI-Algebras and the Range of the Invariant
 26.1. The Invariant
 26.2. The Tracial State Space and the Pairing with K_0
 26.3. Convexity Theory
 26.4. Interval Algebras and AI-Algebras
 26.5. Some Properties of the Invariant of a Simple AI-Algebra
 26.6. The Range of the Invariant

Chapter 27. Classification of Simple Purely Infinite C*-Algebras
 27.1. Simplicity
 27.2. Infiniteness
 27.3. Non-Stable K-Theory
 27.4. Real and Exponential Rank
 27.5. A Dichotomy for Simple Purely Infinite C*-Algebras
 27.6. The Invariant
 27.7. The Range of the Invariant

 28.1. Properties of Hereditary Subalgebras of AI Algebras

Chapter 29. The Isomorphism Theorem
 29.1. The Theorem
 29.2. The Dimension Range
 29.3. The Affine Space
 29.4. The Existence Theorem
 29.5. The Uniqueness Theorem
 29.6. The Intertwining

Chapter 30. The Range of the Invariant
 30.1. Construction of Hereditary Subalgebras With Given Invariant

Bibliography
Contents

Part 5. Paths on Coxeter Diagrams: From Platonic Solids and Singularities to Minimal Models and Subfactors

Preface 243
Acknowledgements 244

Chapter 31. The Kauffman-Lins Recoupling Theory 245
31.1. Jones Projections 245
31.2. $SU(2)$ and the Symmetrizer 247
31.3. Planar Wire Diagrams 250

Chapter 32. Graphs and Connections 253
32.1. Paths on Graphs 253
32.2. Essential Paths on Graphs 254
32.3. Connections 256
32.4. The Canonical Connection on a Graph 259

Chapter 33. An Extension of the Recoupling Model 265
33.1. Fusions and the θ-Number 265
33.2. $6j$-Symbols 266
33.3. New Thick Wires 267
33.4. Evaluating Tangles 268
33.5. Recoupling 270
33.6. Braiding 272
33.7. Double Triangle Algebras 279
33.8. New Very Thick Wires 281
33.9. Chiral Projectors 284
33.10. Gaps on Coxeter Graphs 287
33.11. Comparison of Minimal Projections 291

Chapter 34. Relations to Minimal Models and Subfactors 297
34.1. Modular Invariants 297
34.2. Connections on Coxeter Graphs 299
34.3. Generalized Intermediate Subfactors of the Jones Subfactors 304
34.4. Dual Principal Graphs of the Jones-Okamoto Subfactors 307
34.5. Quantum Kleinian Invariants 308

Bibliography 323
This page intentionally left blank
Preface

The articles in this volume are based for the most part on lectures given at The Fields Institute for Research in Mathematical Sciences by participants in the program, "Operator Algebras and Applications", held during the year 1994-1995 in Waterloo, Ontario. (It is the ninth volume related to the proceedings of this program.)

The scientific organizing committee for this program consisted of Alain Connes, Man-Duen Choi, Kenneth R. Davidson, George A. Elliott (chairman), Peter A. Fillmore, David E. Handelman, Nigel Higson, Vaughan F. R. Jones, Ian F. Putnam, and Dan-Virgil Voiculescu.

In order of appearance (in this volume), the lectures (together with the corresponding note-takers, mentioned in parentheses) were Peter Fillmore (three lectures: Douglas Harder, Peter Friis, Jakob Mortensen), Christopher Phillips (Jonathan Samuel), Mikael Rørdam (Jonathan Samuel), Berndt Brenken (David Kerr), Alexander Kumjian (Peter Friis), Kenneth Dykema (Teresa Bates), Jerome Kaminker (Richard Gjerde), Man-Duen Choi (Andrew Dean), Kenneth Davidson (Douglas Harder), Derek Robinson (Teresa Bates), Noberto Salinas, Alexandru Nica (David Kerr), Gabriel Nagy (Thomas Gauguin Houghton-Larsen), Florin Boca (two lectures: Kevin Fitzgerald and Walter Schreiner, Claus Dahl), James Mingo (Thomas McLeister), Florin Boca (Claus Dahl), Man-Duen Choi (Espen Husstad), Kenneth Dykema (Kenneth Stevens), William Arveson (Rajarama Bhat and Ileana Ionescu), Ola Bratteli (Jonathan Samuel), George Elliott (two lectures: Massoud Amini), Jesper Villadsen (Andrew Dean), Mikael Rørdam (Peter Friis), Irina Stevens (Ph.D. Thesis), Adrian Ocneanu (special lecture series: Satoshi Goto).

The editors trust that the record of these lectures will be pertinent, at least in some degree, to all future investigations into the subject.

B. V. Rajarama Bhat
George A. Elliott
Peter A. Fillmore

Toronto, August 17, 1999
This page intentionally left blank
Bibliography

