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Introduction

Consider a Galois theoretical embedding problem, i.e., the question of embedding
a Galois extension M/K with Galois group G = Gal(M/K) into a larger Galois
extension F'/K, such that the Galois group Gal(F/K) is isomorphic to a specified
group E and the restriction map from Gal(F/K) to G corresponds to a given
homomorphism 7: £ — G. How do we approach such a problem? How do we
determine whether such an extension F'/K exists? How do we find it if it does? Or
(preferably) how do we find all of them if there are any?

The answers to these questions of course depend on the kind of embedding
problem considered, both with respect to the nature of the groups and the nature of
the field. For instance, if G and E are cyclic, it takes nothing more than elementary
Galois theory to solve the problem over a finite field, whereas it takes class field
theory (or at least some reasonably sophisticated algebraic number theory) to solve
it over the field of rational numbers.

The methods of algebraic number theory and class field theory have in fact
been put to good use in studying these kinds of problems: In the 1920’s, Scholz [76]
considered various solvable groups (mostly of small order) over algebraic number
fields, and in the 1930’s Scholz [77] and Reichardt [70] independently proved that all
finite groups of odd prime power order could be realised as Galois groups over any
algebraic number field, in both cases by building up the extensions through solving
embedding problems ‘along’ a composition series. This approach culminated in the
1950’s with Shafarevich’s result that all solvable groups are Galois groups over all
algebraic number fields; cf. [32] or [66].

Also in the 1930’s, Witt [94] considered groups of prime power order p™ over
fields of characteristic p, and essentially proved all involved embedding problems to
be trivially solvable. We will touch briefly on this in Chapter 2. In the same paper,
Witt solved the problem of embedding a biquadratic extension into an extension
with the quaternion group as Galois group. We will get considerable mileage out
of that result in Chapter 7.

It is clear that an embedding problem is in a sense a ‘local’ problem: We should
be able to investigate it fully using only the extension M /K and the homomorphism
m: E — G, without having to consider ‘global’ structures like separable closures
and absolute Galois groups.*

In 1932, Brauer [7] introduced a type of embedding problem for which the
necessary ‘local’ information is readily available: In these so-called Brauer type
embedding problems, where the kernel of m can be identified with a group of roots of

IThis is not to say that separable closures and absolute Galois groups are not useful for
theoretical considerations—section 6.2 of Chapter 6 is a good example of this but simply that
they tend to be unwieldy, if only because we do not generally know them.
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vi Introduction

unity inside M,? this information is contained in the cohomology group H?(G, M*),
or the relative Brauer group Br(M/K), whichever one prefers. This is not only
decidedly ‘local’, but quite convenient, since both group cohomology and Brauer
group theory are well-developed disciplines, providing ample tools for studying
embedding problems.

We should mention here that Brauer was not in fact interested in the embed-
ding problems. He was —naturally enough —interested in the Brauer group, and his
concern was the classification of finite-dimensional central division algebras over the
field K, and the connection to embedding problems was a reduction, as he writes,
from ‘non-commutative’ to ‘commutative’ algebra. We will go the other way, using
the fact that the structure of Brauer groups is reasonably well understood.

This monograph, then, is about Brauer type embedding problems, primarily
the case where ker m has prime order, and some related embedding problem types.
This topic brings together Galois theory, Brauer group theory, group cohomology
and the theory of quadratic forms, and all of these subjects are covered in the text,
in Chapters 1, 3, 4 and 5. (Chapter 1 differs from most introductions to Galois
theory by not containing very many examples; on the other hand, there are plenty
of explicitly given Galois extensions in later chapters.) In addition, Appendix A
gives an introduction to pro-finite Galois theory.

Chapter 2 provides the set-up, i.e., the basic results, the definitions and the
first examples. All done in as elementary a fashion as possible.> Most impor-
tantly, it introduces the obstruction to the embedding problem. This is an element
in H?(G, M*) expressing the solvability (or non-solvability) of the embedding prob-
lem. The existence of obstructions is what makes Brauer type embedding problems
nice.

Chapter 6 deals with the problem of decomposing the obstruction into con-
venient factors. Again, section 6.1 is fairly elementary, while section 6.2 relies on
pro-finite cohomology. This (and the subsequent section 6.3) is, however, the only
place in the monograph we make real use of pro-finite cohomology, and it can be
skipped without giving it a second thought, should one so desire.

Chapter 7 explores the connection between Brauer type embedding problems
and quadratic forms. Specifically, it provides criteria for solvability for a number
of embedding problems in terms of equivalences of quadratic forms, and describes
how to find the solutions. This includes the famous result by Witt: A bi-quadratic
extension K (y/a, /b)/K in characteristic # 2 can be embedded in a Qs-extension,
if and only if the quadratic forms (a, b, ab) and (1,1, 1) are equivalent (over K).

The final chapter, Chapter 8, is concerned with reducing embedding problems.
As it happens, in some cases embedding problems that are not of Brauer type can
be reduced to Brauer type embedding problems and solved as such, thus extending
the usefulness of Brauer type embedding problems. In particular, if the embedding
problem is non-split with kernel of prime order p (and the characteristic of the
involved fields is not p), it can be so reduced.

Another kind of embedding problem that can be reduced to Brauer type is the
case where ker 7 is cyclic of order 4. Such an embedding problem reduces to two
Brauer type embedding problems, and the results covering this reduction are given
in section 8.3 of Chapter 8.

2See section 2.4 in Chapter 2 for details.
30r at least reasonable. It is perfectly possible to describe Qg-extensions without resorting
to Brauer groups, but it is hard to motivate the arguments.
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There are of course other ways of looking at embedding problems; cf. [55]
and [32], which also contains extensive references. Particularly noteworthy is the
study of embedding problems over Hilbertian fields (as defined in Chapter 1), where
it can be shown that split-exact embedding problems with abelian kernel are always
solvable. (The proof, while a little tedious, is not particularly deep, and consists
mostly of producing so-called reqular extensions with prescribed abelian Galois
group. We refer to [19].) Most of the groups we will consider can be realised easily
as Galois groups over Q (or any Hilbertian field) by invoking this result. This
realisation is generally not, however, very explicit.

Another common approach is to realise the finite group G as a Galois group
over C(t) (as mentioned in Chapter 1, this is always possible) and then attempt to
descend to Q(t), followed by specialisation to Q. Most realisations of finite simple
groups (sporadic groups, projective special linear groups, etc.) over Q have been
obtained in this manner. Here, a good reference is Malle & Matzat [55].

A powerful method, which we will make some use of, is the more general appli-
cation of group cohomology. We will use it as it relates to the Brauer group, but it
can easily be employed independently. Here, an important paper is Hoechsmann’s
Zum Einbettungsproblem [30], covering the basics of this approach. Also, Neukirch
[65] made great contributions here, using the cohomological description of class field
theory to consider problems similar to those of Shafarevich.
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Ar, (covering group of An), 97 Central extension, 31
Abel-Steinitz’ Theorem, 7 Central product, 93
Abelian extension, 17 of order 16 as Galois group, 106, 111
Absolute Galois group, 152 obstruction, 94
Algebra, 43 of order 32 as Galois group, 107, 109
homomorphism, 43 Centraliser, 43
Algebraic, 2, 43 Chinese Remainder Theorem, 160
Algebraic closure, 160 Clifford algebra, 81
Algebraic number field, 13 Clifford group, 82
Algebraically closed field, 160 Cohomology class, 31, 32
Algebraically independent elements, 10 of group extension, 32
Alternating group, 97 Coind® (—) (co-induced module), 76
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in dimension zero, 75
Covering group,

of An, 97

of Sy, 97
Crossed homomorphism, 16, 25, 26, 30, 68
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obstruction, 57

of order 16 as Galois group, 146

of order 8 as Galois group, 115, 116, 145
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DC (central product), 94
D AC (pull-back), 59
DD (central product), 107
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Decomposition group, 11
Dedekind Independence Theorem, 15
Dedekind’s Theorem, 12
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of CSA, 49

of field extension, 2, 155
Density Theorem, 45
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Dihedral group, 38, 59, 101, 148

D4 as Galois group, 38

obstruction, 58
Dg as Galois group, 116, 118
obstruction, 61
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Dirichlet’s Theorem, 15
Discrete module, 157
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of quadratic form, 78

of quadratic polynomial, 9
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integrally closed, 2
Double Commutator Theorem, 49
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of quadratic forms, 77
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Euler’s parametrisation of SO3(R), 86
Even Clifford algebra, 81
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F,y (finite field), 6
Factor system, 31
Faddeyev, 136
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extension, 2
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First cohomology group, 31
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First Supplement, 14
Fixed point field, 4
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Frobenius automorphism, 8
Frobenius’ Theorem, 63
Frohlich’s Theorem, 96
Fundamental Theorem of Algebra, 9
Fundamental Theorem of Galois Theory, 7,
156

G-extension, 6
G-group, 67
G-homomorphism, 67
G-module, 30
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Galois closure, 7
Galois extension, 6, 152
Galois group, 6, 10, 152
Galois twist, 69
of CSA, 69
of quadratic form, 84
Gauss’ Quadratic Reciprocity Theorem, 14
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of order 27 as Galois group, 131
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of Qg as Galois group, 139ff
Hol Qs, 134
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inf (inflation), 33
Inflation, 33

Inner product, 77

Integral
closure, 2
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Invariant Basis Lemma, 26
Inverse Galois theory, 27
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Isotropy vector, 78

K2 (K) (second K-group), 55
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Kiming, 75
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Kronecker delta, 88

Krull theory, 151

Krull topology, 152

Kiinneth Formula, 89
Kummer Theory, 17

Lagrange’s Theorem, 155

Laurent series, 54, 156

Legendre symbol, 14
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Local-global principle, 57
Long-exact cohomology sequence, 70
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Merkurjev’s Theorem, 55
Merkurjev-Souslin, 56
Min (minimal polynomial), 3
Minimal polynomial, 3, 43
M/ K-vector space, 26, 68
Modular group, 40
of order 16 as Galois group, 119, 120
obstruction, 92

N (norm), 16, 30, 44, 83
Newton power sum, 102
Newton-Puiseux’ Theorem, 161
Noether equations, 16
Noether’s Problem, 13
Non-quadratic residue, 14
Norm,

of field extension, 16

on algebra, 44

on Clifford group, 83

on G-module, 30
Normal basis, 19
Normal Basis Theorem, 20

finite fields, 20
Normalised factor system, 74
Nrdg i (reduced norm), 63
Numerical decomposition, 91

O(q) (orthogonal group), 77
On(K) (orthogonal group), 83
Obstruction (to embedding problem), 56
Opposite algebra, 48
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Orthogonal,
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complement, 78

group, 77

representation, 95
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Other non-abelian group of order twenty-

seven, 132
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p-cyclic algebra, 55

p-equivalence, 56
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PGL (projective general linear group), 26,
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Pin(q) (Pin-group), 83

Pin, (K) (Pin group), 83

Prime field, 6

Primitive element, 7

Principal crossed homomorphism, 16, 25, 26,
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Projective representations, 98
Priifer group, 157
Pull-back, 33

of order sixteen, 59

as Galois group, 62

Purely inseparable, 21
Purely transcendental, 13
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QL (trace form), 97
Qon+1 (quaternion group), 59, 91, 101, 148
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Quadratic residue, 14
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obstruction, 60
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R (field of real numbers), 9
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extension, 17
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Reduced norm, 63
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Regular quadratic form, 78
Relative Brauer group, 51
Relative norm, 126
Relative trace, 75
Representing a quadratic form, 78
Representing an element, 80
res (restriction), 33, 51
Restriction,

on Brauer groups, 51

on cohomology groups, 33
Restriction-corestriction, 73
Root field, 3
Roots of unity, 13

primitive, 13

Index

S (supernatural numbers), 155
s(—) (Schur index), 49
o (Frobenius automorphism), 8
Sn (symmetric group), 10
S, (covering group of Sy), 97
Sp-polynomial, 13
Scalar extension, 44, 68
Scalar part (of quaternion), 54
Schur index, 49
Schur’s Lemma, 44
Second cohomology group, 32
Second K-group, 55
Second Kochendorffer Theorem, 129, 161
Second Stiefel-Whitney class, 85
Second Supplement, 24
Section (of group extension), 31
Semi-direct product, 32, 67

of order sixteen, 59

as Galois group, 62

Semi-linear action, 69
Separable, 4
Separable closure, 151
Separably closed field, 151
Serre’s Theorem, 97
Shafarevich, 27
Short-exact sequence, 29
Simple extension, 7
Simple ring, 45
Skew field, 1
Skolem-Noether’s Theorem, 49
SL (special linear group), 99
SL(2,3), 134
SO(q) (special orthogonal group), 79
SOn(K) (special orthogonal group), 83
Solution (to embedding problem), 29
Solvability by radicals, 18
sp (spin norm), 83
Special linear group, 99

SL(2, 3) as Galois group, 134fF
Special orthogonal group, 79
Speiser’s Theorem, 26
Spin(q) (spin group), 83
Spin,, (K) (spin group), 83
Spin group, 83
Spin norm, 83
Split exact, 29
Splitting factor system, 31
Splitting field, 3

for CSA, 48
Springer’s Theorem, 80
Square class, 55
Square root, 9
Standard representation, 30
Steinitz number, 155
Subalgebra, 43
Subextension, 7
Supernatural number, 155
Sylow’s Theorems, 161
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polynomials, 10
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S4 as Galois group, 136
Symmetric Polynomial Theorem, 10

T(—) (tensor algebra), 81
Ty (—) (reflection), 79
Tensor algebra, 81
Theorem of Accessory Irrationalities, 8
Topological group, 151
Torsion of Brauer group, 56
Tr (trace), 25, 30, 75
Trace,

of field extension, 25

on G-module, 30
Trace form, 97
Transcendental element, 2, 43
Transitive subgroup, 10
Translation Theorem, 8
Trivial module, 30

Uniformised factor system, 32

V4 (Klein Vierergruppe), 38
Vec (vector part), 54
Vector part (of quaternion), 54

Weak solution (to embedding problem), 34
‘Wedderburn’s Norm Criterion, 65
Wedderburn’s Theorems, 15, 46

Whaples’ Theorem, 28

Witt invariant, 85

Witt vectors, 36

Witt’s Cancellation Theorem, 80

Witt’s Chain Equivalence Theorem, 80
Witt’s Theorem, 108

Z (ring of integers), 11
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0t cohomology, 67
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