FiELDS InstituTE MONOGRAPHS

The Fields Institute for Research in Mathematical Sciences

Coxeter Groups and Hopf Algebras

Marcelo Aguiar Swapneel Mahajan

American Mathematical Society

Coxeter Groups and Hopf Algebras

Marcelo Aguiar
Swapneel Mahajan

American Mathematical Society
Providence, Rhode Island

The Fields Institute for Research in Mathematical Sciences

The Fields Institute is a center for mathematical research, located in Toronto, Canada. Our mission is to provide a supportive and stimulating environment for mathematics research, innovation and education. The Institute is supported by the Ontario Ministry of Training, Colleges and Universities, the Natural Sciences and Engineering Research Council of Canada, and seven Ontario universities (Carleton, McMaster, Ottawa, Toronto, Waterloo, Western Ontario, and York). In addition there are several affiliated universities and corporate sponsors in both Canada and the United States.

Fields Institute Editorial Board: Carl R. Riehm (Managing Editor), Barbara Lee Keyfitz (Director of the Institute), Thomas S. Salisbury (Deputy Director), John Bland (Toronto), Kenneth R. Davidson (Waterloo), Joel Feldman (UBC), R. Mark Goresky (Institute for Advanced Study, Princeton), Cameron Stewart (Waterloo), Noriko Yui (Queen's).

2000 Mathematics Subject Classification. Primary 05E05, 06A07, 06A11, 16W30, 20F55, 51E24.

For additional information and updates on this book, visit www.ams.org/bookpages/fim-23

Library of Congress Cataloging-in-Publication Data
Aguiar, Marcelo, 1968-.
Coxeter groups and Hopf algebras / Marcelo Aguiar, Swapneel Mahajan. p. cm. - (Fields Institute monographs, ISSN 1069-5273; 23)
Includes bibliographical references and index.
ISBN 0-8218-3907-1 (alk. paper)
1. Hopf algebras. 2. Coxeter groups. I. Mahajan, Swapneel, 1974-. II. Title. III. Series.
QA613.8.A384 2006
$512^{\prime} .55-\mathrm{dc} 22$

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
© 2006 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government. Printed in the United States of America.
(ब) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
This publication was prepared by the Fields Institute.
http://www.fields.utoronto.ca
Visit the AMS home page at http://www.ams.org/

Foreword

In the study of a mathematical system, algebraic structures allow for the discovery of more information. This is the motor behind the success of many areas of mathematics such as algebraic geometry, algebraic combinatorics, algebraic topology and others. This was certainly the motivation behind the observation of G.-C. Rota stating that various combinatorial objects possess natural product and coproduct structures. These structures give rise to a graded Hopf algebra, which is usually referred to as a combinatorial Hopf algebra. Typically, it is a graded vector space where the homogeneous components are spanned by finite sets of combinatorial objects of a given type and the algebraic structures are given by some constructions on those objects.

Recent foundational work has constructed many interesting combinatorial Hopf algebras and uncovered new connections between diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This has expanded the new and vibrant subject of combinatorial Hopf algebras. To give a few instances:

- Connes and Kreimer showed that a certain renormalization problem in quantum field theory can be encoded and solved using a Hopf algebra spanned by rooted trees.
- Loday and Ronco showed that a Hopf algebra based on planar binary trees is the free dendriform algebra on one generator. This is true for many types of algebras; the free algebra on one generator is a combinatorial Hopf algebra.
- In the context of polytope theory, some interesting enumerative combinatorial invariants induce a Hopf morphism from a Hopf algebra of posets to the Hopf algebra of quasi-symmetric functions.
- Krob and Thibon showed that the representation theory of the Hecke algebras at $q=0$ is intimately related to the Hopf algebra structure of quasisymmetric functions and non-commutative symmetric functions.
Some of the latest research in these areas has been the subject of a series of recent meetings, including an AMS/CMS meeting in Montréal in May 2002, a BIRS workshop in Banff in August 2004, and a CIRM workshop in Luminy in April 2005. It was suggested at the BIRS meeting that the draft text of M. Aguiar and S. Mahajan be expanded into the first monograph on the subject. Both are outstanding communicators. Their unified geometric approach using the combinatorics of Coxeter complexes and projection maps allows us to construct many of the combinatorial Hopf algebras currently under study and further to understand their properties (freeness, cofreeness, etc.) and to describe morphisms among them.

The current monograph is the result of this great effort and it is for me a great pleasure to introduce it.

Nantel Bergeron, Canada Research Chair, York University

Contents

List of Tables xi
List of Figures xiii
Preface xv
0.1. The first part: Chapters 1-3 xv
0.2 . The second part: Chapters $4-8$ xv
0.3. Future work xvi
0.4. Acknowledgements xvi
0.5. Notation xvi
Chapter 1. Coxeter Groups 1
1.1. Regular cell complexes and simplicial complexes 1
1.1.1. Gate property 1
1.1.2. Link and join 2
1.2. Hyperplane arrangements 2
1.2.1. Faces 2
1.2.2. Flats 3
1.2.3. Spherical picture 4
1.2.4. Gate property and other facts 4
1.3. Reflection arrangements 4
1.3.1. Finite reflection groups 5
1.3.2. Types of faces 5
1.3.3. The Coxeter diagram 5
1.3.4. The distance map 6
1.3.5. The Bruhat order 6
1.3.6. The descent algebra: A geometric approach 7
1.3.7. Link and join 7
1.4. The Coxeter group of type A_{n-1} 8
1.4.1. The braid arrangement 8
1.4.2. Types of faces 9
1.4.3. Set compositions and partitions 9
1.4.4. The Bruhat order 10
Chapter 2. Left Regular Bands 13
2.1. Why LRBs? 13
2.2. Faces and flats 14
2.2.1. Faces 14
2.2.2. Flats 14
2.2.3. Chambers 14
2.2.4. Examples 15
2.3. Pointed faces and lunes 15
2.3.1. Pointed faces 15
2.3.2. Lunes 15
2.3.3. The relation of Q and Z with Σ and L 16
2.3.4. Lunar regions 16
2.3.5. Examples 17
2.4. Link and join of LRBs 19
2.4.1. SubLRB and quotient LRB 19
2.4.2. Product of LRBs 19
2.5. Bilinear forms related to an LRB 19
2.5.1. The bilinear form on $\mathbb{K} \mathrm{Q}$ 20
2.5.2. The pairing between $\mathbb{K} \mathrm{Q}$ and $\mathbb{K} \Sigma$ 21
2.5.3. The bilinear form on $\mathbb{K} \Sigma$ 21
2.5.4. The bilinear form on $\mathbb{K} L$ 22
2.5 .5 . The nondegeneracy of the form on $\mathbb{K} L$ 22
2.6. Bilinear forms related to a Coxeter group 24
2.6.1. The bilinear form on $(\mathbb{K} \Sigma)^{W}$ 24
2.6.2. The bilinear form on $(\mathbb{K} L)^{W}$ and its nondegeneracy 25
2.7. Projection posets 26
2.7.1. Definition and examples 26
2.7.2. Elementary facts 27
Chapter 3. Hopf Algebras 31
3.1. Hopf algebras 31
3.1.1. Cofree graded coalgebras 31
3.1.2. The coradical filtration 32
3.1.3. Antipode 32
3.2. Hopf algebras: Examples 33
3.2.1. The Hopf algebra Λ 33
3.2.2. The Hopf algebra Q Λ 35
3.2.3. The Hopf algebra $\mathrm{N} \Lambda$ 36
3.2.4. The duality between $\mathrm{Q} \Lambda$ and $\mathrm{N} \Lambda$ 37
Chapter 4. A Brief Overview 39
4.1. Abstract: Chapter 5 39
4.2. Abstract: Chapter 6 40
4.3. Abstract: Chapters 7 and 8 41
Chapter 5. The Descent Theory for Coxeter Groups 43
5.1. Introduction 43
5.1.1. The first part: Sections 5.2-5.5 43
5.1.2. The second part: Sections 5.6-5.7 44
5.2. The descent theory for Coxeter groups 45
5.2.1. Preliminaries 45
5.2.2. Summary 45
5.2.3. The posets Z and $\overline{\mathrm{L}}$ 46
5.2.4. The partial orders on $\mathcal{C} \times \mathcal{C}$ and Q 46
5.2.5. The map Road 48
Contents vii
5.2.6. The map GRoad 49
5.2.7. The map Θ 50
5.2.8. Connection among the three maps 51
5.3. The coinvariant descent theory for Coxeter groups 52
5.3.1. The map des 52
5.3.2. The map gdes 53
5.3.3. The map θ 53
5.3.4. Connection among the three maps 54
5.3.5. Shuffles 55
5.3.6. Sets related to the product in the M basis of $\mathrm{S} \Lambda$ 57
5.4. The example of type A_{n-1} 58
5.4.1. The posets Σ^{n} and L^{n} 59
5.4.2. The posets Q^{n} and Z^{n} 59
5.4.3. The quotient posets $\overline{\mathrm{Q}}^{n}$ and $\overline{\mathrm{L}}^{n}$ 60
5.4.4. The maps Road, GRoad and Θ 60
5.4.5. The maps des, gdes and θ 61
5.4.6. Shuffles 62
5.5. The toy example of type $A_{1}^{\times(n-1)}$ 62
5.5.1. The posets Σ^{n} and L^{n} 62
5.5.2. The posets Q^{n} and Z^{n} 63
5.5.3. The quotient posets $\overline{\mathrm{Q}}^{n}$ and $\overline{\mathrm{L}}^{n}$ 63
5.5.4. The maps Des, GDes and Θ 64
5.5.5. The maps des, gdes and θ 64
5.6. The commutative diagram (5.8) 64
5.6.1. The objects in diagram (5.8) 65
5.6.2. The maps s, Θ and Road 66
5.6.3. The bilinear form on $\mathbb{K} \mathrm{Q}$ 67
5.6.4. The top half of diagram (5.8) 68
5.6.5. The maps supp, lune and base* 68
5.6.6. The dual maps supp*, lune* and base 69
5.6.7. The maps Φ and Υ 69
5.6.8. The bottom half of diagram (5.8) 69
5.6.9. The algebra $\mathbb{K} L$ 70
5.7. The coinvariant commutative diagram (5.17) 71
5.7.1. The objects in diagram (5.17) 72
5.7.2. The maps from invariants 73
5.7.3. The maps to coinvariants 75
5.7.4. The maps in diagram (5.17) 76
5.7.5. The algebra $\mathbb{K} \overline{\mathrm{L}}$ 77
5.7.6. A different viewpoint relating diagrams (5.8) and (5.17) 78
Chapter 6. The Construction of Hopf Algebras 81
6.1. Introduction 81
6.1.1. A diagram of vector spaces for an LRB 81
6.1.2. A diagram of coalgebras and algebras for a family of LRBs 82
6.1.3. The example of type A 83
6.2. The Hopf algebras of type A 85
6.2.1. Summary 85
6.2.2. The structure of the Hopf algebras of type A 86
6.2.3. Set compositions 86
6.2.4. The Hopf algebra РП 88
6.2.5. The Hopf algebra МП 89
6.2.6. Nested set compositions 89
6.2.7. The Hopf algebra QП 90
6.2.8. The Hopf algebra Nח 91
6.2.9. Set partitions 91
6.2.10. The Hopf algebra $\Pi_{L^{*}}$ 91
6.2.11. The Hopf algebra Π_{L} 92
6.2.12. Nested set partitions 92
6.2.13. The Hopf algebra $\Pi_{Z^{*}}$ 93
6.2.14. The Hopf algebra Π_{Z} 93
6.2.15. The Hopf algebra SII 93
6.2.16. The Hopf algebra RП 94
6.3. The coalgebra axioms and examples 94
6.3.1. The coalgebra axioms 94
6.3.2. The warm-up example of compositions 96
6.3.3. The motivating example of type A_{n-1} 97
6.3.4. The example of type $A_{1}^{\times(n-1)}$ 101
6.4. From coalgebra axioms to coalgebras 102
6.4.1. The coproducts 102
6.4.2. Coassociativity of the coproducts 103
6.4.3. Useful results for coassociativity 103
6.5. Construction of coalgebras 105
6.5.1. Examples 105
6.5.2. The coproducts and local and global vertices 106
6.5.3. The coalgebra \mathcal{P} 106
6.5.4. The coalgebra \mathcal{M} 108
6.5.5. The coalgebra \mathcal{Q} 110
6.5.6. The coalgebra \mathcal{N} 111
6.5.7. The coalgebra \mathcal{S} 112
6.5.8. The coalgebra \mathcal{R} 114
6.5.9. The maps Road : $\mathcal{S} \rightarrow \mathcal{Q}$ and $\Theta: \mathcal{N} \rightarrow \mathcal{R}$ 114
6.5.10. The coalgebras $A_{\mathcal{Z}}, A_{\mathcal{L}}, A_{\mathcal{Z} *}$ and $A_{\mathcal{L}^{*}}$ 115
6.6. The algebra axioms and examples 117
6.6.1. The algebra axioms 117
6.6.2. The warm-up example of compositions 119
6.6.3. The motivating example of type A_{n-1} 120
6.6.4. The example of type $A_{1}^{\times(n-1)}$ 121
6.7. From algebra axioms to algebras 122
6.7.1. The products 122
6.7.2. Associativity of the products 122
6.7.3. Useful results for associativity 123
6.8. Construction of algebras 123
6.8.1. Examples 124
6.8.2. The algebra \mathcal{P} 124
6.8.3. The algebra \mathcal{M} 126
6.8.4. The algebra \mathcal{Q} 127
6.8.5. The algebra \mathcal{N} 128
6.8.6. The algebra \mathcal{S} 128
6.8.7. The algebra \mathcal{R} 129
6.8.8. The maps $\operatorname{Road}: \mathcal{S} \rightarrow \mathcal{Q}$ and $\Theta: \mathcal{N} \rightarrow \mathcal{R}$ 130
6.8.9. The algebras $A_{\mathcal{Z}}, A_{\mathcal{L}}, A_{\mathcal{Z}^{*}}$ and $A_{\mathcal{L}^{*}}$ 131
Chapter 7. The Hopf Algebra of Pairs of Permutations 133
7.1. Introduction 133
7.1.1. The basic setup 133
7.1.2. The main result 133
7.1.3. The Hopf algebras $R \Pi$ and $R \Lambda$ 134
7.1.4. Three partial orders on $\mathcal{C}^{n} \times \mathcal{C}^{n}$ 135
7.1.5. The different bases of $\mathrm{S} \Pi$ and $\mathrm{S} \Lambda$ 135
7.1.6. The proof method and the organization of the chapter 136
7.2. The Hopf algebra SП 137
7.2.1. Preliminary definitions 137
7.2.2. Combinatorial definition 138
7.2.3. The break and join operations 138
7.2.4. Geometric definition 139
7.2.5. The Hopf algebra $\mathrm{S} \Lambda$ 139
7.3. The Hopf algebra $\mathrm{S} \Pi$ in the M basis 141
7.3.1. A preliminary result 141
7.3.2. Coproduct in the M basis 141
7.3.3. Product in the M basis 143
7.3.4. The switch map on the M basis 145
7.4. The Hopf algebra $S \Pi$ in the S basis 145
7.4.1. Two preliminary results 146
7.4.2. Coproduct in the S basis 147
7.4.3. Product in the S basis 150
7.5. The Hopf algebra $\mathrm{R} \Pi$ in the H basis 150
7.5.1. Coproduct in the H basis 151
7.5.2. Product in the H basis 152
7.5.3. The switch map on the H basis 153
Chapter 8. The Hopf Algebra of Pointed Faces 155
8.1. Introduction 155
8.1.1. The basic setup 155
8.1.2. Cofreeness 155
8.1.3. Three partial orders on Q^{n} 156
8.1.4. The different bases of QП 156
8.1.5. The connection between $\mathrm{S} \Pi$ and $\mathrm{Q} \Pi$ 157
8.2. The Hopf algebra QП 157
8.2.1. Geometric definition 157
8.2.2. Combinatorial definition 159
8.3. The Hopf algebra РП 161
8.4. The Hopf algebra $\mathrm{Q} \Lambda$ of quasi-symmetric functions 162
Bibliography 165
Author Index 171

Notation Index 173
Subject Index 177

List of Tables

3.1 Hopf algebras, their indexing sets and structure. 33
5.1 Combinatorial notions for type A_{n-1}. 59
5.2 Vector spaces associated to Σ and their bases. 65
5.3 Vector spaces associated to W and their bases. 72
6.1 Graded vector spaces for a family of LRBs 82
6.2 Hopf algebras and their indexing sets. 85
6.3 Unified description of the Hopf algebras. 85
6.4 Hopf algebras and their structure. 86
6.5 Local and global vertex of a face and pointed face. 106
Local and global vertex of a flat and lune. 106
7.1 Hopf algebras and their indexing sets and bases. 134

List of Figures

1.1 The gate property. 1
1.2 The projection map at work. 4The Coxeter diagrams of type A_{n-1} and B_{n}.6
1.41.5The break map b_{F}.95
6.2 The break map is associative. 95
6.3 The Coxeter diagram of type A_{n-1} 98
6.4
The Coxeter diagram of type $A_{1}^{\times(n-1)}$. 101
6.5
The join map j_{F}. 118
6.6 The join map is associative. 118
7.1 A chamber D in $\operatorname{reg}\left(G, D^{\prime}\right)$, the lunar region of G and $D^{\prime} .139$
7.2
7.3
7.4
7.5
7.6

A lunar region in the Coxeter complex Σ^{4}. 140
The close relation between the star regions of K and \bar{K}. 142
The term $M_{(C, D)}$ occurring in the product $M_{\left(C_{1}, D_{1}\right)} * M_{\left(C_{2}, D_{2}\right)} .144$
A comparison of two star regions. 146
The relation between the coproducts in the M and S basis. 148

Preface

This research monograph deals with the interaction between the theory of Coxeter groups on one hand and the relationships among several Hopf algebras of recent interest on the other hand. It is aimed at upper-level graduate students and researchers in these areas. The viewpoint is new and leads to a lot of simplification.

0.1 The first part: Chapters 1-3

The first part, aside from Chapter 2, consists of standard material. The first two chapters are related to Coxeter theory, while the third chapter is related to Hopf algebras. We hope that they will make the second part more accessible.

Chapter 1 provides an introduction to some standard Coxeter theory written in a language suitable for our purposes. The emphasis is on the gate property and the projection maps of Tits, which are crucial in almost everything that we do. The reader may be required to accept many facts on faith, since most proofs are omitted. This chapter is a prerequisite for Chapter 5.

Chapter 2 is completely self-contained. It begins with some standard material on left regular bands (LRBs). We then develop some new material on pointed faces, lunes and bilinear forms on LRBs, largely inspired by the descent theory of Coxeter groups (Chapter 5). We also introduce the concept of a projection poset which generalizes the concept of an LRB to take into account some nonassociative examples.

Chapter 3 provides a brief discussion on cofree coalgebras, the coradical filtration and the antipode, which are standard notions in the theory of Hopf algebras. We then briefly discuss three examples of Hopf algebras which have now become standard: namely, the Hopf algebras of symmetric functions Λ, noncommutative symmetric functions $\mathrm{N} \Lambda$ and quasi-symmetric functions $\mathrm{Q} \Lambda$.

0.2 The second part: Chapters 4-8

The second part consists of mostly original work. The well-prepared reader may start directly with this part and refer back to the first part as necessary. Chapter 4 provides a brief overview of this work, which is spread over the next four chapters. Chapter 5 is related to Coxeter theory, while Chapters 6, 7 and 8 are related to Hopf algebras. Each of them is kept as self-contained as possible; the reader may even read them as different papers. A more detailed overview is given in the introductory section of each of these four chapters. The results in the second part, which are stated without credit, are new to our knowledge.

0.3 Future work

At many points in this monograph we say, "This will be explained in a future work." We plan to write a follow-up to this monograph, where these issues will be taken up. Our main motivation is not merely to prove new results or reprove existing results but rather to show that these ideas have a promising future.

0.4 Acknowledgements

We would like to acknowledge our debt to Jacques Tits, whose work provided the main foundation for this monograph. The work of Kenneth Brown on random walks and the literature on Hopf algebras, to which many mathematicians have contributed, provided us important guidelines. We would like to thank Nantel Bergeron for taking the initiative in having this work published, Carl Riehm and Thomas Salisbury for publishing this volume in the Fields monograph series, the referees for their comments and V. Nandagopal for providing TeX assistance.
M. Aguiar is supported by NSF grant DMS-0302423. S. Mahajan would like to thank Cornell University, Vrije Universiteit Brussel (VUB) and the Tata Institute of Fundamental Research (TIFR), where parts of this work were done. While at VUB, he was supported by the project G.0278.01, "Construction and applications of non-commutative geometry: from algebra to physics," from FWO Vlaanderen.

0.5 Notation

\mathbb{K} stands for a field of characteristic 0 . For P a set, we write $\mathbb{K} P$ for the vector space over \mathbb{K} with basis the elements of P and $\mathbb{K} P^{*}$ for its dual space. A word is written in italics if it is being defined at that place. While looking for a particular concept, the reader is advised to search both the notation and the subject index. The notation $[n]$ stands for the set $\{1,2, \ldots, n\}$. The table below indicates the main letter conventions that we use.

> subsets
> compositions partitions
> faces or set compositions
> chambers
pointed faces or fully nested set compositions
flats or set partitions
lunes or nested set partitions

$$
\begin{gathered}
S, T, U, V \\
\alpha, \beta, \gamma \\
\lambda, \mu, \rho \\
F, G, H, K, N, P, Q \\
C, D, E \\
(F, D),(P, C) \\
X, Y \\
L, M
\end{gathered}
$$

We write Σ for the set of faces and \mathcal{C} for the set of chambers. Otherwise we use roman script for the above sets. For example, Q is the set of pointed faces, and L is the set of flats. For the coalgebras and algebras constructed from such sets, we use the calligraphic script \mathcal{M}, \mathcal{N} and so on. There are some inevitable conflicts of notation; however, the context should keep things clear. For example, we also use the above letters F, M, K, H and S to denote various bases, V for a vector space, H for a Hopf algebra and S for an antipode.

Bibliography

[1] Herbert Abels, The geometry of the chamber system of a semimodular lattice, Order 8 (1991), no. 2, 143-158.
[2] Marcelo Aguiar, Nantel Bergeron, and Frank Sottile, Combinatorial Hopf algebras and generalized Dehn-Sommerville relations, arXiv:math.CO/0310016, to appear in Compos. Math.
[3] Marcelo Aguiar and Frank Sottile, Cocommutative Hopf algebras of permutations and trees, J. Algebraic Combin. 22 (2005), 451-470.
[4] , Structure of the Malvenuto-Reutenauer Hopf algebra of permutations, Adv. Math. 191 (2005), no. 2, 225-275.
[5] , Structure of the Loday-Ronco Hopf algebra of trees, J. of Algebra 295 (2006), no. 2, 473-511.
[6] M. D. Atkinson, Solomon's descent algebra revisited, Bull. London Math. Soc. 24 (1992), no. 6, 545-551.
[7] François Bergeron, Nantel Bergeron, Robert B. Howlett, and Donald E. Taylor, A decomposition of the descent algebra of a finite Coxeter group, J. Algebraic Combin. 1 (1992), no. 1, 23-44.
[8] Nantel Bergeron, Christophe Hohlweg, Mercedes Rosas, and Mike Zabrocki, Grothendieck bialgebras, Partition lattices and symmetric functions in noncommutative variables, arXiv:math.CO/0506360.
[9] Nantel Bergeron and Mike Zabrocki, The Hopf algebras of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree, arXiv:math.CO/0509265.
[10] K. Bertet, D. Krob, M. Morvan, J.-C. Novelli, H. D. Phan, and J.-Y. Thibon, An overview of Λ-type operations on quasi-symmetric functions, Comm. Algebra 29 (2001), no. 9, 4277-4303, Special issue dedicated to Alexei Ivanovich Kostrikin.
[11] T. Patrick Bidigare, Hyperplane arrangement face algebras and their associated Markov chains, Ph.D. thesis, University of Michigan, 1997.
[12] T. Patrick Bidigare, Phil Hanlon, and Daniel N. Rockmore, A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements, Duke Math. J. 99 (1999), no. 1, 135-174.
[13] Louis J. Billera, Kenneth S. Brown, and Persi Diaconis, Random walks and plane arrangements in three dimensions, Amer. Math. Monthly 106 (1999), no. 6, 502-524.
[14] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler, Oriented matroids, Encyclopedia of Mathematics and its Applications, vol. 46, Cambridge University Press, Cambridge, 1993.
[15] Dieter Blessenohl and Manfred Schocker, Noncommutative character theory of the symmetric group, Imperial College Press, London, 2005.
[16] Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1981, Groupes et algèbres de Lie. Chapitres 4, 5 et 6 . [Lie groups and Lie algebras. Chapters 4, 5 and 6].
[17] Kenneth S. Brown, Buildings, Springer-Verlag, New York, 1989.
[18] , Semigroups, rings, and Markov chains, J. Theoret. Probab. 13 (2000), no. 3, 871938.
[19] Kenneth S. Brown and Persi Diaconis, Random walks and hyperplane arrangements, Ann. Probab. 26 (1998), no. 4, 1813-1854.
[20] P. Cartier, On the structure of free Baxter algebras, Advances in Math. 9 (1972), 253-265.
[21] Frédéric Chapoton, Algèbres de Hopf des permutahèdres, associahèdres et hypercubes, Adv. Math. 150 (2000), no. 2, 264-275.
[22] George E. Cooke and Ross L. Finney, Homology of cell complexes, Princeton University Press, Princeton, N.J., 1967, Based on lectures by Norman E. Steenrod.
[23] H. S. M. Coxeter, The complete enumeration of finite groups of the form $r_{i}^{2}=\left(r_{i} r_{j}\right)^{k_{i j}}=1$, J. London Math. Soc. 10 (1935), 21-25.
[24] Peter Doubilet, On the foundations of combinatorial theory. VII. Symmetric functions through the theory of distribution and occupancy, Studies in Appl. Math. 51 (1972), 377396.
[25] Andreas W. M. Dress and Rudolf Scharlau, Gated sets in metric spaces, Aequationes Math. 34 (1987), no. 1, 112-120.
[26] Gérard Duchamp, Florent Hivert, and Jean-Yves Thibon, Some generalizations of quasisymmetric functions and noncommutative symmetric functions, Formal power series and algebraic combinatorics (Moscow, 2000), Springer, Berlin, 2000, pp. 170-178.
[27] , Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput. 12 (2002), no. 5, 671-717.
[28] Gérard Duchamp, Alexander Klyachko, Daniel Krob, and Jean-Yves Thibon, Noncommutative symmetric functions. III. Deformations of Cauchy and convolution algebras, Discrete Math. Theor. Comput. Sci. 1 (1997), no. 1, 159-216, Lie computations (Marseille, 1994).
[29] Richard Ehrenborg, On posets and Hopf algebras, Adv. Math. 119 (1996), no. 1, 1-25.
[30] Loïc Foissy, Bidendriform bialgebras, trees, and free quasi-symmetric functions, arXiv:math.RA/0505207.
[31] William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997, With applications to representation theory and geometry.
[32] A. M. Garsia and C. Reutenauer, A decomposition of Solomon's descent algebra, Adv. Math. 77 (1989), no. 2, 189-262.
[33] David D. Gebhard and Bruce E. Sagan, A chromatic symmetric function in noncommuting variables, J. Algebraic Combin. 13 (2001), no. 3, 227-255.
[34] Ladnor Geissinger, Hopf algebras of symmetric functions and class functions, Combinatoire et représentation du groupe symétrique (Actes Table Ronde C.N.R.S., Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), Springer, Berlin, 1977, pp. 168-181. Lecture Notes in Math., Vol. 579.
[35] Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Retakh, and Jean-Yves Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995), no. 2, 218-348.
[36] Ira M. Gessel, Multipartite P-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983), Amer. Math. Soc., Providence, RI, 1984, pp. 289317.
[37] Curtis Greene, On the Möbius algebra of a partially ordered set, Advances in Math. 10 (1973), 177-187.
[38] Pierre Antoine Grillet, Semigroups. an introduction to the structure theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 193, Marcel Dekker Inc., New York, 1995.
[39] Larry C. Grove and Clark T. Benson, Finite reflection groups, second ed., Graduate Texts in Mathematics, vol. 99, Springer-Verlag, New York, 1985.
[40] Michiel Hazewinkel, The algebra of quasi-symmetric functions is free over the integers, Adv. Math. 164 (2001), no. 2, 283-300.
[41] _ , Generalized overlapping shuffle algebras, J. Math. Sci. (New York) $\mathbf{1 0 6}$ (2001), no. 4, 3168-3186, Pontryagin Conference, 8, Algebra (Moscow, 1998).
[42] _, Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions, Acta Appl. Math. 75 (2003), no. 1-3, 55-83, Monodromy and differential equations (Moscow, 2001).
[43] _, Symmetric functions, noncommutative symmetric functions and quasisymmetric functions. II, Acta Appl. Math. 85 (2005), no. 1-3, 319-340.
[44] F. Hivert, J.-C. Novelli, and J.-Y. Thibon, Commutative Hopf algebras of permutations and trees, arXiv:math.CO/0502456.
[45] Florent Hivert, Combinatoire des fonctions quasi-symétriques, Ph.D. thesis, Université de Marne-la-Vallée, 1999.
[46] Michael E. Hoffman, Quasi-shuffle products, J. Algebraic Combin. 11 (2000), no. 1, 49-68.
[47] James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990.
[48] S. A. Joni and G.-C. Rota, Coalgebras and bialgebras in combinatorics, Umbral calculus and Hopf algebras (Norman, Okla., 1978), Contemp. Math., vol. 6, Amer. Math. Soc., Providence, R.I., 1982, pp. 1-47.
[49] Christian Kassel, Quantum groups, Springer-Verlag, New York, 1995.
[50] Fritz Klein-Barmen, Über eine weitere Verallgemeinerung des Verbandsbegriffes, Math. Z. 46 (1940), 472-480.
[51] D. Krob, B. Leclerc, and J.-Y. Thibon, Noncommutative symmetric functions. II. Transformations of alphabets, Internat. J. Algebra Comput. 7 (1997), no. 2, 181-264.
[52] Daniel Krob, Matthieu Latapy, Jean-Christophe Novelli, Ha Duong Phan, and Sylvaine Schwer, Pseudo-permutations I : First combinatorial and lattice properties, Paper presented at 13th FPSAC (Formal power series and algebraic combinatorics) Arizona State University, Arizona - USA, May $20-26,2001$.
[53] Daniel Krob and Jean-Yves Thibon, Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at $q=0$, J. Algebraic Combin. 6 (1997), no. 4, 339-376.
$[54]$ _ , Noncommutative symmetric functions. V. A degenerate version of $U_{q}\left(\mathrm{gl}_{N}\right)$, Internat. J. Algebra Comput. 9 (1999), no. 3-4, 405-430, Dedicated to the memory of Marcel-Paul Schützenberger.
[55] Jean-Louis Loday and María O. Ronco, On the structure of cofree Hopf algebras, arXiv:math.QA/0405330, to appear in J. f. reine u. angew. Mathematik (Crelle's Journal).
[56] , Hopf algebra of the planar binary trees, Adv. Math. 139 (1998), no. 2, 293-309.
[57] _, Order structure on the algebra of permutations and of planar binary trees, J. Algebraic Combin. 15 (2002), no. 3, 253-270.
[58] _, Trialgebras and families of polytopes, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, Contemp. Math., vol. 346, Amer. Math. Soc., Providence, RI, 2004, pp. 369-398.
[59] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., The Clarendon Press Oxford University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications.
[60] Swapneel Mahajan, Shuffles, shellings and projections, Ph.D. thesis, Cornell University, 2002.
[61] Claudia Malvenuto, Produits et coproduits des fonctions quasi-symétriques et de l'algèbre des descents, Ph.D. thesis, Laboratoire de combinatoire et d'informatique mathématique (LACIM), Univ. du Québec à Montréal, 1994.
[62] Claudia Malvenuto and Christophe Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967-982.
[63] Arnaldo Mandel, Topology of oriented matroids, Ph.D. thesis, University of Waterloo, 1982.
[64] John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264.
[65] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993.
[66] Bernhard Mühlherr, Some contributions to the theory of buildings based on the gate property, Ph.D. thesis, Eberhard-Karls-Universität zu Tübingen, 1994.
[67] Jean-Christophe Novelli and Jean-Yves Thibon, A Hopf algebra of parking functions, arXiv:math.CO/0312126.
[68] , Construction of dendriform trialgebras, arXiv:math.CO/0510218.
[69] _, Hopf algebras and dendriform structures arising from parking functions, arXiv:math.CO/0511200.
[70] Peter Orlik and Louis Solomon, Unitary reflection groups and cohomology, Invent. Math. 59 (1980), no. 1, 77-94.
[71] Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer-Verlag, Berlin, 1992.
[72] Patricia Palacios and María O. Ronco, Weak Bruhat order on the set of faces of the permutahedra, arXiv:math.CO/0404352.
[73] Frédéric Patras and Christophe Reutenauer, Lie representations and an algebra containing Solomon's, J. Algebraic Combin. 16 (2002), no. 3, 301-314 (2003).
[74] , On descent algebras and twisted bialgebras, Mosc. Math. J. 4 (2004), no. 1, 199-216, 311.
[75] Frédéric Patras and Manfred Schocker, Twisted descent algebras and the Solomon-Tits algebra, Adv. Math. 199 (2006), no. 1, 155-184.
[76] Mario Petrich, A construction and a classification of bands, Math. Nachr. 48 (1971), 263-274.
[77] _ Lectures in semigroups, John Wiley \& Sons, London-New York-Sydney, 1977.
[78] Stéphane Poirier and Christophe Reutenauer, Algèbres de Hopf de tableaux, Ann. Sci. Math. Québec 19 (1995), no. 1, 79-90.
[79] Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295.
[80] Nathan Reading, Lattice congruences of the weak order, arXiv:math.CO/0401404.
[81] _, Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A 110 (2005), no. 2, 237-273.
[82] Christophe Reutenauer, Free Lie algebras, London Mathematical Society Monographs. New Series, vol. 7, The Clarendon Press Oxford University Press, New York, 1993, Oxford Science Publications.
[83] Mercedes H. Rosas and Bruce E. Sagan, Symmetric functions in noncommuting variables, Trans. Amer. Math. Soc. 358 (2006), no. 1, 215-232 (electronic).
[84] Bruce E. Sagan, The symmetric group, second ed., Graduate Texts in Mathematics, vol. 203, Springer-Verlag, New York, 2001, Representations, combinatorial algorithms, and symmetric functions.
[85] Franco V. Saliola, The Face Semigroup Algebra of a Hyperplane Arrangement, arXiv:math.RA/0511717.
[86] Rudolf Scharlau, Metrical shellings of simplicial complexes, European J. Combin. 6 (1985), no. 3, 265-269.
[87] William R. Schmitt, Hopf algebras of combinatorial structures, Canad. J. Math. 45 (1993), no. 2, 412-428.
[88] , Incidence Hopf algebras, J. Pure Appl. Algebra 96 (1994), no. 3, 299-330.
[89] Manfred Schocker, The descent algebra of the symmetric group, Representations of finite dimensional algebras and related topics in Lie theory and geometry, Fields Inst. Commun., vol. 40, Amer. Math. Soc., Providence, RI, 2004, pp. 145-161.
[90] Maurice-Paul Schützenberger, Sur certains treillis gauches, C. R. Acad. Sci. Paris 224 (1947), 776-778.
[91] Louis Solomon, The Burnside algebra of a finite group, J. Combinatorial Theory 2 (1967), 603-615.
[92] , A Mackey formula in the group ring of a Coxeter group, J. Algebra 41 (1976), no. 2, 255-264.
[93] Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997, with a foreword by Gian-Carlo Rota, corrected reprint of the 1986 original.
[94] _, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999, With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.
[95] Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969.
[96] Mitsuhiro Takeuchi, Free Hopf algebras generated by coalgebras, J. Math. Soc. Japan 23 (1971), 561-582.
[97] Muge Taskin, Properties of four partial orders on standard Young tableaux, arXiv:math.CO/0509174.
[98] Jean-Yves Thibon, Lectures on noncommutative symmetric functions, Interaction of combinatorics and representation theory, MSJ Mem., vol. 11, Math. Soc. Japan, Tokyo, 2001, pp. 39-94.
[99] Jacques Tits, Buildings of spherical type and finite BN-pairs, Springer-Verlag, Berlin, 1974, Lecture Notes in Mathematics, Vol. 386.
[100] M. C. Wolf, Symmetric functions of noncommuting elements, Duke Math. J. (1936), 626637.
[101] Thomas Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 1 (1975), no. 154, vii+102 pp.
[102] Andrey V. Zelevinsky, Representations of finite classical groups, Lecture Notes in Mathematics, vol. 869, Springer-Verlag, Berlin, 1981, A Hopf algebra approach.
[103] Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995.

Author Index

Abels, Herbert, 1, 27
Aguiar, Marcelo, 11, 24, 31, 39, 41, 43, 56, $58,61,76,133,136,143,145,163$
Atkinson, M. D., 26
Benson, Clark T., 4
Bergeron, François, 26
Bergeron, Nantel, 26, 84, 86, 155, 163
Bertet, Karell, 35, 163
Bidigare, T. Patrick, 7, 8, 13, 22, 23
Billera, Louis J., 8, 17
Björner, Anders, 1-3
Blessenohl, Dieter, 33
Bourbaki, Nicolas, 4
Brown, Kenneth S., 2, 4, 7, 8, 13, 14, 17, $22,23,26,28,49$

Cartier, Pierre, 35
Chapoton, Frédéric, 84, 88, 163
Cooke, George E., 1
Coxeter, H.S.M., 5
Diaconis, Persi, 8, 17
Doubilet, Peter, 75
Dress, Andreas W. M., 1
Duchamp, Gérard, 36, 133, 136
Edmonds, J., 3
Ehrenborg, Richard, 31, 35
Finney, Ross L., 1
Foissy, Loïc, 133
Fulton, William, 33
Garsia, Adriano M., 26
Gebhard, David D., 66, 84
Geissinger, Ladnor, 34, 44, 81
Gelfand, Israel M., 36, 44, 81
Gessel, Ira M., 35, 36, 44, 81, 155
Greene, Curtis, 22
Grillet, Pierre Antoine, 13
Grove, Larry C., 4
Hanlon, Phil, 8, 22
Hazewinkel, Michiel, 33, 35, 36
Hivert, Florent, 36, 84, 86, 133, 136
Hoffman, Michael E., 35, 44, 81, 155
Hohlweg, Christophe, 84

Howlett, Robert B., 26
Humphreys, James E., 4, 43
Joni, S. A., 31
Kassel, Christian, 31
Klein-Barmen, Fritz, 14
Klyachko, Alexander, 36
Krob, Daniel, 26, 35, 36, 44, 81, 162, 163
Las Vergnas, Michel, 1-3
Lascoux, Alain, 36, 44, 81
Latapy, Matthieu, 162
Leclerc, Bernard, 26, 36, 44, 81
Loday, Jean-Louis, 32, 133, 140, 163
Macdonald, Ian G., 33, 77
Mahajan, Swapneel, 1, 4, 17, 25, 27, 52, 56
Malvenuto, Claudia, 33, 35, 36, 43, 44, 76, 81, 133, 136, 155
Mandel, Arnaldo, 3
Milnor, John W., 32, 34, 36
Montgomery, Susan, 31
Moore, John C., 32, 34, 36
Morvan, Michel, 35, 163
Mühlherr, Bernhard, 1
Novelli, Jean-Christophe, 35, 86, 162, 163
Orlik, Peter, 2, 23
Palacios, Patricia, 84, 162, 163
Patras, Frédéric, 84, 133
Petrich, Mario, 13
Phan, Ha Duong, 35, 162, 163
Poirier, Stéphane, 133, 136, 163
Quillen, Daniel, 32, 34
Reading, Nathan, 43
Reiner, Victor, 23
Retakh, Vladimir S., 36, 44, 81
Reutenauer, Christophe, 26, 35, 36, 84, 133, 136, 163
Rockmore, Daniel N., 8, 22
Ronco, María O., 32, 84, 133, 140, 162, 163
Rosas, Mercedes H., 66, 75, 84
Rota, Gian-Carlo, 31

Sagan, Bruce E., 33, 66, 75, 84
Saliola, Franco V., 3
Scharlau, Rudolf, 1
Schmitt, William R., 31
Schocker, Manfred, 26, 33, 84
Schützenberger, Maurice-Paul, 13, 14
Schwer, Sylvaine, 162
Solomon, Louis, 7, 22, 23, 26
Sottile, Frank, 11, 24, 31, 39, 41, 43, 56, 58, $61,76,133,136,143,145,163$
Stanley, Richard P., 22, 33, 35, 74, 77
Sturmfels, Bernd, 1-3
Sweedler, Moss E., 31, 32
Takeuchi, Mitsuhiro, 32
Taskin, Muge, 163
Taylor, Donald E., 26
Terao, Hiroaki, 2, 23
Thibon, Jean-Yves, 26, 35, 36, 44, 81, 86, $133,136,163$
Tits, Jacques, 1, 4, 5, 26
White, Neil, 1-3
Wolf, M. C., 84
Zabrocki, Michael, 84, 86, 155
Zaslavsky, Thomas, 22
Zelevinsky, Andrei V., 34, 44, 81
Ziegler, Günter M., 1-3

Notation Index

```
algebra
    (\mathbb{KL})}\mp@subsup{}{}{W},2
    (\mathbb{K}\Sigma)}\mp@subsup{}{}{W},7,2
    KL, 16, 22, 70
    K
    K\Sigma, 7, 16,70
basis
    H,K,M,F,65, 72, 134
    R,S,65,134
    h,m,65,72
    q,p,65,70,72,77
bilinear form
    on (\mathbb{KL}\mp@subsup{)}{}{W},25
    on (\mathbb{K}\Sigma\mp@subsup{)}{}{W},13,24
    on }\mathbb{KL
    on K}\mathbb{K},20,6
    on }\mathbb{K}\Sigma,13,2
chamber
        C,D,E, xvi
coalgebra
        C, 31
composition
    \alpha,\beta and }\gamma,3
elements of an algebra
    \sigma
    d
face
        F,G,H,K,N,P,Q, xvi
field
        K, xvi
flat
    X,Y, xvi
graded
        algebra
            A\mathcal{Z}},\mp@subsup{A}{\mathcal{L}}{},\mp@subsup{A}{\mp@subsup{\mathcal{Z}}{}{*}}{}\mathrm{ and }\mp@subsup{A}{\mp@subsup{\mathcal{L}}{}{*}}{},13
            P\Delta,124
            РГ, 125
            S\Gamma,129
            \mathcal{P},\mathcal{Q},\mathcal{S},\mathcal{R},\mathcal{N}\mathrm{ and }\mathcal{M},123
        coalgebra
            A\mathcal{Z}},\mp@subsup{A}{\mathcal{L}}{},\mp@subsup{A}{\mathcal{Z}}{*
            P\Delta, }10
            P\Gamma,107
```

 \(Q(V), 31\)
 \(S \Gamma, 113\)
 \(\mathcal{P}, \mathcal{Q}, \mathcal{S}, \mathcal{R}, \mathcal{N}\) and \(\mathcal{M}, 105\)
 group
$W, 5$
$W_{S \backslash T}, 7$
$\mathrm{S}_{n}, 8$
$\mathbb{Z}_{2}^{n-1}, 62$
group generators
$s_{i}, 5$
$s_{\mathrm{H}}, 5,8$
half-space
$\mathrm{H}_{i}^{+}, \mathrm{H}_{i}^{-}, 2$
Hopf algebra
M Π of set compositions
H basis, $83,85,89,108,126$
$\mathrm{N} \Lambda$ of noncommutative symmetric
functions, 33, 44
H basis, 36
K basis, 37, 125
NH of fully nested set compositions
H basis, $83,85,91,111,128$
РП of set compositions
M basis, $83,85,88,107,125,161$
S basis, 161
$\mathrm{Q} \Lambda$ of quasi-symmetric functions, 33,35 ,
44
F basis, 35, 162
M basis, $35,106,125,162$
QП of fully nested set compositions
F basis, 157
M basis, 83, 85, 90, 110, 127, 157
S basis, 157
$\mathrm{R} \Lambda$ of permutations, 134
RП of pairs of permutations, 134
H basis, 150
K basis, 83, 85, 94
$\mathrm{S} \Lambda$ of permutations
F basis, 139
M basis, 141
SП of pairs of permutations
F basis, $83,85,93,113,129,137$
M basis, 141
S basis, 145
$Y \Lambda$ of planar binary trees, 163
Λ of symmetric functions, 33, 44, 72 h basis, 33
m basis, 33
p basis, 33
q basis, 72, 78
Π_{L} and $\Pi_{\mathrm{L}^{*}}$ of set partitions
h basis, 66, 83, 85, 92
m basis, 66, $83,85,91$
p basis, 66
q basis, 66
$\Pi_{Z^{*}}$ of fully nested set partitions m basis, 83, 85, 93
Π_{Z} of fully nested set partitions
h basis, 83, 85, 93
hyperplane
$\mathrm{H}_{i}, 2$
lune
L, M, xvi
map
S antipode, 32
Δ coproduct, 31
Des, 48, 60, 64
GDes, 49, 60, 64
GRoad, 49
Ф, 66, 69
$\Psi, 67$
Road, 48, 66, 114, 130
$\Theta, 50,60,64,66,115,130$
؟, 69
base, 69, 110, 127
base*, $68,112,128$
deg, 94, 117
des, $7,52,61,64$
dist, 1
ϵ counit, 32
gdes, 53, 61, 64
lune, $15,59,63,68,116,132$
lune*, 69, 116, 132
$\phi, 71,72,84$
$\psi, 71,84$
rank, 94, 157
reg, 16, 69
road, 53
st, 86
supp, $14,59,62,68,116,132$
supp* $, 69,116,132$
$\theta, 53,61,64$
type, 45, 60, 63, 96
$\zeta, 21$
zone, 16, 69
$j, \bar{j}, j^{\prime}, j^{\prime \prime}$ join, 137
l length, 6, 52, 61
m product, 32
s switch, 66, 94
u unit, 32
$x \cdot, 19$
break b_{K}
axioms, 94, 116
example, $97,98,100,102,138$
join j_{G}
axioms, 117, 132
example, 119-121, 138
minimum gallery
$E-D-C, 4$
number
$R_{\lambda \mu}, 72,74$
| $\lambda \mid, 73,74$
$\operatorname{dist}(C, D), 1$
$\kappa, 78$
parts $(\alpha), 36$
$\operatorname{parts}(\lambda), 35$
$c_{X}, 22,23$
$c_{x}, 21$
$c_{\lambda \mu}, 35$
$m_{i j}, 5$
$n_{X}, 22,23,26,77$
$z_{\lambda}, 77$
orbit space
$(\mathcal{C} \times \mathcal{C})_{W}, 45$
$\mathrm{L}_{W}, 45$
$\mathrm{Q}_{W}, 45$
$\Sigma_{W}, 45$
$\mathrm{Z}_{W}, 45$
partial order
\leq on $W, 6$
\leq, \leq^{\prime} and \preceq on $\mathcal{C} \times \mathcal{C}, 47,135$
$\leq, \leq '$ and \preceq on Q, 47, 156
\leq^{\prime} on $\Sigma, 161$
\leq_{b} on $\mathcal{C}, 46,135$
$\leq_{r b}$ on $W, 6$
$\leq_{r b}$ on $\mathcal{C}, 135,140$
partition
λ, μ and $\rho, 33$
pointed face
$(F, D),(P, C), \mathrm{xvi}$
poset
$W, 6,45$
$\mathcal{C} \times \mathcal{C}, 45$
L, 14
$\mathrm{L}^{n}, 59,62$
$\overline{\mathrm{L}}, 24,46$
$\overline{\mathrm{L}}^{n}, 33,60,63$
Q, 15, 45
$\mathrm{Q}^{n}, 59,63$
$\overline{\mathrm{Q}}, 7,24,45$
$\overline{\mathrm{Q}}^{n}, 35,60,63$
$\Sigma, 1,2,5,14$
$\Sigma^{n}, 59,62$
$\mathrm{S}_{n}, 10$
Z, 15, 46
$\mathrm{Z}^{n}, 59,63$
set

$$
\begin{aligned}
& S_{w}^{+}(u \times v), 145 \\
& S_{w}^{-}(u \times v), 145,151 \\
& S_{w}^{0}(u \times v), 145 \\
& S_{w}^{0}(x), S_{w}^{+}(x) \text { and } S_{w}^{-}(x), 57 \\
& \mathcal{C}, 1 \\
& \mathcal{C}_{F}, 1,55,94,117 \\
& \mathcal{C}_{x}, 14 \\
& \text { Left, Middle and Right, 103, 107, 109, } \\
& \quad 111 \\
& \mathcal{O}_{T}, 72 \\
& \mathcal{O}_{\alpha}, 74 \\
& \mathcal{O}_{\lambda}, 72,74,77 \\
& \mathrm{Sh}_{T}, 55,62 \\
& \Sigma_{F}, 1 \\
& \Sigma_{K}, 94,117 \\
& \Sigma_{T}, 55 \\
& \Sigma_{x}, \mathrm{~L}_{x}, \mathrm{Z}_{x}, 19 \\
& \mathrm{Z}^{\prime} \text { of lunar regions, } 16,17,69 \\
& \operatorname{link}(F), 2 \\
& \operatorname{reg}(F, D), 17 \\
& \operatorname{reg}(x, c), 16 \\
& \text { star }(F), 1 \\
& \text { sign sequence } \\
& S(\xi, \eta), 162 \\
& \text { subset } \\
& S, T, U, V, \text { xvi } \\
& \text { vector space } \\
& P(C), 32 \\
& V, 31 \\
& \mathbb{K} P, \text { xvi } \\
& \mathbb{K} P^{*}, \text { xvi }
\end{aligned}
$$

Subject Index

action
of the Coxeter group, 5, 45
simply transitive, 5, 46
type-preserving, 5
adjoint functors, 51, 54
algebra, 122
associative, 122
free, 33, 36, 133
from axioms, 122
iterated product, 32
primitive idempotent in, 26, 70, 77
radical of, $13,22,26$
semigroup, 7
semisimple, $22,25,70,77$
alphabet, 62, 162
antipode, see also Hopf algebra
apartment, see also building
ascent
of an element of $W, 53$
of a pair of chambers, 48
axiom
algebra, 117
coalgebra, 94, 103
compatible, 85
projection, 96, 119
bars
big, 59, 89
small, 59, 89
basis
canonical, 65
dual, 34, 66, 72, 136
orthogonal, 70, 77
bialgebra, 32
bijection
chambers in two star regions, 15,28
controlling coassociativity, 103
lunes and lunar regions, 18
bilinear form
invariant, 21
nondegenerate, 22, 25
on faces, 21
on flats, 22
on orbit space of flats, 25
on pointed faces, 20,67
on subsets or compositions, 24
radical of, $13,22,26$
braid arrangement, 8,58
Bruhat order
of permutations, 10
weak left, $6,43,135$
weak right, 6,135
building, 26
apartment, 27
chamber
adjacent, 1
of an arrangement, 2
fundamental, $5,46,55,98$
of an LRB, 14
pair of, 6
of a projection poset, 26
of a regular cell complex, 1
of a simplicial complex, 1
wall of, 3,17
chamber complex, 45
coalgebra
coassociative, 103
cofree, 31, 133, 155, 162
connected, 31
coradical filtration of, 32, 149, 157
coradical of, 32
deconcatenation coproduct, 31
from axioms, 102
iterated coproduct, 31
primitive element in, $32,34,36,143,149$, 157
universal property, 31
cofree coalgebra, see also coalgebra
coinvariants
maps to, 75
of the W action, 43
commutative diagram
related to $\mathcal{C} \times \mathcal{C}, 64$
related to $W, 71$
of type $A, 83$
composition, 35, 60, 96, 119, 162
bilinear form on, 24
internal product, 36
partial order on, 35, 60
quasi-shuffle of, 35,163
support of, 35
weak, 35,36
convex, 1, 50, 51
convolution, 32
coordinate arrangement, 62
coradical, see also coalgebra
coradical filtration, see also coalgebra
Coxeter
complex, 5
diagram, 5
of type $A_{1}^{\times(n-1)}, 101$
of type $A_{n-1}, 5,98,138$
of type $B_{n}, 5$
group, 5, 45
cartesian product of, 7
exponent, 23
invariant theory, 23
presentation, 5, 8, 62
of type $A_{1}^{\times(n-1)}, 62,101,121$
of type $A_{n-1}, 8,58,98,120$
parabolic subgroup, $7,23,43,57$
system, 5, 45
criterion on radicals, 13
deconcatenation coproduct, see also coalgebra
dendriform trialgebra, 84

descent

of an element of $W, 7,52$
of a pair of chambers, 48
of a pair of permutations, 60
of a pair of words, 64
of a permutation, 61
of a word, 64
descent algebra, 7, 26
structure constants, 25
distance, see also map
distributive lattice, see also lattice
exponent, see also Coxeter group
external structure, 62, 78, 82
face
of an arrangement, 2
bilinear form on, 21
fundamental, 119
global vertex of, 106
join of, 126
joinable, 2
local vertex of, 106
of an LRB, 14
opposite, 2, 49, 59, 62
partial order on, 14,161
quasi-shuffle of, 124
of a simplicial complex, 1
type of, 5,9
facet, see also hyperplane arrangement flat
of an arrangement, 3
bilinear form on, 22
global vertex of, 106
join of, 131
local vertex of, 106
of an LRB, 14
partial order on, 14
quasi-shuffle of, 131
free algebra, see also algebra
free Lie algebra, 36
free LRB, see also left regular band (LRB)
gallery, 1
connected, 1, 2, 4
distance, 1, 4, 6
metric, $1,4,6,55,97$
minimum, $1,2,4,6,8,46,48,49$
gate property, 1
application of, 51, 56-58, 141, 144, 151
of hyperplane arrangements, 4
global ascent
of a pair of permutations, 149, 152
global descent
of an element of $W, 53$
of a pair of chambers, 49
of a pair of permutations, $60,141,142$, 149, 152
of a pair of words, 64
of a permutation, 61
of a word, 64
global vertex
of faces, 106
of flats, 106
of fully nested set compositions, 89
of fully nested set partitions, 92
of lunes, 106
of pointed faces, 106
of set compositions, 86
of set partitions, 91
great circle, 18
half-space
closed, 2, 17
open, 2
Hopf algebra, 31
antipode, 32, 137
examples, $33,83,85$
self-dual, 33, 133
structural results, 33,86
structure maps, 32
universal property, 163
hyperplane
separates, $2,4,10,48,50$
supporting, 2,17
hyperplane arrangement, 2
central, 2
chamber of, 2
essential, 2
face of, 2
facet of, 2
flat of, 3
as an LRB, 15
lunar region in, 17, 50, 139
product in, 2
projection map in, 4
rank 3 example, 18
subarrangement, 17
ideal, see also semigroup
inner product, $5,34,66,72$
internal product
composition, 36
set composition, 9
set partition, 9
internal structure, 78, 81, 84
intersection lattice, see also lattice
invariant theory, see also Coxeter group
invariants
maps from, 73
of the W action, 43
inversions, see also permutation
isomorphism
Λ_{L} and $\Lambda_{\mathrm{L}^{*}}, 72$
Π_{L} and $\Pi_{\mathrm{L}^{*}}, 66$
iterated coproduct, see also coalgebra
iterated product, see also algebra
join
in a poset, 45
of Coxeter complexes, 7, 98
of faces, 126
of flats, 131
of LRBs, 19
of lunes, 131
of nested set compositions, 89
of nested set partitions, 92
of pointed faces, 128
of set compositions, 86
of set partitions, 91
of simplicial complexes, 2
joinable, see also face
lattice
distributive, 27
of flats, 3
intersection, 3, 23
modular, 26
semilattice, 14, 45
left regular band (LRB), 14
chamber of, 14
face of, 14
family of, 82
flat of, 14
free, $15,18,23$
link in, 19
lune in, 15,106
nonassociative, 27
product of, 19
quotient, 19
star region in, 19
sub, 19
length, see also map
link
in a Coxeter complex, 7, 98, 138
in an LRB, 19
in a simplicial complex, 2
local vertex
of faces, 106
of flats, 106
of lunes, 106
of nested set compositions, 89
of nested set partitions, 92
of pointed faces, 106
of set compositions, 86
of set partitions, 91
LRB, see also left regular band
lunar region
in an arrangement, $17,50,56,139$
base of, 17
in an LRB, 16
lune
global vertex of, 106
join of, 131
local vertex of, 106
in an LRB, 15, 106
quasi-shuffle of, 131
Möbius function, see also poset
map
distance, $6,45,63$
length, 6, 52
opposite, 49, 59, 62
order preserving, 14, 15, 47-51
standardization, 86
support, 3,14
switch, 66, 94
on the H basis, 153
on the M basis, 145
matroid, 3
meet, see also poset
minimum gallery, see also gallery
modular lattice, see also lattice
nilpotent, 23, 26, 32
nonassociative, 13,26
noncommutative, $36,66,84$
open questions, $17,20,23,52,85,137$
opposite, see also face, map
orbit, 45
order complex, 27
order preserving, see also map
oriented matroid, $2,3,17,62$
pair, see also chamber, permutation
parabolic subgroup, see also Coxeter
partial order
compositions, 35,60
faces, 14,161
flats, 14
fully nested set compositions, 59
fully nested set partitions, 59
pairs of chambers, 47
pairs of permutations, 135
partitions, 33, 60
permutations, 10
pointed faces, $15,47,156$
set compositions, 9
set partitions, 9
partition, 33, 60, 72
false-shuffle of, 33
partial order on, 33, 60
quasi-shuffle of, 33
shuffle of, 33
permutahedron, 84
permutation
Bruhat order on, 10
descent of, 61
global descent of, 61
inversions of, 10
pair of, 85
pointed face, 15
bilinear form on, 20
global vertex of, 106
join of, 128
local vertex of, 106
partial order on, 15, 47
quasi-shuffle of, 127
polygon, 1
polynomial realization, 84
poset
cartesian product of, 98
family of, 94, 117
graded, 94, 117
join in a, 45
meet in a, 45
Möbius function of, 22, 23
quotient, $46,60,63$
power series, 33, 35
presentation, see also Coxeter group
primitive element, see also coalgebra
primitive idempotent, see also algebra
projection map
in an arrangement, 4
in a Coxeter complex, 5, 97
in type $A, 9,59$
in type $A_{1}^{\times(n-1)}, 62$
projection poset
definition, 26
family of, $102,105,122,123$
in algebra axioms, 119
in coalgebra axioms, 96
pure, see also regular cell complex
quasi-shuffle
of compositions, 35,163
of faces, 124
of flats, 131
of fully nested set compositions, 89
of fully nested set partitions, 92
of lunes, 131
of partitions, 33
of pointed faces, 127
of set compositions, 86 geometric meaning, 109, 125
of set partitions, 91
radical, see also algebra
random walk, 22
rank, 5, 94, 117
reflection
arrangement, 5
group, 5
regular cell complex, 1, 4
gallery connected, 1
pure, 1
strongly connected, 1
representation theory, 33
section to a surjective map, 51, 55, 119
self-dual, see also Hopf algebra
semigroup, $2,5,14$, see also algebra ideal in, 2, 15
semilattice, see also lattice
semisimple, see also algebra
set composition, $9,59,85,86$
fully nested, $59,85,89$
internal product, 9
nested, 59, 89
partial order on, 9
set partition, 9, 59, 66, 85, 91
fully nested, $59,85,92$
internal product, 9
nested, 59, 92
partial order on, 9
shuffle
of compositions, 35
for a Coxeter group, 55
of partitions, 33
of set compositions, $62,86,163$
geometric meaning, 109, 125
sign sequence, 2,62
stacked, 63
simplicial complex, 1, 4
gallery connected, 1, 45
join of, 2, 98
link in, 2
pure, 1,45
strongly connected, 1
simply transitive, see also action
Solomon's descent algebra, see also descent algebra
standardize, see also map
star region
in a complex, 1, 49, 53
in an LRB, 19
strongly connected, see also regular cell complex
support, see also map
supporting hyperplane, see also hyperplane symmetric group
Bruhat order on, 10
combinatorial approach, 58
geometric approach, 8
presentation, 8
tableau, 163
trees, 163
type, see also face, vertex
type-preserving, see also action
universal property, see also coalgebra, Hopf algebra
vertex
fundamental, 124, 138
of a set, 86
type of, 5,9
wall, see also chamber
weak composition, see also composition
zone, 16

Titles in This Series

23 Marcelo Aguiar and Swapneel Mahajan, Coxeter groups and Hopf algebras, 2006
22 Christian Meyer, Modular Calabi-Yau threefolds, 2005
21 Arne Ledet, Brauer type embedding problems, 2005
20 James W. Cogdell, Henry H. Kim, and M. Ram Murty, Lectures on automorphic L-functions, 2004
19 Jeremy P. Spinrad, Efficient graph representations, 2003
18 Olavi Nevanlinna, Meromorphic functions and linear algebra, 2003
17 Vitaly I. Voloshin, Coloring mixed hypergraphs: theory, algorithms and applications, 2002
16 Neal Madras, Lectures on Monte Carlo Methods, 2002
15 Bradd Hart and Matthew Valeriote, Editors, Lectures on algebraic model theory, 2002

14 Frank den Hollander, Large deviations, 2000
13 B. V. Rajarama Bhat, George A. Elliott, and Peter A. Fillmore, Editors, Lectures in operator theory, 2000
12 Salma Kuhlmann, Ordered exponential fields, 2000
11 Tibor Krisztin, Hans-Otto Walther, and Jianhong Wu, Shape, smoothness and invariant stratification of an attracting set for delayed monotone positive feedback, 1999
10 Jiří Patera, Editor, Quasicrystals and discrete geometry, 1998
Paul Selick, Introduction to homotopy theory, 1997
8 Terry A. Loring, Lifting solutions to perturbing problems in C^{*}-algebras, 1997
7 S. O. Kochman, Bordism, stable homotopy and Adams spectral sequences, 1996
6 Kenneth R. Davidson, C*-Algebras by example, 1996
5 A. Weiss, Multiplicative Galois module structure, 1996
4 Gérard Besson, Joachim Lohkamp, Pierre Pansu, and Peter Petersen Miroslav Lovric, Maung Min-Oo, and McKenzie Y.-K. Wang, Editors, Riemannian geometry, 1996
3 Albrecht Böttcher, Aad Dijksma and Heinz Langer, Michael A. Dritschel and James Rovnyak, and M. A. Kaashoek Peter Lancaster, Editor, Lectures on operator theory and its applications, 1996
2 Victor P. Snaith, Galois module structure, 1994
1 Stephen Wiggins, Global dynamics, phase space transport, orbits homoclinic to resonances, and applications, 1993

An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary background ideas making this work accessible to advanced graduate students. The later chapters culminate in a unified and conceptual construction of several Hopf algebras based on combinatorial objects which emerge naturally from the geometric viewpoint. This work lays a foundation and provides new insights for further development of the subject.

FIM/23.S

