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Foreword

In the study of a mathematical system, algebraic structures allow for the dis-

covery of more information. This is the motor behind the success of many ar-

eas of mathematics such as algebraic geometry, algebraic combinatorics, algebraic

topology and others. This was certainly the motivation behind the observation of

G.-C. Rota stating that various combinatorial objects possess natural product and

coproduct structures. These structures give rise to a graded Hopf algebra, which

is usually referred to as a combinatorial Hopf algebra. Typically, it is a graded

vector space where the homogeneous components are spanned by finite sets of com-

binatorial objects of a given type and the algebraic structures are given by some

constructions on those objects.

Recent foundational work has constructed many interesting combinatorial Hopf

algebras and uncovered new connections between diverse subjects such as combi-

natorics, algebra, geometry, and theoretical physics. This has expanded the new

and vibrant subject of combinatorial Hopf algebras. To give a few instances:

• Connes and Kreimer showed that a certain renormalization problem in quan-

tum field theory can be encoded and solved using a Hopf algebra spanned

by rooted trees.

• Loday and Ronco showed that a Hopf algebra based on planar binary trees is

the free dendriform algebra on one generator. This is true for many types of

algebras; the free algebra on one generator is a combinatorial Hopf algebra.

• In the context of polytope theory, some interesting enumerative combinato-

rial invariants induce a Hopf morphism from a Hopf algebra of posets to the

Hopf algebra of quasi-symmetric functions.

• Krob and Thibon showed that the representation theory of the Hecke alge-

bras at q = 0 is intimately related to the Hopf algebra structure of quasi-

symmetric functions and non-commutative symmetric functions.

Some of the latest research in these areas has been the subject of a series

of recent meetings, including an AMS/CMS meeting in Montréal in May 2002, a

BIRS workshop in Banff in August 2004, and a CIRM workshop in Luminy in

April 2005. It was suggested at the BIRS meeting that the draft text of M. Aguiar

and S. Mahajan be expanded into the first monograph on the subject. Both are

outstanding communicators. Their unified geometric approach using the combina-

torics of Coxeter complexes and projection maps allows us to construct many of the

combinatorial Hopf algebras currently under study and further to understand their

properties (freeness, cofreeness, etc.) and to describe morphisms among them.

The current monograph is the result of this great effort and it is for me a great

pleasure to introduce it.

Nantel Bergeron, Canada Research Chair, York University
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Preface

This research monograph deals with the interaction between the theory of Cox-

eter groups on one hand and the relationships among several Hopf algebras of recent

interest on the other hand. It is aimed at upper-level graduate students and re-

searchers in these areas. The viewpoint is new and leads to a lot of simplification.

0.1 The first part: Chapters 1-3

The first part, aside from Chapter 2, consists of standard material. The first

two chapters are related to Coxeter theory, while the third chapter is related to

Hopf algebras. We hope that they will make the second part more accessible.

Chapter 1 provides an introduction to some standard Coxeter theory written

in a language suitable for our purposes. The emphasis is on the gate property and

the projection maps of Tits, which are crucial in almost everything that we do.

The reader may be required to accept many facts on faith, since most proofs are

omitted. This chapter is a prerequisite for Chapter 5.

Chapter 2 is completely self-contained. It begins with some standard material

on left regular bands (LRBs). We then develop some new material on pointed

faces, lunes and bilinear forms on LRBs, largely inspired by the descent theory of

Coxeter groups (Chapter 5). We also introduce the concept of a projection poset

which generalizes the concept of an LRB to take into account some nonassociative

examples.

Chapter 3 provides a brief discussion on cofree coalgebras, the coradical filtra-

tion and the antipode, which are standard notions in the theory of Hopf algebras.

We then briefly discuss three examples of Hopf algebras which have now become

standard: namely, the Hopf algebras of symmetric functions Λ, noncommutative

symmetric functions NΛ and quasi-symmetric functions QΛ.

0.2 The second part: Chapters 4-8

The second part consists of mostly original work. The well-prepared reader

may start directly with this part and refer back to the first part as necessary.

Chapter 4 provides a brief overview of this work, which is spread over the next four

chapters. Chapter 5 is related to Coxeter theory, while Chapters 6, 7 and 8 are

related to Hopf algebras. Each of them is kept as self-contained as possible; the

reader may even read them as different papers. A more detailed overview is given

in the introductory section of each of these four chapters. The results in the second

part, which are stated without credit, are new to our knowledge.

xv



xvi Preface

0.3 Future work

At many points in this monograph we say, “This will be explained in a future

work.” We plan to write a follow-up to this monograph, where these issues will

be taken up. Our main motivation is not merely to prove new results or reprove

existing results but rather to show that these ideas have a promising future.

0.4 Acknowledgements

We would like to acknowledge our debt to Jacques Tits, whose work provided

the main foundation for this monograph. The work of Kenneth Brown on random

walks and the literature on Hopf algebras, to which many mathematicians have

contributed, provided us important guidelines. We would like to thank Nantel

Bergeron for taking the initiative in having this work published, Carl Riehm and

Thomas Salisbury for publishing this volume in the Fields monograph series, the

referees for their comments and V. Nandagopal for providing TeX assistance.

M. Aguiar is supported by NSF grant DMS-0302423. S. Mahajan would like to

thank Cornell University, Vrije Universiteit Brussel (VUB) and the Tata Institute

of Fundamental Research (TIFR), where parts of this work were done. While at

VUB, he was supported by the project G.0278.01, “Construction and applications

of non-commutative geometry: from algebra to physics,” from FWO Vlaanderen.

0.5 Notation

K stands for a field of characteristic 0. For P a set, we write KP for the vector

space over K with basis the elements of P and KP ∗ for its dual space. A word is

written in italics if it is being defined at that place. While looking for a particular

concept, the reader is advised to search both the notation and the subject index.

The notation [n] stands for the set {1, 2, . . . , n}. The table below indicates the main

letter conventions that we use.

subsets S, T , U , V

compositions α, β, γ

partitions λ, μ, ρ

faces or set compositions F , G, H, K, N , P , Q

chambers C, D, E

pointed faces or fully nested set compositions (F,D), (P,C)

flats or set partitions X, Y

lunes or nested set partitions L, M

We write Σ for the set of faces and C for the set of chambers. Otherwise we use

roman script for the above sets. For example, Q is the set of pointed faces, and L

is the set of flats. For the coalgebras and algebras constructed from such sets, we

use the calligraphic script M, N and so on. There are some inevitable conflicts of

notation; however, the context should keep things clear. For example, we also use

the above letters F , M , K, H and S to denote various bases, V for a vector space,

H for a Hopf algebra and S for an antipode.
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global vertex of, 106

join of, 126

joinable, 2

local vertex of, 106

of an LRB, 14

opposite, 2, 49, 59, 62

partial order on, 14, 161

quasi-shuffle of, 124

of a simplicial complex, 1

type of, 5, 9

facet, see also hyperplane arrangement

flat

of an arrangement, 3

bilinear form on, 22

global vertex of, 106

join of, 131

local vertex of, 106

of an LRB, 14

partial order on, 14

quasi-shuffle of, 131

free algebra, see also algebra

free Lie algebra, 36

free LRB, see also left regular band (LRB)

gallery, 1

connected, 1, 2, 4

distance, 1, 4, 6

metric, 1, 4, 6, 55, 97

minimum, 1, 2, 4, 6, 8, 46, 48, 49

gate property, 1

application of, 51, 56–58, 141, 144, 151

of hyperplane arrangements, 4

global ascent

of a pair of permutations, 149, 152

global descent

of an element of W , 53

of a pair of chambers, 49

of a pair of permutations, 60, 141, 142,

149, 152

of a pair of words, 64

of a permutation, 61

of a word, 64

global vertex

of faces, 106

of flats, 106

of fully nested set compositions, 89

of fully nested set partitions, 92

of lunes, 106

of pointed faces, 106

of set compositions, 86

of set partitions, 91

great circle, 18

half-space

closed, 2, 17

open, 2

Hopf algebra, 31

antipode, 32, 137

examples, 33, 83, 85

self-dual, 33, 133

structural results, 33, 86

structure maps, 32

universal property, 163

hyperplane

separates, 2, 4, 10, 48, 50

supporting, 2, 17

hyperplane arrangement, 2

central, 2

chamber of, 2

essential, 2

face of, 2

facet of, 2

flat of, 3
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as an LRB, 15

lunar region in, 17, 50, 139

product in, 2

projection map in, 4

rank 3 example, 18

subarrangement, 17

ideal, see also semigroup

inner product, 5, 34, 66, 72

internal product

composition, 36

set composition, 9

set partition, 9

internal structure, 78, 81, 84

intersection lattice, see also lattice

invariant theory, see also Coxeter group

invariants

maps from, 73

of the W action, 43

inversions, see also permutation

isomorphism

ΛL and ΛL∗ , 72

ΠL and ΠL∗ , 66

iterated coproduct, see also coalgebra

iterated product, see also algebra

join

in a poset, 45

of Coxeter complexes, 7, 98

of faces, 126

of flats, 131

of LRBs, 19

of lunes, 131

of nested set compositions, 89

of nested set partitions, 92

of pointed faces, 128

of set compositions, 86

of set partitions, 91

of simplicial complexes, 2

joinable, see also face

lattice

distributive, 27

of flats, 3

intersection, 3, 23

modular, 26

semilattice, 14, 45

left regular band (LRB), 14

chamber of, 14

face of, 14

family of, 82

flat of, 14

free, 15, 18, 23

link in, 19

lune in, 15, 106

nonassociative, 27

product of, 19

quotient, 19

star region in, 19

sub, 19

length, see also map

link

in a Coxeter complex, 7, 98, 138

in an LRB, 19

in a simplicial complex, 2

local vertex

of faces, 106

of flats, 106

of lunes, 106

of nested set compositions, 89

of nested set partitions, 92

of pointed faces, 106

of set compositions, 86

of set partitions, 91

LRB, see also left regular band

lunar region

in an arrangement, 17, 50, 56, 139

base of, 17

in an LRB, 16

lune

global vertex of, 106

join of, 131

local vertex of, 106

in an LRB, 15, 106

quasi-shuffle of, 131

Möbius function, see also poset

map

distance, 6, 45, 63

length, 6, 52

opposite, 49, 59, 62

order preserving, 14, 15, 47–51

standardization, 86

support, 3, 14

switch, 66, 94

on the H basis, 153

on the M basis, 145

matroid, 3

meet, see also poset

minimum gallery, see also gallery

modular lattice, see also lattice

nilpotent, 23, 26, 32

nonassociative, 13, 26

noncommutative, 36, 66, 84

open questions, 17, 20, 23, 52, 85, 137

opposite, see also face, map

orbit, 45

order complex, 27

order preserving, see also map

oriented matroid, 2, 3, 17, 62

pair, see also chamber, permutation

parabolic subgroup, see also Coxeter

partial order

compositions, 35, 60

faces, 14, 161
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flats, 14

fully nested set compositions, 59

fully nested set partitions, 59

pairs of chambers, 47

pairs of permutations, 135

partitions, 33, 60

permutations, 10

pointed faces, 15, 47, 156

set compositions, 9

set partitions, 9

partition, 33, 60, 72

false-shuffle of, 33

partial order on, 33, 60

quasi-shuffle of, 33

shuffle of, 33

permutahedron, 84

permutation

Bruhat order on, 10

descent of, 61

global descent of, 61

inversions of, 10

pair of, 85

pointed face, 15

bilinear form on, 20

global vertex of, 106

join of, 128

local vertex of, 106

partial order on, 15, 47

quasi-shuffle of, 127

polygon, 1

polynomial realization, 84

poset

cartesian product of, 98

family of, 94, 117

graded, 94, 117

join in a, 45

meet in a, 45

Möbius function of, 22, 23

quotient, 46, 60, 63

power series, 33, 35

presentation, see also Coxeter group

primitive element, see also coalgebra

primitive idempotent, see also algebra

projection map

in an arrangement, 4

in a Coxeter complex, 5, 97

in type A, 9, 59

in type A
×(n−1)
1 , 62

projection poset

definition, 26

family of, 102, 105, 122, 123

in algebra axioms, 119

in coalgebra axioms, 96

pure, see also regular cell complex

quasi-shuffle

of compositions, 35, 163

of faces, 124

of flats, 131

of fully nested set compositions, 89

of fully nested set partitions, 92

of lunes, 131

of partitions, 33

of pointed faces, 127

of set compositions, 86

geometric meaning, 109, 125

of set partitions, 91

radical, see also algebra

random walk, 22

rank, 5, 94, 117

reflection

arrangement, 5

group, 5

regular cell complex, 1, 4

gallery connected, 1

pure, 1

strongly connected, 1

representation theory, 33

section to a surjective map, 51, 55, 119

self-dual, see also Hopf algebra

semigroup, 2, 5, 14, see also algebra

ideal in, 2, 15

semilattice, see also lattice

semisimple, see also algebra

set composition, 9, 59, 85, 86

fully nested, 59, 85, 89

internal product, 9

nested, 59, 89

partial order on, 9

set partition, 9, 59, 66, 85, 91

fully nested, 59, 85, 92

internal product, 9

nested, 59, 92

partial order on, 9

shuffle

of compositions, 35

for a Coxeter group, 55

of partitions, 33

of set compositions, 62, 86, 163

geometric meaning, 109, 125

sign sequence, 2, 62

stacked, 63

simplicial complex, 1, 4

gallery connected, 1, 45

join of, 2, 98

link in, 2

pure, 1, 45

strongly connected, 1

simply transitive, see also action

Solomon’s descent algebra, see also descent
algebra

standardize, see also map

star region

in a complex, 1, 49, 53

in an LRB, 19
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strongly connected, see also regular cell
complex

support, see also map
supporting hyperplane, see also hyperplane

symmetric group
Bruhat order on, 10

combinatorial approach, 58
geometric approach, 8

presentation, 8

tableau, 163

trees, 163
type, see also face, vertex
type-preserving, see also action

universal property, see also coalgebra, Hopf
algebra

vertex
fundamental, 124, 138

of a set, 86
type of, 5, 9

wall, see also chamber
weak composition, see also composition

zone, 16
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10 Jǐŕı Patera, Editor, Quasicrystals and discrete geometry, 1998

9 Paul Selick, Introduction to homotopy theory, 1997

8 Terry A. Loring, Lifting solutions to perturbing problems in C ∗-algebras, 1997

7 S. O. Kochman, Bordism, stable homotopy and Adams spectral sequences, 1996

6 Kenneth R. Davidson, C*-Algebras by example, 1996

5 A. Weiss, Multiplicative Galois module structure, 1996

4 Gérard Besson, Joachim Lohkamp, Pierre Pansu, and Peter Petersen

Miroslav Lovric, Maung Min-Oo, and McKenzie Y.-K. Wang, Editors,
Riemannian geometry, 1996
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An important idea in the work of G.-C. Rota is that certain combinatorial 
objects give rise to Hopf algebras that refl ect the manner in which these 
objects compose and decompose. Recent work has seen the emergence 
of several interesting Hopf algebras of this kind, which connect diverse 
subjects such as combinatorics, algebra, geometry, and theoretical 
physics. This monograph presents a novel geometric approach using 
Coxeter complexes and the projection maps of Tits for constructing 
and studying many of these objects as well as new ones. The fi rst three 
chapters introduce the necessary background ideas making this work 
accessible to advanced graduate students. The later chapters culminate 
in a unifi ed and conceptual construction of several Hopf algebras based 
on combinatorial objects which emerge naturally from the geometric 
viewpoint. This work lays a foundation and provides new insights for 
further development of the subject.

AMS on the Web
www.ams.org

For additional information
and updates on this book, visit

www.ams.org/bookpages/fi m-23


