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Preface

The main purpose of the present notes is to give a systematic approach to con-
formal field theory with gauge symmetry, the so called the Wess-Zumino-Witten-
Novikov model from the viewpoint of complex algebraic geometry. After presenting
basic facts on the theory of compact Riemann surfaces, and on the representation
theory of affine Lie algebras in Chapters 1 and 2, respectively, we shall construct
conformal blocks for stable pointed curves with coordinates in Chapter 3. In Chap-
ter 4 we shall construct the sheaf of conformal blocks associated to a family of
stable pointed curves with coordinates. In Chapter 5 it will be shown that the
sheaf of conformal blocks carries a projectively flat connection, which is one of the
most important facts of conformal field theory. Chapter 6 is devoted to study the
detailed structure of the conformal field theory over P!.

Recently J.E. Andersen and I constructed modular functors from conformal
field theory. This gives an interesting relationship between Algebraic Geometry
and Topological Quantum Field Theory. The present notes include all the necessary
techniques and results on conformal field theory with gauge symmetry, which are
used to construct the modular functor.

The present notes are based on the lectures and talks given at the Fields Insti-
tute, Queen’s University, Arhus University, Kobe University and Kyoto University.
I thank the enthusiastic audiences who helped me to improve certain parts of the
proofs in these notes.

My thanks are due to Noriko Yui for inviting me to write the present notes for
Fields Institute Monographs and for helping me to complete the manuscript. Last
but not least I would like to express my hearty thanks to Arthur Greenspoon of
Mathematical Reviews for smoothing out the English of my original manuscript.

March 2008
Kenji Ueno
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Notation

Sw the projective connection attached to a symmetric bidiffer-
ential w (see (1.41)),

Tx the holomorphic (or regular) tangent bundle of a complex
manifold (or smooth projective variety) X,

Ox the sheaf of holomorphic vector fields of a complex manifold
or a smooth projective variety X,

0k the sheaf of holomorphic k-forms of a complex manifold or

a smooth projective variety X,
g=9®cC((¢)@C-c

v =98¢ (DL, C(&) o C ¢

A the root system of a complex simple Lie algebra and its
Cartan subalgebra (g, §),

Ay the set of positive roots,

0 the longest root of a complex simple Lie algebra g,

pP=73 ZaeA+ Q,

( Cartan-Killing form of a complex simple Lie algebra g nor-
malized as (6,0) = 2,

Py the set of integral dominant weights of a complex simple
Lie algebra g,

Pr={re Py | (\6) <1},

put = —w(u) for p € Py where w is the longest element of the Weyl group
of a complex simple Lie algebra g,

k=g*+4{  where g* is the dual Coxeter number of a complex simple

Lie algebra g, (k =n+ 1+ £ in case g = sl(n + 1,C)),

__ £dimg
Cy = PR

— A+2p)
A)‘ - 2Kk ’

Z:\Sv =AM+ A — Ay,

Ay =Ax+ A, — Ay, for avertex v = (m)\uz)’

X € C™| z = 2z},
R >z}

n — Cn \ Ui<inj, Aij = {(Zn, .. .,Zl)
w={(2n,-.,21) €C" | |za| > |2n_1] >
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Appendix

In this appendix we shall give basic results on the hypergeometric function.
For any complex number a and for any non-negative integer n define

(@) =ala+1)(a+2)---(a+n—1)

where
(CM)O =1.
Using the gamma function we can express (), as

_T(a+n)
=)

The hypergeometric series F(a, 3,7; z) is defined by

=N~ (@DaB)n n af  ala+DBB+]) ,
F(a,B,7; 2) —nz:% )t =1+ ’Y z+ S 12 224+, (A.39)
where «, (3, v are arbitrary complex numbers. The radius of convergence of the
series F'(a, (3,7; z) is 1, hence it defines a holomorphic function on the unit disk. The
holomorphic function can be analytically extended to a multi-valued holomorphic
function on C\ {0,1}. We use the same notation F'(a,3,7; z) for the multi-valued
holomorphic function and call it the hypergeometric function. The hypergeometric
function F(a, 3,7; 2) is a solution of the hypergeometric differential equation:

2
z(l—z)%+(’7—(a+ﬁ+l)z)j—j—a6u:0. (A.40)

The hypergeometric differential equation (A.40) has regular singular points at 0, 1
and oco. For simplicity in the following assume that ~ is not a negative integer or
0. In a neighbourhood of 0 two linearly independent solutions are given by

uo,1 = F(a, B,7; 2)

up2 =z TF(1—y+a,1 -7+ 5,2 —7;2). (A.41)
In a neighbourhood of 1 two linearly independent solutions are given by

uig = F(a,B,a+08—-7v+11-2) (A.42)

wis = (1= 2" PF(y - a,7— B,y - a— B; ). (A.43)

Similarly, in a neighbourhood of co two linearly independent solutions are given by
1

Uoo1 = (—2) *Fo, 1+ a—v,1+a—f; ;) (A.44)
_ 1

Uoo 2 = (—2) ﬂF(ﬁ,l+ﬂ—’y,1+ﬁ—a;;). (A.45)
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162 Appendix

The analytic continuation of F(a,3,7;2) in a neighbourhood of the point co
is given by
LT —a)
F(a,B,7;2) = =—=—=————=F
(®8%2) = 1B~ a)
LT (e —F) 1
+ ——FB, 1+ —714+08—05— A.46
A proof can be found in Whittaker & Watson [WW)] 14.5. This fact is used to
calculate the connection matrix in Theorem 6.25.

1
(m1+a—%1+a—&;)
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This book presents a systematic approach to conformal field theory with
gauge symmetry from the point of view of complex algebraic geom-
etry. After presenting the basic facts of the theory of compact Riemann
surfaces and the representation theory of affine Lie algebras in Chapters
1 and 2, conformal blocks for pointed Riemann surfaces with coordinates
are constructed in Chapter 3. In Chapter 4 the sheaf of conformal blocks
associated to a family of pointed Riemann surfaces with coordinates
is constructed, and in Chapter 5 it is shown that this sheaf supports a
projective flat connection—one of the most important facts of conformal
field theory. Chapter 6 is devoted to the study of the detailed structure of
the conformal field theory over P!.

Recently it was shown that modular functors can be constructed from
conformal field theory, giving an interesting relationship between alge-
braic geometry and topological quantum field theory. This book provides
a timely introduction to an intensively studied topic of conformal
field theory with gauge symmetry by a leading algebraic geometer,
and includes all the necessary techniques and results that are used to
construct the modular functor.
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