Function Theory: Interpolation and Corona Problems

Eric T. Sawyer
Function Theory: Interpolation and Corona Problems
Contents

Preface vii

Chapter 1. Preliminaries 1
 1.1. The Hardy space 2
 1.2. The Dirichlet space 3
 1.3. Tree spaces 5

Chapter 2. The Interpolation Problem 9
 2.1. Origins of interpolation in the corona problem 9
 2.2. Origins of interpolation in control theory 10
 2.3. Carleson’s duality proof of interpolation 12
 2.4. Peter Jones’ constructive proof of interpolation 23
 2.5. Other interpolation problems 32

Chapter 3. The Corona Problem 35
 3.1. Commutative Banach algebras 35
 3.2. Wolff’s proof of Carleson’s Corona Theorem 40
 3.3. The corona d-bar equation 43
 3.4. Other corona problems 45

Chapter 4. Toeplitz and Hankel Operators 55
 4.1. H^1 - BMO duality 58
 4.2. Compact Hankel operators 64
 4.3. Best approximation 69

Chapter 5. Hilbert Function Spaces and Nevanlinna-Pick Kernels 87
 5.1. The commutant 87
 5.2. Higher dimensions 102
 5.3. Applications of Carleson measures 107
 5.4. Interpolating sequences for certain spaces with NP kernel 112
 5.5. The corona problem for multiplier spaces in \mathbb{C}^n 118

Chapter 6. Carleson Measures for the Hardy-Sobolev Spaces 133
 6.1. Unified proofs for trees 135
 6.2. Invariant metrics, measures and derivatives 137
 6.3. Carleson measures on the ball B_n 140

Appendix A. Functional Analysis 145
 A.1. Banach spaces and bounded linear operators 148
 A.2. Hilbert spaces 149
| Contents |
|-----------------|------|
| A.3. Duality | 152 |
| A.4. Completeness theorems | 155 |
| A.5. Convexity theorems | 162 |
| A.6. Compact operators | 168 |
| Appendix B. Weak Derivatives and Sobolev Spaces | 173 |
| B.1. Weak derivatives | 173 |
| B.2. The Sobolev space $W^{1,2}(\Omega)$ | 174 |
| B.3. Maximal functions | 177 |
| B.4. Bounded mean oscillation and the John-Nirenberg inequality | 180 |
| Appendix C. Function Theory on the Disk | 183 |
| C.1. Factorization theorems | 188 |
| C.2. The shift operator | 191 |
| Appendix D. Spectral Theory for Normal Operators | 195 |
| D.1. Positive operators | 197 |
| Bibliography | 199 |
| Index | 201 |
Preface

This monograph contains my lecture notes for a graduate course on function theory at the Fields Institute in Toronto, Ontario, Canada, that met January through March 2008. In three months of classes, 4 hours a week, we covered Chapters 2, 3 and most of 4, and reviewed roughly half of the material in the appendices.

Acknowledgement I would like to thank those attending the lectures who have made helpful comments; including Serban Costea, Trieu Le, Nir Lev, Sandra Pott, Maria Reguera Rodriguez, Ignacio Uriarte-Tuero and Brett Wick. Special thanks to Richard Rochberg for many helpful discussions and suggestions regarding these notes and for contributing to that material in Chapter 5, Subsections 5.1.3 and 5.4, that may not have appeared explicitly before, including the purely Hilbert space proof of interpolation. Finally, I gratefully acknowledge the many excellent sources drawn upon for these notes including the books and monographs by J. Agler and J. McCarthy [1]; J. Garnett [20]; D. Gilbarg and N. Trudinger [21]; N. Nikolski [29], [30], [31]; W. Rudin [38], [39]; D. Sarason [40]; M. Schechter [42]; K. Seip [43]; E. M. Stein [46]; and K. Zhu [53].

Our goal in these lectures is to investigate that part of the theory of spaces of holomorphic functions on the unit ball B_n in \mathbb{C}^n arising from interpolation and corona problems, with of course special attention paid to the disk $D = B_1$. Our approach will be to introduce the diverse array of techniques used in the theory in the simplest settings possible, rather than to produce an encyclopedic summary of the achievements to date. The reader we have in mind is a relative novice to these topics who wishes to learn more about the field. Basic real and complex analysis is assumed as well as the theory of the Poisson integral in the unit disk (see e.g. Chapter 11 in [37]). Preliminary material in

- functional analysis (open mapping theorem, closed graph theorem, Hahn-Banach and Banach-Alaoglu Theorems, spectral theory for compact operators and the Fredholm alternative),
- the theory of Sobolev spaces (weak derivatives and embedding theorems) and maximal functions (Lebesgue’s Differentiation Theorem and the John-Nirenberg inequality),
- the theory of H^p spaces on the unit disk (F. and M. Riesz Theorem, factorization theorems and Beurling’s Theorem on the shift operator), and
- spectral theory of a normal operator on a Hilbert space

is included in Appendices A, B, C and D respectively.

The main topics reached in the lectures themselves include
interpolating sequences for classical function spaces and their multiplier algebras originating with Carleson’s characterization for $H^2(\mathbb{D})$ and its multiplier algebra $H^\infty(\mathbb{D})$, and continuing with the characterization for the Dirichlet space $D(\mathbb{B}_n)$ and its multiplier algebra in several dimensions,

• corona problems for classical function algebras originating with Carleson’s Corona Theorem for $H^\infty(\mathbb{D})$, continuing with those for $H^\infty(\mathbb{D}) \cap D(\mathbb{D})$ and the multiplier algebra for $D(\mathbb{D})$, and concluding with the Toeplitz Corona Theorem and some partial results toward corona theorems for certain function spaces on the unit ball \mathbb{B}_n,

• an introduction to the theory of Toeplitz and Hankel operators, Fefferman’s duality of H^1 and BMO, and the problem of best approximation by analytic functions in the uniform norm, and

• Hilbert space methods and the Nevanlinna-Pick property.

There are four main threads interwoven in these lecture notes. The first two follow the development of interpolation and corona theorems respectively in the past half century, beginning with the pioneering works of Lennart Carleson [13], [14]. We progress through Carleson’s original proof of interpolation using Blaschke products and duality, followed by the constructive proof of Peter Jones, and ending with a purely Hilbert space proof. We give Gamelin’s variation on Wolff’s proof of Carleson’s Corona Theorem, followed by corona theorems for other algebras using the theory of best approximation in the L^∞ norm, the boundedness of the Beurling transform, and estimates on solutions to the $\bar{\partial}$ problem.

The third thread developed here is the use of trees in the analysis of spaces of holomorphic functions [4], [5], [6], [7]. In the disk, trees are related to the well known Haar basis of $L^2(\mathbb{T})$ on the circle \mathbb{T}. In higher dimensions a “dirty” construction is required and then used to characterize Carleson measures and interpolation in some cases.

The fourth thread is the (complete) Nevanlinna-Pick property, a property shared by many classical Hilbert function spaces including the Dirichlet and Drury-Arveson spaces. The magic weaved by this property is evident in both interpolation and corona problems: a sequence is interpolating for a Hilbert space with the NP property if and only if it is interpolating for its multiplier algebra; a Hilbert space with the complete NP property has the baby corona property if and only if its multiplier algebra has no corona.

We will touch on only a small portion of the present literature on interpolation and corona problems. Rather than listing the vast number of currently relevant papers not considered here, we urge the reader to conduct an online search.

In order to limit the complexity of notation and proofs we will keep to the Hilbert space case $p = 2$, with only occasional comments on extensions to $1 < p < \infty$. However, much of the material presented here can be extended to $p \neq 2$ and there is a striking similarity between the results in the Hilbert and Banach space cases, despite the sometimes very different techniques used when $p \neq 2$ and the NP property is unavailable. This raises an important problem:

Problem 0.1 Find an analogue of the complete Nevanlinna-Pick machinery in the world of Banach spaces.

Finally, we have attempted to present the main body of the lectures, appearing here as Chapters 2, 3 and 4, in complete detail referencing only the appendices. Chapters 1, 5 and 6 will occasionally reference the literature as well.
Remark 0.2 Two results related to these lectures have been obtained by participants during and shortly after the program at the Fields Institute. First, N. Arcozzi, R. Rochberg, E. Sawyer and B. Wick [8] obtained a Nehari theorem for the Dirichlet space \mathcal{D} on the disk by showing that the bilinear form $T_b(f, g) = \langle fg, b \rangle_\mathcal{D}$ is bounded on $\mathcal{D} \times \mathcal{D}$ if and only if $|b'(z)|^2 \, dxdy$ is a Carleson measure for \mathcal{D}, thus resolving an old conjecture of R. Rochberg. Second, S. Costea, E. Sawyer and B. Wick [18] proved the corona theorem for the Drury-Arveson space H^2_n when $n > 1$.
Bibliography

[34] V. V. Peller and S. V. Hruscev, Hankel operators, best approximations, and stationary Gaussian processes, Russian Math. Surveys 37 (1982), 61-144.
Index

associated measure, 112
Banach space, 148
Banach-Alaoglu theorem, 166
Bari’s theorem, 161
Bergman metric, 137
Besov-Sobolev space, 1
best approximation, 51, 76, 78, 81
Beurling transform, 47
Beurling’s theorem, 193
Blaschke product, 40, 94, 117
finite, 4, 64
generalized, 99
in U, 15
bounded mean oscillation, 4, 59, 180
analytic, 59
Carleson measure
for $B^2_0(\mathbb{B}_n)$, 103
for $H^p(D)$, 10
D^*, 53
for the Dirichlet space $D(D)$, 8
for the Dirichlet space $B^0_2(\mathbb{B}_n)$, 133
for the tree space $D(T)$, 7
Cayley transform, 15
child, 6
closed graph theorem, 160
commutant, 90
complex homomorphism, 35
conjugate function, 67
conjugate harmonic function, 60
corona theorem
baby, 118, 125
Two generator case of the, 125
for the multiplier algebras $MB^2_0(\mathbb{B}_n)$, 102
for the algebra M_{D^*}, 51
for the Drury-Arveson space H^2, 53
Toeplitz, 119
curious lemma, 33
d-bar equation, 25, 43
Dirichlet space, 100, 102
$B^0_2(\mathbb{B}_n)$ on the ball \mathbb{B}_n, 139
bounded functions in the, 46
eigenfunction, 95
essential norm, 66
expectation, 22
exponential integrability, 59, 180
extremal problem, 92, 96, 116
factorization, 187
inner/outer, 190
Fourier coefficients, 3, 159
Fredholm alternative, 169
Fredholm operator, 79
functional calculus, 88
Gelfand transform, 37
generalized Blaschke function, 99
Gram matrix, 101
Grammian, 101, 113, 114, 117, 125
biorthogonal, 115
grand-children, 106
greatest common divisor, 88, 194
group of automorphisms of \mathbb{B}_n, 137
growth estimate, 3, 4
Hahn-Banach theorem, 162
Hankel operator, 55, 66
compact, 67
in G_2, 74
finite rank, 64, 74
Hardy space, 12
classical, 1, 102, 117
Drury-Arveson, 1, 2, 105, 122, 125
Hardy-Sobolev space, 1
Hilbert function space, 87, 153
homogeneous expansion, 138, 141
ideal, 81
inner function, 87, 88, 188
interpolating sequence
for $B^2_0(\mathbb{B}_n)$, 112
for $MB^2_0(\mathbb{B}_n)$, 112
for $H^\infty(D)$, 9
for the Dirichlet space $B_2(D)$, 32
for $B^2_0(\mathbb{B}_n)$, 102
interpolation
Nevanlinna-Pick, 92
purely Hilbert space proof of, 96, 118
involutive automorphism, 137
Jacobian, 137
Jensen’s formula, 184
John-Nirenberg inequality, 180
Jordan block, 73
Jordan canonical form, 65, 73
kernel function, 87, 141, 154
Koszul complex, 128
kube, 104, 134
Lax-Milgram, 153
linear operator of interpolation, 23, 27, 30
Marcinkiewicz interpolation, 136
maximal ideal space, 35, 120
measure
 invariant on B_n, 137
 discretized, 144
minimal norm solution, 44
multiplier
 adjoint of the, 95
 contractive, 124
multiplier algebra, 21
n-contraction, 110
Nevanlinna class, 184
Nevanlinna-Pick property, 32, 92, 94, 96
 complete, 102, 112, 113, 119
 for the Hardy space, 94
nilpotent, 73
 model space, 88, 192
nonlinear approximation operator, 81
nonfattngent maximal function, 17, 29
normal operator, 70
open mapping theorem, 158
orthonormal, 151
orthonormal basis, 71
outer function, 189
parent, 6
plant, 10
point evaluation functional, 108
pointwise multipliers, 57
polar decomposition, 72
positive definite, 119
positive operator, 197
positive semidefinite, 87
pseudo-hyperbolic metric, 32
quasicontinuous function, 79
qube, 103
quotient tree, 105
Re H^1-atom, 60
radial operators, 138, 141
rational approximation, 81
rational function, 64
reproducing formula, 138, 142
reproducing kernel, 13, 18, 32, 87, 94
 for the weighted Bergman space A^2_α, 139
 for the Dirichlet space $D(\mathbb{D})$, 4
 for the Hardy space $H^2(\mathbb{D})$, 3
Nevanlinna-Pick
 complete, 100
resolution of the identity, 195
restoration, 81
restriction map, 7–9, 112
Riesz basis, 21, 161
Riesz representation, 152
rootspace, 65
rootvector, 64
Schatten-von Neumann class, 69
Schmidt decomposition, 73
Schmidt pair, 75
Schur’s test, 49
separable, 40
separation condition, 112
shift operator, 191
 backward, 110
 forward, 67, 69, 87
 compression of the, 94
simple condition, 105, 135
singular number, 69
spectral mapping theorem, 91
spectral radius formula, 69
spectral theory for compact operators, 69,
 170
spectrum, 35
 point, 91
square root
 of the radial operator $R_{\gamma,t}^{\gamma,t}$, 142
 positive, 69
structural constants, 103
symbol, 55
symbolic calculus, 196
symmetric Fock space, 1
T1 theorem, 48
tent, 15, 16, 104
 nonisotropic, 111
tiles, 5
Toeplitz operator, 55
 invertibility of a, 78
trace inequality, 50
transposed cofactor matrix, 98
tree, 133
 Bergman, 103, 134, 144
 connected loopless rooted, 5
 dimension of a, 104
 homogeneous, 104
 structure, 104
tree condition, 105, 112, 134, 135, 144
 ε-split, 106
 split, 106
unconditional basic sequence, 21
uniform boundedness principle, 156
unitary rotation, 144
unitary rotations, 106
vanishing mean oscillation, 68
von Neumann's inequality, 110
weak type $1 - 1$, 178
weak type $1 - 1$, 136
weighted Bergman space, 139
Titles in This Series

24 **Kenji Ueno**, Conformal field theory with gauge symmetry, 2008
23 **Marcelo Aguiar and Swapneel Mahajan**, Coxeter groups and Hopf algebras, 2006
22 **Christian Meyer**, Modular Calabi-Yau threefolds, 2005
21 **Arne Ledet**, Brauer type embedding problems, 2005
20 **James W. Cogdell, Henry H. Kim, and M. Ram Murty**, Lectures on automorphic L-functions, 2004
18 **Olavi Nevanlinna**, Meromorphic functions and linear algebra, 2003
17 **Vitaly I. Voloshin**, Coloring mixed hypergraphs: theory, algorithms and applications, 2002
16 **Neal Madras**, Lectures on Monte Carlo Methods, 2002
15 **Bradd Hart and Matthew Valeriote, Editors**, Lectures on algebraic model theory, 2002
14 **Frank den Hollander**, Large deviations, 2000
12 **Salma Kuhlmann**, Ordered exponential fields, 2000
11 **Tibor Krisztin, Hans-Otto Walther, and Jianhong Wu**, Shape, smoothness and invariant stratification of an attracting set for delayed monotone positive feedback, 1999
10 **Jiří Patera, Editor**, Quasicrystals and discrete geometry, 1998
9 **Paul Selick**, Introduction to homotopy theory, 1997
8 **Terry A. Loring**, Lifting solutions to perturbing problems in C^*-algebras, 1997
7 **S. O. Kochman**, Bordism, stable homotopy and Adams spectral sequences, 1996
6 **Kenneth R. Davidson**, C^*-Algebras by example, 1996
5 **A. Weiss**, Multiplicative Galois module structure, 1996
4 **Gérard Besson, Joachim Lohkamp, Pierre Pansu, and Peter Petersen**
 Miroslav Lovric, Maung Min-Oo, and McKenzie Y.-K. Wang, Editors, Riemannian geometry, 1996
3 **Albrecht Böttcher, Aad Dijksma and Heinz Langer**, Michael A. Dritschel and James Rovnyak, and M. A. Kaashoek
 Peter Lancaster, Editor, Lectures on operator theory and its applications, 1996
2 **Victor P. Snaith**, Galois module structure, 1994
1 **Stephen Wiggins**, Global dynamics, phase space transport, orbits homoclinic to resonances, and applications, 1993
These lecture notes take the reader from Lennart Carleson’s first deep results on interpolation and corona problems in the unit disk to modern analogues in the disk and ball. The emphasis is on introducing the diverse array of techniques needed to attack these problems rather than producing an encyclopedic summary of achievements. Techniques from classical analysis and operator theory include duality, Blaschke product constructions, purely Hilbert space arguments, bounded mean oscillation, best approximation, boundedness of the Beurling transform, estimates on solutions to the $\bar{\partial}$ equation, the Koszul complex, use of trees, the complete Pick property, and the Toeplitz corona theorem. An extensive appendix on background material in functional analysis and function theory on the disk is included for the reader’s convenience.