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Preface

Since the early 1960’s, polyhedral methods have had a central role to play in

both the theory and practice of combinatorial optimization. Since the early 1990’s,

a new technique, semidefinite programming, has been increasingly applied to some

combinatorial optimization problems. The semidefinite programming problem is

the problem of optimizing a linear function of matrix variables, subject to finitely

many linear inequalities and the positive semidefiniteness condition on some of the

matrix variables. On certain problems, such as maximum cut, maximum satisfi-

ability, maximum stable set and geometric representations of graphs, semidefinite

programming techniques yield important, new results. In this monograph, we pro-

vide the necessary background to work with semidefinite optimization techniques,

usually by drawing parallels to the development of polyhedral techniques and with

a special focus on combinatorial optimization, graph theory and lift-and-project

methods.

The core of this monograph is based on ten lectures given at the Fields Institute

during the academic term Fall-1999. This activity was a part of a special year of

activities at the Fields Institute under the heading Graph Theory and Combinato-
rial Optimization. During the terms Fall-2001, Fall-2003, Spring-2005, Spring-2006,

Spring-2007 as well as Fall-2008, I gave a course entitled Semidefinite Optimization
at the Department of Combinatorics and Optimization, Faculty of Mathematics,

University of Waterloo. During the course, I used and expanded some of the mate-

rial from my Fields Institute lectures. These lecture notes and the handouts that I

prepared evolved to the current monograph.

As prerequisites for this monograph, a solid background in mathematics at the

undergraduate level and some exposure to linear optimization are required. Some

familiarity with computational complexity theory and the analysis of algorithms

would be helpful.

The chapters are exactly in the same order as the lectures. The first chapter

familiarizes the audience with the basic concepts, notation, and lays down some

theory to motivate the focus of the monograph, sometimes by way of analogy to

the mainstream polyhedral approaches. Duality theory is paramount. As a result,

instead of continuing with the material in Chapter 12 (which covers some examples

of convex sets that can be represented as the feasible regions of Semidefinite Opti-

mization problems) which would be the right way to go for an application-oriented

audience, I took a risk and chose to cover duality theory as early as possible (Chap-

ter 2). Then comes the theory of algorithms for convex optimization (Chapters

3 and 4). In Chapter 3, I give a quick overview of the Ellipsoid Method and in

Chapter 4, I go through the theory of interior-point methods, with a focus on sym-

metric, primal-dual algorithms. This portion of the monograph (Chapters 1–4)

ix



x Preface

aims to establish rigorously most of the fundamental tools needed for Semidefinite

Optimization. Chapters 5 and 6 cover various impressive results in Combinatorial

Optimization and Graph Theory involving Semidefinite Optimization in a central

way. Chapter 7 starts moving towards more abstract approaches in combinatorial

optimization which use Semidefinite Optimization (Lift-and-Project Operators).

Chapter 8 covers some of the basic techniques to analyze Lift-and-Project proce-

dures with a special emphasis on the stable set problem. Chapter 9 considers yet

further abstraction and generalization of these methods and prepares the audience

for Chapter 10. The latter chapter is a collection of pointers to various wonderful

results, some from other areas of mathematics and some establishing connections to

such areas. Chapter 11 is a quick application to a cute theorem in number theory.

Chapter 12 brings the lectures to a close in a nice, straightforward way with some

obviously interesting open questions. Open problems of seemingly varying difficulty

have been sprinkled throughout the text.

I thank Joseph Cheriyan for providing many interesting references over the

years and Steven Karp, Graeme Kemkes, Lingchen Kong, Cristiane Sato, and Mar-

cel Silva for many very useful remarks on earlier versions of the monograph. I also

thank six anonymous referees for their very useful remarks and suggestions. I thank

the editor Carl Riehm for his work and patience.

My research efforts were supported in part by Natural Sciences and Engineering

Research Council of Canada, and by a Premier’s Research Excellence Award from

Ontario, Canada. The support is gratefully acknowledged.

Levent Tunçel

Waterloo, Canada 2010
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[20] E. Balas, S. Ceria and G. Cornuéjols, A lift-and-project cutting plane algorithm for mixed
0-1 programs, Math. Program. 58 (1993) 295–323.

[21] G. P. Barker, The lattice of faces of a finite dimensional cone, Linear Algebra Appl. 7 (1973)
71–82.

[22] G. P. Barker and D. Carlson, Cones of diagonally dominant matrices, Pacific J. of Math.

57 (1975) 15–32.
[23] H. Barnum, M. Saks and M. Szegedy, Quantum query complexity and semidefinite program-

ming, in Proc. IEEE Conf. on Computational Complexity, 2003.
[24] A. Barvinok, A Course in Convexity, Graduate Studies in Mathematics, 54. American

Mathematical Society, Providence, RI, 2002.
[25] A. Barvinok, A remark on the rank of positive semidefinite matrices subject to affine con-

straints, Discrete Comput. Geom. 25 (2001) 23–31.
[26] A. Barvinok, Problems of distance geometry and convex properties of quadratic maps, Dis-

crete Comput. Geom. 13 (1995) 189–202.
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[68] L. Bröcker, On basic semialgebraic sets, Expo. Math. 9 (1991) 289–334.
[69] A. R. Karlin, C. Mathieu, C. T. Nguyen, Integrality gaps of linear and semidefinite pro-

gramming relaxations for knapsack, manuscript, 2009.
[70] S. Ceria, Lift-and-project cuts and perfect graphs, Math. Prog. 98 (2003) 309–317.
[71] S. Ceria, Lift-and-Project Methods for Mixed 0-1 Programs, Ph.D. Dissertation, Carnegie

Mellon University, 1993.
[72] M. Charikar, On semidefinite programming relaxations for graph coloring and vertex cover,

In SODA 2002: Proc. 13th annual ACM-SIAM Symp.on Disc. Algorithms, SIAM, Philadel-
phia, PA, USA, pp. 616–620.

[73] S. Chawla, R. Krauthgamer, R. Kumar and D. Sivakumar, On the hardness of approximating
multicut and sparsest-cut, Comput. Complexity 15 (2006) 94–114.

[74] B. Chazelle, The Discrepancy Method. Randomness and Complexity, Cambridge University
Press, Cambridge, 2000.



206 Bibliography

[75] B. Chazelle and A. Lvov, A trace bound for the hereditary discrepancy, Discrete Comput.

Geom. 26 (2001) 221–231.
[76] K. K. H. Cheung, Computation of the Lasserre ranks of some polytopes, Math. Oper. Res.

32 (2007) 88–94.
[77] K. K. H. Cheung, On Lovász-Schrijver lift-and-project procedures on the Dantzig-Fulkerson-

Johnson relaxation of the TSP, SIAM J. Optim. 16 (2005) 380–399.
[78] A. M. Childs, A. J. Landahl and P. A. Parrilo, Improved quantum algorithms for the or-

dered search problem via semidefinite programming, Physical Review A 75 (2007), article
number:032335.

[79] Y.-B. Choe, J. G. Oxley, A. D. Sokal and D. G. Wagner, Homogeneous multivariate poly-
nomials with the half-plane property, Adv. in Appl. Math. 32 (2004) 88–187.

[80] C. B. Chua, Relating homogeneous cones and positive definite cones via T -algebras, SIAM

J. Optim. 14 (2003) 500–506.
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[348] L. Tunçel, Potential reduction and primal-dual methods, Handbook of Semidefinite Program-

ming: Theory, Algorithms and Applications, H. Wolkowicz, R. Saigal and L. Vandenberghe
(eds.), Kluwer Academic Publishers, Boston, MA, USA, 2000, pp. 235–265.
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Balas-Ceria-Cornuéjols procedure, 135
bisection method, 53

Boolean quadric polytope, 95
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FIM/27.S

Since the early 1960s, polyhedral methods have played a central role 
in both the theory and practice of combinatorial optimization. Since 
the early 1990s, a new technique, semidefinite programming, has been 
increasingly applied to some combinatorial optimization problems. 
The semidefinite programming problem is the problem of optimizing 
a linear function of matrix variables, subject to finitely many linear 
inequalities and the positive semidefiniteness condition on some of the 
matrix variables. On certain problems, such as maximum cut, maximum 
satisfiability, maximum stable set and geometric representations of 
graphs, semidefinite programming techniques yield important new 
results. This monograph provides the necessary background to work 
with semidefinite optimization techniques, usually by drawing parallels 
to the development of polyhedral techniques and with a special focus on 
combinatorial optimization, graph theory and lift-and-project methods. 
It allows the reader to rigorously develop the necessary knowledge, tools 
and skills to work in the area that is at the intersection of combinatorial 
optimization and semidefinite optimization.

A solid background in mathematics at the undergraduate level and some 
exposure to linear optimization are required. Some familiarity with 
computational complexity theory and the analysis of algorithms would 
be helpful. Readers with these prerequisites will appreciate the important 
open problems and exciting new directions as well as new connections to 
other areas in mathematical sciences that the book provides.
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