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Preface 

A large branch of modern dynamical systems theory has grown out of the 
work of Smale and his colleagues. The germinal technical concept, hyperbol-
icity, extended from a fixed point to more general invariant sets, consists of 
conditions imposed upon the tangent maps of the system. However, devel­
opment of the subject revealed the fruitfulness of a number of purely topo­
logical concepts such as attractor, basic set, filtration, and chain recurrence. 
While some of these ideas were new, many were familiar objects of study in 
topological dynamics. The latter was a well established subject, flourishing, 
and somewhat separated from the differentiable theory. However, perusal of 
surveys like Bhatia and Szego (1970) and Nemytskii and Stepanov (1960) 
reveals that topological dynamics drew much of its motivation, as well as 
many of its examples, from the still older qualitative theory of differential 
equations originating with Poincare and exemplified in Andronov, Vitt, and 
Khaikin's great book (1937). 

The recent global results associated with hyperbolicity have provided a new 
perspective on topological dynamics. For me this new view began with a look 
at Shub and Smale's 1972 paper, Beyond hyperbolicity. This book is the result 
of an often interrupted contemplation of the best way to organize the parts 
of topological dynamics which are most useful for the nonspecialist. John 
Kelley wrote in the preface to his justly famous book, General topology, that 
he was, with difficulty, prevented by his friends from using the title "What 
every young analyst should know". The reader will note that I have adapted 
his title. This is partly gratitude (and an attempt at sympathetic magic), 
but mostly because my intent is inspired by his. I hope to have described 
what every dynamicist should know, or at least be acquainted with, from 
topological dynamics. 

While the book is thus intended as a service text and reference, its sub­
ject eventually organized itself into a unified story whose central theme is 
the role of chain recurrence in the study of dynamical systems on compact 
metric spaces. The assumption of metrizability is, for most of the results, 
just a convenience, but compactness is essential. We repeatedly use the 
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preservation of compactness by continuous maps. Even more often we need 
the observation that for a decreasing sequence of nonempty compact sets, 
{An}, the intersection, A, is nonempty and if U is any neighborhood of 
A, then An c U for sufficiently large n. On the other hand, we study the 
iterations not just of continuous maps but of more general closed relations 
on the space. At first glance, this appears to be one of those tedious and 
mechanical generalizations more honored in the omission than in the tran­
scribing. Instead, even the homeomorphisms which are our primary interest 
are best studied by thickening them up to relations in various ways (Joseph 
Auslander's prolongations). Also, the relation results can be used to partly 
mitigate the unfortunate demand for compactness. Given a homeomorphism 
of a locally compact space we can restrict to a large compact subset, A . Of 
course, if A is an invariant set then the restriction is still a homeomorphism. 
But even if A is not even positive invariant, the restriction is a closed re­
lation on A, though not a mapping. Furthermore, the relation results yield 
constructions on A , e.g., Lyapunov functions, more powerful than would be 
obtained by a further restriction to the largest invariant subset of A. 

As for prerequisites, except for the measure theory in Chapter 8 and oc­
casional forays into differentiable territory, what is needed is fluency in the 
topology of metric spaces. However, a reader whose background includes a 
modern treatment of differential equations like Hirsch and Smale (1974) or 
Arnold (1973) will have a better understanding of why we take up the topics 
that we do. 

In Chapters 1-3 we develop the fundamentals of the dynamics of a closed 
relation. We introduce and apply various kinds of recurrence and invariant 
sets, the theory of attractors, and the construction of Lyapunov functions. 
With Chapters 4 and 5 we return to mappings to discuss topological transi­
tivity, minimal subsets, decompositions and constructions converging upon 
the chain recurrent set. In Chapter 6 we derive the related results for flows 
and obtain special results for Lyapunov functions and chain recurrence in 
the vector field case. Chapter 7 concerns perturbation theory. Since our per­
turbations are topological rather than differentiable, the structural stability 
results associated with hyperbolicity do not apply, but we describe Takens* 
results on Zeeman's "tolerance stability conjecture". In Chapter 8 we de­
scribe invariant measures and compare topological notions of ergodicity and 
mixing with the measure theoretic versions. In Chapter 9 we apply the results 
to some important examples, e.g., shift maps on spaces of symbols and flows 
on the torus. Finally, in Chapters 10 and 11 we describe the hyperbolicity re­
sults for fixed points and for Axiom A homeomorphisms, respectively. This 
latter is the topological generalization of Smale's differential idea. 

The results from the exercises in the text are used as lemmas and so should 
at least be read. The straightforward proofs are better performed by the 
reader (guided by the hints) or omitted entirely than laid out in detail on the 
printed page. 

The second printing has provided an opportunity to correct some mistakes in 
the text and omissions in the references. 
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