


Recent Titles in This Series 

2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993 
1 Ethan Akin, The general topology of dynamical systems, 1993 

http://dx.doi.org/10.1090/gsm/002



This page intentionally left blank



Combinatorial Rigidity 



o 



Graduate Studies 
in Mathematics 

Volume 2 

Combinatorial Rigidity 

Jack Graver 
Brigitte Servatius 
Herman Servatius 



Editorial Board 
James E. Humphreys 

Robion C. Kirby 
Lance W. Small 

1991 Mathematics Subject Classification. P r imary 05B35; Secondary 05C10. 

ABSTRACT. Rigidity theory is introduced in an historical context. The combinatorial aspects of 
rigidity are isolated and framed in terms of a special class of matriods. These matriods are a 
natural generalization of the connectivity matriod of a graph. This book includes an introduction 
to matriod theory and a comrehensive study of planar rigidity. The final chapter of the text 
is devoted to higher dimensional rigidity, highlighting the main questions still open. This book 
contains an extensive annotated bibliography. 

Library of Congress Cataloging-in-Publicat ion D a t a 

Graver, Jack E., 1935-
Combinatorial rigidity/Jack Graver, Brigitte Servatius, Herman Servatius. 

p. cm. —(Graduate studies in mathematics, ISSN 1065-7339; v. 2) 
Includes bibliographical references and index. 
ISBN 0-8218-3801-6 (acid-free) 
1. Matriods. 2. Topological graph theory. I. Servatius, Brigitte, 1954- . II. Servatius, 

Herman, 1957- . III. Title. IV. Series. 
QA166.6.G73 1993 
511/.6-dc20 93-34431 

CIP 

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting 
for them, are permitted to make fair use of the material, such as to copy a chapter for use 
in teaching or research. Permission is granted to quote brief passages from this publication in 
reviews, provided the customary acknowledgment of the source is given. 

Republication, systematic copying, or multiple reproduction of any material in this publication 
(including abstracts) is permitted only under license from the American Mathematical Society. 
Requests for such permission should be addressed to the Manager of Editorial Services, American 
Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also 
be made by e-mail to reprint-permissionQmath.ams.org. 

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. 
Copyright Law, provided that a fee of $1.00 plus $.25 per page for each copy be paid directly to 
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, Massachusetts 01923. When 
paying this fee please use the code 1065-7339/93 to refer to this publication. This consent does 
not extend to other kinds of copying, such as copying for general distribution, for advertising or 
promotional purposes, for creating new collective works, or for resale. 

© Copyright 1993 by the American Mathematical Society. All rights reserved. 
The American Mathematical Society retains all rights 

except those granted to the United States Government. 
Printed in the United States of America. 

@ The paper used in this book is acid-free and falls within the guidelines 
established to ensure permanence and durability. 

Printed on recycled paper. 
This volume was typeset by the authors using A^S-T^i, 
the American Mathematical Society's T E X macro system, 

with technical and editorial assistance from the AMS. 

10 9 8 7 6 5 4 3 2 1 98 97 96 95 94 93 

http://reprint-permissionQmath.ams.org


Contents 

Preface ix 

Chapter 1. Overview 1 
1.1. An Intuitive Introduction to Rigidity 1 
1.2. A Short History of Rigidity 9 

Chapter 2. Infinitesimal Rigidity 17 
2.1. Basic Definitions 17 
2.2. Independence and the Stress Space 24 
2.3. Infinitesimal Motions and Isometries 30 
2.4. Infinitesimal and Generic Rigidity 36 
2.5. Rigidity Matroids 39 
2.6. Isostatic Sets 47 

Chapter 3. Matroid Theory 55 
3.1. Closure Operators 55 
3.2. Independence Systems 56 
3.3. Basis Systems 59 
3.4. Rank Function 60 
3.5. Cycle Systems 62 
3.6. Duality and Minors 68 
3.7. Connectivity 74 
3.8. Represent ability 79 
3.9. Transversal Matroids 82 
3.10. Graphic Matroids 84 
3.11. Abstract Rigidity Matroids 86 

Chapter 4. Linear and Planar Rigidity 93 
4.1. Abstract Rigidity in the Plane 93 
4.2. Combinatorial Characterizations of Q2 (n) 96 
4.3. Cycles in G2(n) 98 
4.4. Rigid Components of G2{G) 100 
4.5. Representability of Q2{n) 103 



viii CONTENTS 

4.6. Characterizations of A2 and (A2)1' 104 
4.7. Rigidity and Connectivity 109 
4.8. Trees and 2-dimensional Isostatic Sets 113 
4.9. Tree Decomposition Theorems 118 
4.10. Computational Aspects 123 

Chapter 5. Rigidity in Higher Dimensions 129 
5.1. Introduction 129 
5.2. Higher Dimensional Examples 131 
5.3. The Henneberg Conjecture 133 
5.4. Stresses and Strains 138 
5.5. 2-Extensions in 3-Space 143 
5.6. The Dress Conjecture 147 
5.7. Other Conjectures 149 

References 153 

Index 171 



Preface 

A framework in m-space is a triple (V, £*, p), where (V, E) is a finite graph and 
p is an embedding of V into real m-space. A framework is a mathematical 
model for a physical structure in which each vertex v corresponds to an idealized 
ball joint located at p(v), and each edge corresponds to a rigid rod connecting 
the joints corresponding to its endpoints. Obviously this concrete realization 
is meaningful only for m < 3, and may be used to describe a very general 
class of physical structures, including rigid ones such as pedestals or bridges, 
as well as moving structures such machines or organic molecules. Making the 
distinction between frameworks whose realization is rigid and those which can 
move is the fundamental problem of rigidity theory, which can also be considered 
for frameworks in higher dimensions. In low dimensions one could construct an 
appropriate realization of a given framework and test the model for rigidity. 
Of course, the mathematical task is to develop a method for predicting rigidity 
without building a model. 

One would expect that whether a framework is rigid or not depends on both 
the graph (V,E) and the embedding p; or, in more general terms, that the 
question of rigidity has both combinatorial and geometric aspects. Our primary 
interest is in the combinatorial part of rigidity theory, which we call combinatorial 
rigidity. However, the two parts of rigidity theory are not so easily separated. In 
fact, only in dimensions one and two has total separation of the two parts been 
achieved. 

In the first chapter we will give an overview of the subject, developing both 
aspects of the theory of rigidity informally in an historical context. This chapter 
stands apart from the rest of the book in that it contains no formal proofs. Most 
of the concepts introduced here will be reintroduced in a more formal setting 
later on. 

The second chapter is devoted to a study of infinitesimal rigidity, a linear ap
proximation which stands at the boundary of the combinatorial and geometric 
nature of rigidity. The infinitesimal approach offers at least a partial separa
tion of the combinatorial and geometric aspects by regarding the matrix of the 
derivative of a framework motion as a matroid on the edges of the framework. 

ix 
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In general, depending on the dimension and the embedding, the edges of a graph 
are the underlying set of several such matroids, all of which belong to the class 
of abstract rigidity matroids, which are defined at end of chapter 2. 

The fundamental combinatorial structures used to study rigidity are the var
ious rigidity matroids. The second chapter consists of a development of matroid 
theory, the theoretical foundation for much of modern combinatorics. There will 
of course be a special emphasis on those parts of the subject most applicable to 
rigidity matroids. 

Chapter 4 is devoted to an extensive study of combinatorial rigidity dimen
sion 2, which has a nice analogy, via the 1-dimensional case, with "traditional" 
graph theory from a slightly different point of view. A thorough knowledge of 
planar rigidity is essential to developing a good intuition for rigidity as a whole, 
and provides an extensive collection of tractable examples. Algorithmic and 
computational aspects are also treated. 

In the last chapter, we will discuss combinatorial rigidity in higher dimensions. 
Special attention is paid to dimension 3, in which there is the most practical 
interest, but where the characterization problem is still unsolved. Many of the 
results in this chapter have not yet appeared elsewhere. 

The book concludes with an extensive annotated bibliography. 
This text is suitable for a second graduate course in combinatorics and was 

already used as such at Syracuse University and at Worcester Polytechnic Insti
tute by the authors. Each chapter contains a variety of exercises, some letting 
the reader fill in the details of the theory, some working through examples, as 
well as many which point the way to aspects of rigidity theory not covered in the 
text. Exercises are placed so that the reader can check his understanding of each 
concept before going on to the next one. The annotations in the bibliography are 
not only a valuable research tool, but also meant to stimulate a project oriented 
course of study. 

Each of the chapters is mathematically self-contained, arid the reader may 
safely peruse them in the order best suited to his background and interest. 

Many thanks to Ray Adams and John Shutt for diligent proof reading and 
thoughtful questions. 
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