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A B S T R A C T . Suppose that / : [a, 6] - • R is differentiable at each point of [a, 6]. Is / ' integrable on 
[a, 6]? The answer to this question depends on the integral that is used. For example, the answer 
is no for the Riemann and Lebesgue integrals. In this century, three integration processes have 
been developed that provide an affirmative answer to this question. The principal investigators of 
these integrals were Denjoy, Perron, and Henstock. Each of these integrals generalizes a different 
property of the Lebesgue integral, but it turns out that all three integrals are equivalent. 

In this book, the properties of the Lebesgue, Denjoy, Perron, and Henstock integrals are devel
oped fully from their definitions. The equivalence of the last three integrals is then established. 
Discussions of the integration by parts formula and convergence theorems are included. In the 
last part of the book, we consider approximate derivatives and attempts to develop an integration 
process for which every approximate derivative is integrable. 
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Preface 

The Fundamental Theorem of Calculus is one of the highlights of a first year 
calculus course. Its importance lies in the fact that it reveals a significant rela
tionship between integration and differentiation. As usually stated in calculus 
books, the functions involved are continuous. However, the following version of 
the Fundamental Theorem of Calculus is valid. 

If F is differentiate on [a,b] and if F' is Riemann integrable on [a, b], 
then / * F' = F(x) - F(a) for each x € [a, 6]. 

At first glance, it might appear that there is an extra hypothesis. Aren't all 
derivatives Riemann integrable? A brief search leads one to derivatives that are 
not bounded and, as a result, not Riemann integrable. However, there are even 
bounded derivatives (existing at all points) that are not Riemann integrable. In 
other words, the extra hypothesis is essential. 

What about the Lebesgue integral? This integral was designed to overcome 
the deficiencies of the Riemann integral. Are all derivatives Lebesgue integrable? 
The answer once again is no. However, all bounded derivatives are Lebesgue 
integrable so the following version of the Fundamental Theorem of Calculus is 
valid. 

If F is differentiate on [a, b] and if F' is bounded on [a, 6], then F' is 
Lebesgue integrable on [a, b] and fx F' = F{x) — F(a) for each x G [a, 6]. 

This discussion leads naturally to the following question. Is it possible to define 
an integration process for which the theorem 

If F is differentiate on [a, 6], then the function F' is integrable on [a, b] 
and / * F' = F(x) - F(a) for each x G [a, &]. 

is valid? The answer is yes. In this century, three integration processes have been 
developed for which this ideal version of the Fundamental Theorem of Calculus is 
valid. These integrals, named after their principal investigators Denjoy, Perron, 
and Henstock, each generalize some aspect of the Lebesgue integral. Since each 
of these new integrals focuses on a different property of the Lebesgue integral, 
the definitions of the integrals are radically different. However, it turns out that 
all three integrals are equivalent. The purpose of this book is to present, in an 
elementary fashion, these integration processes. 

ix 
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The material for this book has been drawn from a number of different sources. 
The books by Saks and Natanson are the standard references for the Denjoy and 
Perron integrals. However, Natanson presents little more than a brief introduc
tion to these integrals and the classic work by Saks is not easily accessible to a 
novice in the field. The theory of the Henstock integral and recent developments 
related to all three integrals exist primarily in research articles. For this reason, 
it is difficult to follow these new developments. In addition, there have been 
some dead ends, the notation is inconsistent and often confusing, and some of 
the proofs contain errors. A detailed treatment of all three integrals from the 
ground up does not exist. As these integrals have found several applications and 
since they are interesting in their own right, it seems fitting that such a devel
opment should be available. The hope here is that a reader with a thorough 
understanding of basic real analysis, such as that found in Rudin's Principles of 
Mathematical Analysis, will be able to read this book. 

The book essentially has three parts. Chapters 1 through 4 provide an intro
duction to the Lebesgue integral. No familiarity with the Lebesgue integral or 
the concept of measure is assumed. However, it is not the purpose of this book 
to provide an in-depth study of the Lebesgue integral. Only the bare essentials 
of Lebesgue integration are discussed here, but these essentials are discussed in 
full detail. The driving force is to present those aspects of the Lebesgue integral 
that are necessary to develop the Denjoy, Perron, and Henstock integrals. These 
first four chapters have been used successfully as an independent study course 
for advanced undergraduates. 

The next section of the book, Chapters 7 through 13, presents the integrals 
of Denjoy, Perron, and Henstock. The definition and basic properties of each 
integral is considered in a separate chapter. Included in each of these chapters 
is, of course, a proof that the integral satisfies the ideal form of the Fundamental 
Theorem of Calculus. Chapter 11 establishes the equivalence of these three 
integrals. Chapter 10 is an aside to consider the McShane integral, a Riemann 
type integral that is equivalent to the Lebesgue integral. The integration by 
parts formula for each of these integrals is the primary focus of Chapter 12. An 
equally important part of this chapter is a brief introduction to the Riemann-
Stieltjes integral. Convergence theorems are the topic of Chapter 13. A general 
convergence theorem for each integral is stated and proved, then it is shown 
which of these theorems is the most general. Some essential prerequisites for 
this section of the book are discussed in Chapters 5 and 6. These chapters 
form a bridge between the Lebesgue integral and its generalizations. The level 
of sophistication is increased at this point. The concepts of Darboux function, 
Baire class one function, and functions of generalized bounded variation are 
defined and studied. 

Another transition occurs in Chapter 14. At this point, the notions of ap
proximate continuity and approximate derivative are introduced. It is shown 
how these concepts fit naturally in the theory of the Lebesgue integral. A num-
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ber of interesting facts about the approximate derivative are stated and proved. 
The last part of the book, Chapters 15 through 17, considers integration pro
cesses that attempt to recover a function from its approximate derivative. In 
other words, the focus changes to the following theorem. 

If F is approximately differentiable on [a, 6], then F^p is integrable on 
[a, b] and f* F^p = F(x) — F(a) for each x G [a, b]. 

This section looks at the Khintchine integral as well as some recent attempts 
to generalize the Henstock and Perron integrals to the case in which the indefi
nite integral is only approximately continuous. The book ends with some open 
questions related to these integrals. 

Each of the chapters contains a set of exercises. Some of the exercises are sim
ple consequences of definitions and theorems. These are intended to provide some 
practice with the concepts. Other exercises introduce important /interesting re
sults that are not discussed in the text. It should be pointed out that some 
of the exercises are rather difficult. The order of the exercises corresponds to 
the order of the text. It may happen that a problem is trivial as a result of a 
later theorem. In such a case, it is usually intended that the problem be solved 
directly from the definition or earlier results. The reader who desires to develop 
a working knowledge of this subject should try all of the exercises. Complete 
solutions to all of the exercises are provided. 

Most, but not all, of the notation is standard. A notation index can be found 
at the back of the book. A short list of references is also given. This list is by no 
means exhaustive. Several of these works (especially the book by Bruckner and 
the paper by Bullen on nonabsolute integrals) have extended lists of articles in 
them and should be consulted by the reader who wants to dig deeper. Another 
good source is the journal Real Analysis Exchange. There has been no attempt 
in this work to trace the history of the subject and, when simpler, newer proofs 
are given rather than those found in the original sources. As mentioned above, 
this work is drawn from a number of different sources and the author is deeply 
indebted to them. However, my own style and methods are evident throughout. 
Some of the proofs and ideas in this book are entirely new. I have worked 
independently on this book and would appreciate any comments, suggestions, 
and /or questions. Correspondence should be sent to the author at Whitman 
College, Walla Walla, WA 99362. A response will be sent as quickly as possible. 
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Notation Index 

Z + set of positive integers 

Q set of rational numbers 

R set of real numbers 

Re extended real numbers, R U {±00} 

E closure of the set E 

E° interior of the set E 

CE complement of the set E 

dE boundary of the set E 

Ed set of points of density of E that belong to E 

XE characteristic function of the set E 

£(I) length of interval / 

[i{E) measure of the set E 

li* (E) outer measure of the set E 

H*(E) inner measure of the set E 

dxE density of the set E at the point x 

p(x, E) distance from the point x to the set E 

d(A, B) distance between the sets A and B 

A C B A is a subset of B or A = B 

A-B AnCB 

A&B symmetric difference of the sets A and B 

Gs set any set that is a countable intersection of open sets 

Fa set any set that is a countable union of closed sets 

f(x+) lim f(t) 

f(x-) lim f{t) 
t-*X~ 

/ + / + ( x ) = m a x { / ( x ) , 0 } 

/ " / - ( x ) = max{-/( :r) ,0} 

rrif rrif(x) = lim inf{/(£) : t G [x - r, x + r) R [a, b]} 
r—*0 + 

Mf Mj{x)— lim sup{/(£) : t e {x - r,x + r) n [a, 6]} 
r—>0+ 
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4>f distribution function of / 

F'(x) derivative of F at x 

FLp(x) approximate derivative of F at x 

-̂ st (x) strong derivative of F at x 

DF(x) upper derivate of F at x 

ADF(x) lower approximate derivate of F at x 

D+F(x) lower right derivate of F at x 

AD~F(x) upper left approximate derivate of F at x 

SDF(x) upper strong derivate of F at x 

UJ(F, [a, 6]) oscillation of the function F on the interval [a, b] 

V(F, [a, b]) variation of the function F on the interval [a, b] 

V(F, E) weak variation of the function F on the set E 

V* (F, E) strong variation of the function F on the set E 

sgn x 1 if x > 0, 0 if x = 0, and — 1 if x < 0 

$ collection of Borel sets 

V a collection of non-overlapping tagged intervals 

V a collection of non-overlapping free tagged intervals 

A an approximate full cover 

A# approximate full cover with tags in the set E 

Ub
a U(b) - U(a) 

f{V) Riemann sum associated with V 

f(V^) Riemann-Stieltjes sum associated with <f> and V 

F(V) sum of the increments of F over V 
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