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Preface 

This text grew out of lecture notes written1 by Martin Weese of Humboldt 
Universitat, Berlin, Germany in 1992/93. Winfried Just used part of these notes 
during the same academic year in a lecture course on set theory for first and second 
year graduate students at Ohio University, Athens, Ohio. While doing this, the 
idea of writing up an English text of the lecture crossed his mind. The idea proved 
irresistible enough to result in this book. 

The genesis of this text accounts for some departures from the traditional text­
book format. Generally speaking, this is not so much a textbook that could form 
the backbone of a lecture, but rather the text of the lecture itself. Accordingly, 
our language is perhaps closer to spoken, colloquial. English than to the standard 
style of mathematical writing. Frequently, the text takes on the form of a dialogue 
between the authors and the reader. The exercises form an integral part of this 
dialogue and are not relegated to the end of sections. 

We tried to keep the length of the text moderate. This may explain the ab­
sence of many a worthy theorem from this book. Our most important criterion for 
inclusion of an item was frequency of use outside of pure set theory. We want to em­
phasize that "item" may mean either an important concept (like "equiconsistency 
with the existence of a measurable cardinal"), a theorem (like Ramsey's Theorem), 
or a proof technique (like the craft of using Martin's Axiom). Therefore, we occa­
sionally illustrate a technique by proving a somewhat marginal theorem. Of course, 
the "frequency of use outside set theory" is based on our subjective perceptions. 

We do feel some remorse for the total exclusion of descriptive set theory from 
this text. This is a very important branch of set theory, and it overlaps with several 
other areas of mathematics, most notably topology and recursion theory. However, 
just adding a section on descriptive set theory to a text like this would look artificial 
and do no justice to the area. It seems to us that one should either cover a lot of 
descriptive set theory, or none at all. 

At the end of most sections, there are "Mathographical Remarks." Their pur­
pose is to show where the material fits in the history and literature of the subject. 
We hope they will provide some guidance for further reading in set theory. They 
should not be mistaken for "scholarly remarks" though. We did not make any effort 
whatsoever to trace the theorems of this book to their origins. However, each of the 
theorems presented here can also be found in at least one of the more specialized 
texts reviewed in the "Mathographical Remarks." Therefore, we do not feel guilty 
of severing chains of historical evidence. 

This book owes its existence as much to our students and colleagues as it does 
to its authors. Parts of the original version of Martin Weese's lecture notes were 

1In German. 
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read by students of Humboldt University, Berlin. We thank them for pointing out 
mistakes and suggesting improvements. 

We are also indebted to Jorg Brendle for many thoughtful comments on the 
German version. 

Special thanks are due to Mary Anne Swardson of Ohio University who read 
the very first English version of this text and generously applied her red pencil to 
it.2 We are much indebted to her for this invaluable service. 

We thank Howard Wicke of Ohio University, Marion Scheepers of Boise State 
University, and Prank Tall of the University of Toronto for reading parts of later 
versions and commenting on their shortcomings. Last but not least, we thank Ohio 
University students Brian Johnson, Mark McKibben, Todd Allin Morman, William 
Stamp, and Mark Starr for struggling through parts of this book and making many 
valuable suggestions for improvement. 

2As the old saying goes: "Spare the red and spoil the text." 



How to Read this Book 

So we shall now explain how to read the book. The right way is to 
put it on your desk in the day, below your pillow at night, devoting 
yourself to the reading, and solving the exercises till you know it by 
heart. Unfortunately, I suspect the reader is looking for advice how 
not to read, i.e. what to skip, and even better, how to read only some 
isolated highlights. 

(Saharon Shelah in the introduction to his book "Classification 
Theory and the Number of Non-Isomorphic Models") 
In mathematics, as anywhere today, it is becoming more difficult to 
tell the truth. To be sure, our store of accurate facts is more plentiful 
now than it has ever been. . . . Unfortunately, telling the truth is not 
quite the same as reciting a rosary of facts. 

(Gian-Carlo Rota, 1985) 
W. A. Hurwitz used to say that in teaching on an elementary level 
one must tell the truth, nothing but the truth, but not the whole truth. 

(Mark Kac, 1976) 
We wrote this text for two kinds of readers: beginning graduate students who 

want to get some grounding in set theory, and more advanced mathematicians who 
wish to broaden their knowledge of set theory. Furthermore, we wanted this text 
to be useful both as a textbook for a regular graduate course, as well as for those 
readers who wish to use it without the guidance of an instructor. 

Volume I contains the basics of modern set theory. Many graduate texts on 
analysis, algebra, topology, or measure theory begin with a review of parts of this 
material as "set-theoretic prerequisites." Thus, Volume I is primarily aimed at be­
ginning graduate or advanced undergraduate students. It can be used as a textbook 
in an introductory set theory course, or as supplementary reading in a course that 
relies heavily on set-theoretic prerequisites. Volume II is aimed at more advanced 
graduate students and research mathematicians specializing in fields other than set 
theory. It contains short but rigorous introductions to various set-theoretic tech­
niques that have found applications outside of set theory. Although we think of 
Volume II as a natural continuation of Volume I, each volume is sufficiently self-
contained to be studied separately. Since our terminology is fairly standard, more 
advanced students may be able to skip the first few sections of Volume I or even go 
directly to Volume II. 

If you do not have the benefit of an instructor who can tell you what to skip, the 
best policy is to proceed as follows: Read the Introduction. It will give you some 
general idea what we are up to. If you don't understand every word of it, don't 
worry. Next, find out at which point of the rest of the book things start to look 



XIV HOW TO READ THIS BOOK 

new to you, and begin reading right there. If things start to look new only around 
Chapter 22 or so, you probably do not want to waste your time reading this book, 
but go to the more advanced literature on the subject. In the "mathographical 
remarks" at the end of most chapters, you will find ample suggestions for further 
reading. 

If things look new to you right from the beginning, check whether you know 
most of the concepts and symbols listed under "Basic Notations". If so, read 
Chapter 1, where some of the prerequisite material is reviewed. If Chapter 1 is 
pleasant, easy reading, then you are probably ready for this book. If more than 
two concepts listed under "Basic Notations" are entirely new to you, or if Chapter 
1 feels challenging, then you may want to read one of the more elementary texts 
listed in the mathographical remarks at the end of Chapter 1. 

Roughly speaking, the only prerequisite for this book is that you are at ease 
with set-theoretic notation. However, some knowledge of mathematical logic and 
(for Volume II) general topology is indispensible. Therefore, to make the exposition 
somewhat self-contained, we included a minicourse in mathematical logic in Chap­
ters 5 and 6, and also an Appendix on general topology at the end of Volume II. 

Once you have determined your point of entrance, it is best to read the rest 
of the book line by line. Much of this book is written like a dialogue between 
the authors and the reader. This is intended to model the practice of creative 
mathematical thinking, which more often than not takes on the form of an inner 
dialogue in a mathematician's mind. You will quickly notice that this text contains 
many question marks. This reflects our conviction that in the mathematical thought 
process it is at least as important to have a knack for asking the right questions at 
the right time as it is to know some of the answers. 

You will benefit from this format only if you do your part and actively participate 
in the dialogue. This means in particular: Whenever we pose a rhetorical question, 
pause for a moment and ponder the question before you read our answer. Sometimes 
we put a little more pressure on you and call our rhetorical questions EXERCISES. 
Not all exercises are rhetorical questions that will be answered a few lines later. 
Sometimes, the completion of a proof is left as an exercise. We also may ask you 
to supply the entire proof of an interesting theorem, or an important example. 
Nevertheless, we recommend that you attempt the exercises right away, especially 
all the easier ones. Most of the time it will be easier to digest the ensuing text if 
you have worked on the exercise, even if you were unable to solve it. 

Here is a well-kept secret: All mathematical research papers contain plenty 
of exercises. These usually appear under the disguise of seemingly unnecessary 
assumptions, missing examples, or phrases like: "It is easy to see." One of the 
most important steps in becoming a mathematician is to learn to recognize hidden 
EXERCISES, and to develop the habit of tackling them right away. 

We often make references to solutions of exercises from earlier chapters. Some­
times, the new material will make an old and originally quite hard exercise seem 
trivial, and sometimes a new question can be answered by modifying the solution 
to a previous problem. Therefore, it is a good idea to collect your solutions and 
even your failed attempts at solutions in a folder where you can look them up later. 

The level of difficulty of our exercises varies greatly. To help the reader save 
time, we rated each exercise according to what we perceive as its level of difficulty. 
The rating system is the same as used by American movie theatres. Everybody 
should attempt the exercises rated G (general audience). Beginners are encouraged 
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to also attempt exercises rated PG (parental guidance), but may sometimes want 
to consult their instructor for a hint. It is also a good idea to double-check your 
solution with the instructor, especially if it looks trivial to you. Exercises rated R 
(restricted) are intended for mature audiences. The X-rated problems must not be 
attempted by anyone easily offended or discouraged. 

There is another important reason why we do not recommend skipping chapters. 
Mathematical formalism is a good thing, but it is secondary to the development 
of the ideas that are being formalised. In the spirit of A. W. Hurwitz, we shall 
introduce many of the more difficult concepts in stages: first intuitively, perhaps by 
a suggestive analogy, and later in the text with full mathematical rigor. By skipping 
ahead, you may miss the more rigorous treatments of a concept and become stuck 
with some vague intuitive notions that you should have long outgrown. The latter 
problem may be alleviated by making good use of the index. Also, a footnote often 
alerts the reader when telling the whole truth is postponed. 

If Theorem 4 of Chapter 17 is referred to in Chapter 17 itself, it will be called 
just Theorem 4. Outside of Chapter 17, it will be called Theorem 17.4. 

The end of a proof is usually marked by a • . 

Mathographical Remark 

The quotes of Rota and Kac are taken from Discrete thoughts, by Mark Kac, 
Gian-Carlo Rota and Jacob T. Schwartz, Birkhauser, Boston 1992, pages ix and 
15. 
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Basic Notations 

We assume that you are familiar with the concepts represented by the following 
symbols. 
{XQ, x±,... , xn} — the set containing Xo, x\,... ,xn and no other elements; 
0 — the empty set; 
G — the membership relation; 
C — subset; 
C — proper subset; 
3, V, -i, A, V, —•, <-> — quantifiers and logical connectives. Although Chapter 5 con­
tains a thorough discussion of these symbols in the context of formal languages, 
you should already be at ease with their use. 
xUy = {z : z G x\J z € y} — the union of two sets; 
xC\y = {z : z £ x Az e y} — the intersection of two sets; 
x\y = {z : z e x Az £ y} — the difference of two sets; 
xAy = (x\y) U (y\x) = (xUy)\(xf)y) — the symmetric difference of two sets; 
(J X = {z : 3Y G X [z G Y)} — union of a family of sets; 
P| X = {z : VY G X (z G Y)} — intersection of a family of sets; 
f : X —>Y — function from X into Y\ 
f[W] = {yeY: 3xeW f(x) = y} — image of W under / ; 
f~lZ = {x G X : f(x) G Z} — inverse image of Z under / ; 
dom(f) — domain of a function / ; 
rn9(f) — range of a function / ; 
f\W — restriction of a function / to a subset W of its domain; 
fog — composition of two functions; 
(an : n G N) = (an)ne^ — sequence indexed by natural numbers; 
N = {0 ,1 ,2 , . . . } — the set of natural numbers; 
Z — the set of integers; 
Q — the set of rationals; 
R — the set of reals; 
P = R\Q — the set of irrationals; 
C — the set of complex numbers. 
A — the set of algebraic numbers 

Note that we impose no restrictions on the style of letters that represent sets. 
Each of the symbols x,X,X,X may stand for a set. 

XVl l 
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