Representations of Finite and Compact Groups

Barry Simon

Graduate Studies in Mathematics
 Volume 10

Other Titles in This Series

10 Barry Simon, Representations of finite and compact groups, 1996
9 Dino Lorenzini, An invitation to arithmetic geometry, 1996
8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
7 Gerald J. Janusz, Algebraic number fields, second edition, 1996
6 Jens Carsten Jantzen, Lectures on quantum groups, 1996
5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995
4 Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
3 William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, 1994

2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993
1 Ethan Akin, The general topology of dynamical systems, 1993

This page intentionally left blank

Graduate Studies in Mathematics

Volume 10

Representations of Finite and Compact Groups

Barry Simon

Editorial Board

James E. Humphreys
Lance Small

2000 Mathematics Subject Classification. Primary 20C05, 22E46;
Secondary 20C30, 22E15.
Abstract. This book is a comprehensive pedagogical presentation of the theory of representation of finite and compact Lie groups. We discuss both the general theory and representation of specific groups. Types of groups whose representation theory is discussed include finite groups of rotations, permutation groups, and the classical compact Lie groups. Along the way, the structure theory of the compact semisimple Lie groups is exposed. The approach tends to be that of an analyst.

```
Library of Congress Cataloging-in-Publication Data
Simon, Barry, 1946-
    Representations of finite and compact groups / Barry Simon.
        p. cm. - (Graduate studies in mathematics, ISSN 1065-7339; v. 10)
    Includes bibliographical references and index.
    ISBN 0-8218-0453-7 (alk. paper)
    1. Representations of groups. 2. Finite groups. 3. Compact groups. I. Title. II. Series.
```

QA176.S56 1996
$512^{\prime} .2$ - dc 20 95-42958

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) Copyright 1996 by Barry Simon.

Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

To the memory of my father, Hy Simon

This page intentionally left blank

CONTENTS

Introduction xi
CHAPTER I. Groups and Counting Principles 1
1 Groups 1
$2 G$-spaces 2
3 Direct and semidirect products 5
4 Finite groups of rotations 11
5 The Platonic groups 13
6 The Sylow theorems 16
7 Counting and group structure 18
CHAPTER II. Fundamentals of Group Representations 21
1 Definition and unitarity 21
2 Irreducibility and complete reduction 23
3 The group algebra and the regular representations 25
4 Schur's lemma 27
5 Tensor products 29
6 Complex conjugate representations; Quaternionic representations 30
7 One-dimensional representations 34
CHAPTER III. Abstract Theory of Representations of Finite Groups 35
1 Orthogonality relations and the first fundamental relation 36
2 Characters, class functions, and conjugacy classes 39
3 One-dimensional representations 42
4 The dimension theorem 43
5 The theorem of Frobenius and Schur 47
Appendix to III.5-Representations on real and quaternionic vector spaces 50
6 Representations and group structure 55
7 Projections in the group algebra 56
8 Fourier analysis 57
9 Direct products 59
10 Restrictions 59
11 Subgroups of index 2 60
12 Examples 62
CHAPTER IV. Representations of Concrete Finite Groups. I: Abelian and Clifford Groups 65
1 The structure of finite abelian groups 65
2 Representations of abelian groups 67
3 The Clifford group 68
CHAPTER V. Representations of Concrete Finite Groups. II: Semidirect Products and Induced Representations 77
1 Frobenius theory of semidirect products 77
2 Examples of the semidirect product theory 81
3 Induced representations 83
4 The Frobenius character formula 85
5 The Frobenius reciprocity theorem 89
6 Mackey irreducibility criterion 91
7 Semidirect products, revisited 93
CHAPTER VI. Representations of Concrete Finite Groups. III: The Symmetric Groups 95
1 Permutations and classes 95
2 Young frames and Young tableaux 96
3 Projections in $\mathcal{A}\left(S_{n}\right)$: Classification of representations 101
4 Branching relations 108
5 The Frobenius character formula 109
6 Consequences of the character formula 117
CHAPTER VII. Compact Groups 121
$1 C^{\infty}$-manifolds: A review 121
2 Lie groups and Lie algebras 128
3 Haar measure on Lie groups 133
4 Matrix groups 135
5 The classical groups 137
6 Homotopy and covering groups 146
7 Spin groups 152
8 The structure of compact groups 155
9 Representations of compact groups: Abstract theory 155
10 The Peter-Weyl theorem 158
CHAPTER VIII. The Structure of Compact Semisimple Groups 165
1 Maximal tori 165
2 The Killing form 170
3 Representations of tori 173
4 Representations of $S U(2)$ and $\mathbf{s l}(2, \mathbb{C})$ 174
5 Roots and root spaces 177
6 Fundamental systems and their classification 183
7 Regular and singular elements 189
8 The Weyl group 192
9 The classical groups 196
CHAPTER IX. The Representations of Compact Semisimple Groups 205
1 Geometry of the Cartan-Stiefel diagram 206
2 The geometry of integral forms 210
3 The Weyl integration formula 213
4 Maximal weights 215
5 The classification theorem and the Weyl character formula 217
6 Consequences of the Weyl character formula 219
7 Representation theory: The algebraic approach 225
8 Representations of the classical groups 227
9 Determinant formulas for the classical characters 237
10 Real and quaternionic representations of the classical groups 242
11 Tensors, permutations, and the Frobenius character formula 246
Appendices
A Multilinear algebra 253
B The analysis of self-adjoint Hilbert-Schmidt operators 257
Bibliography 261
Index 263

This page intentionally left blank

INTRODUCTION

Oy! YABOGR-yet another book on group representations. The theory is so beautiful and so central to mathematics that it tends to draw authors like honey draws flies. Given the existence of several excellent monographs (among which I'd include Adams [1], Fulton-Harris [5], Samelson [17], and Serre [19]), why do I feel this book a worthy addition to the textbook literature on the subject?

I think two facets distinguish my approach. First, this book is relatively elementary; and second, while the bulk of books on the subject (and, in particular, the four quoted above) are written from the point of view of an algebraist or a geometer, this book is written with an analytical flavor.

As for the elementary nature of the material, much of it is self-contained. A prior exposure to the notions of quotient group and the isomorphism theorems is assumed; but, for example, I develop the necessary theory of algebraic integers in proving that the dimension of an irreducible representation divides the vector of the group. The material on finite groups (Chapters I-VI) should be suitable for an upper-level undergraduate course, either as a separate course or as a supplement to an advanced algebra course.

The material on compact groups is a little more sophisticated but I have discussed the needed calculus on manifolds and have even included an appendix on the basic theory of self-adjoint Hilbert-Schmidt operators, which is needed to prove the PeterWeyl theory.

However, there are a few places we need some facts from algebraic topology that we used without proof: for example, the exact sequence of a fibration.

As for the analyst's point of view, much of the most profound work on group representations has been done by analysts: Weyl, Gel'fand, and Mackey come to mind. Indeed, this monograph bears a strong influence of George Mackey from whom I first learned much of the material thirty years ago.

The analyst's approach can be seen in several places: for example, the last three chapters discuss the structure and representations of the compact groups, not the representations of the semisimple Lie algebras. The two are closely related but the former is more elementary and decidedly less algebraic. In this regard, the discussion is closest to that of Adams [1].

A critical role is played by the fact that for compact groups, it is easy to show that any (finite-dimensional, continuous) representation supports an invariant positive definite inner product. This immediately implies that on the Lie algebra, the adjoint representation is by matrices which are skew-adjoint in a suitable inner product, so the operators are semisimple and the Killing form is (strictly) negative definite. This replaces pages of algebraic minutiae.

A good example of this philosophy is the proof in Chapter VIII that all maximal tori in a compact Lie group are conjugate and the union of all the maximal tori is the entire group. The standard proofs either go through the conjugacy of the Cartan subalgebras and considerable additional argument, or else uses Weil's approach of using the Lefschitz fixed point theorem, a sledgehammer for what is a rather simple result. Instead, I use a simple argument inductive in the dimension of G. The first 90% of the proof is that used by Varadarajan [20], but at a critical point, he appeals to the structure theory of the semisimple Lie algebras, which requires tens of pages of careful algebraic argument. Instead, I use the existence of an invariant inner product for the adjoint representation.

This is one of dozens of places where the proofs are ones I found while polishing the book. Nevertheless, I am not so naive as to think that there are any proofs here that don't appear somewhere in the literature, which is vast. But I do claim a coherent, elementary approach.

Individual chapters begin with brief summaries of what they contain. Chapter I sets the stage, focusing on counting principles as a leitmotif. The high point is the Klein-Weyl determination of the finite subgroups of three-dimensional rotations.

Chapters II-VI discuss the representations of finite groups. Chapters II-III develop the general theory and Chapters IV-VI, the representations of specific families of groups: Abelian and Clifford groups in Chapter IV, semidirect products in Chapter V, and permutation groups in Chapter VI.

The final three chapters discuss the representations of compact groups, primarily compact Lie groups. Chapter VII discusses the general theory of Lie groups and the analogs of the results of Chapter III. Chapter VIII discusses the structure theory of compact Lie groups: maximal tori, roots, and the Weyl group. It is preparation for the final chapter which presents Weyl's theory of the representations of the classical groups. The final section draws together the two halves of the book in a fascinating way by providing a proof of the Frobenius character formula for the permutation group.

By focusing on finite and compact groups, we can present the basics completely. Any attempt to go beyond this would yield a multiple-volume work (as it has in other cases!). Nevertheless, when I've given this as a one-year graduate course, I have spent five weeks discussing related topics from the representation theory of noncompact groups.

This book is based on a course I first gave at Princeton in the mid-70's. Over the ensuing twenty years, I have given the course roughly a half-dozen times at Princeton or Caltech, and each time additional polish was added. I am grateful to all the students in those courses for the feedback and insight they provided.

Parts of the actual manuscript were written during stays at the ETH-Zurich, Hebrew University, and the Technion. I appreciate their hospitality and, in particular, the courtesy shown to me by G.M. Graf, W. Hunziker, M. Ben-Artzi, and J. Avron. The preparation of the manuscript, which involved taming both TeX and my handwriting, was well handled by C. Galvez, to whom I'm grateful. I benefited from a careful reading and comments from S. Miller.

I hope you will enjoy this book. I can't think of any other course of mathematics with so much innate beauty so close to the surface.

This page intentionally left blank

BIBLIOGRAPHY

[1] J.F. Adams, Lectures on Lie Groups, W.A. Benjamin, New York, 1969.
[2] K. Chandrasekharan, Arithmetical Functions, Springer-Verlag, Berlin, 1970.
[3] B. Eckmann, Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon über die Komposition quadratischen Formen, Comment. Math. Helv. 15 (1942/43), 358-366.
[4] H.D. Fegan, Introduction to Compact Lie Groups, Series in Pure Mathematics, vol. 13, World Scientific, Singapore, 1991.
[5] W. Fulton and J. Harris, Representation Theory: A First Course, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991.
[6] M.J. Greenberg and J.R. Harper, Algebraic Topology: A First Course, Mathematics Lecture Note Series, vol. 58, Addison-Wesley, Redwood City, Calif., 1981.
[7] S.-T. Hu, Homotopy Theory, Academic Press, New York, 1959.
[8] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
[9] J.P. Jans, Rings and Homology, Holt, Rinehart and Winston, New York, 1964.
[10] T.Y. Lam and T. Smith, On the Clifford-Littlewood-Eckmann groups: A new look at periodicity mod 8, Rocky Mountain J. Math. 19 (1989), 749-786.
[11] D.E. Littlewood, Note on the anticommuting matrices of Eddington, J. London Math. Soc. 9 (1934), 41-50.
[12] L.H. Loomis and S. Sternberg, Advanced Calculus, Addison-Wesley, Reading, Mass., 1968.
$[13]$ J.F. Price, Lie Groups and Compact Groups, London Mathematical Society Lecture Note Series, vol. 25, Cambridge University Press, Cambridge, 1977.
[14] M. Reed and B. Simon, Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, New York, 1972.
[15] _, Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
[16] W. Rudin, Fourier Analysis on Groups, Tracts in Mathematics, no. 12, Interscience Publishers, New York, 1962.
[17] H. Samelson, Notes on Lie Algebras, Van Nostrand Reinhold Mathematical Studies, no. 23, Van Nostrand Reinhold, New York, 1969.
[18] J.T. Schwartz, W-* Algebras, Gordon and Breach, New York, 1967.
[19] J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, vol. 42, Springer-Verlang, New York, 1977.
[20] V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984.
[21] J. von Neumann and E.P. Wigner, Uber das Verhalten von Eigenwerten bei Adiabatischen Prozessen, Physik Z. 30 (1929), 467-470; Engl. translation in "Symmetry in the Solid State" (R.S. Knox and A. Gold, eds.), W.A. Benjamin, New York, 1964, pp. 167-172.

This page intentionally left blank

INDEX

$A_{2}, 183$
$A_{4}, 63$
$A_{5}, 88$
$A_{\ell}, 187$
abelian group, 1, 65
abelization of $G, 42$
act dually, 249
action, 3
$\operatorname{Ad}(x), 130$
$\operatorname{ad}(X), 130$
adjoint representation, 130
affine group, 10
algebraic integer, 43
algebraic number, 43
alternating space, 253
ambivalent, 48
anti-unitary, 30
automorphism, 2
$B_{2}, 183$
$B_{\ell}, 187$
basis, 206
branching relations, 108
Buckyball, 16
Burnside's theorem, 55
C, 13
$C_{n}, 13$
$C_{\ell}, 187$
Cartan, 137
Cartan integers, 181, 197, 199, 201, 203
Cartan subalgebra, 166, 177, 197, 199, 200, 203
Cartan's criterion, 171
center, 39
central projection, 56
character, $35,39,157$
character table, 42
class, ambivalent, 48
class function, 39
classical groups, 121, 137
Clebsch-Gordan integers, 29, 119, 222
Clifford algebra, 68, 152
Clifford group, 68-75
$C \mathbb{L}(n), 68$
$C \mathbb{L}_{+}(n), 73$
column permutations, 101
commutant, 248
commutator subgroup, 35, 42
compact groups, 121
compact semisimple Lie group, 165
complex conjugate, 30
complex conjugate representation, $30-$ 34
complex representation, 47, 72, 74, 158, 242
conjugacy classes, 4,39
convolution, 25, 38
coset, 3
cotangent bundle, 123
cotangent space, 123
covering group, 150
cube, $13,15,83$
cycle, 9
$D_{2 n}, 13$
$D_{i j}^{(\alpha)}(g), 25$
$D_{\ell}, 187$
degree, 21
differential equations, 124
differential form, 123
dihedral group, 8,81
dimension theorem, 43
direct product, $5,7,59$
direct sum, 23
direct sum of irreps, 25
direct sum of matrix algebras, 38
direct sum representation, 24
disjoint, 56
disjoint cycles, 9,95
dodecahedron, 13
dominant forms, 211
dominant weights, 211
double commutant theorem, 248
double cosets, 91
dual frame, 117
dual fundamental system, 185
dual group, 34
dual lattice, 210
Dynkin diagram, 186, 197, 199, 201, 203
$E_{6}, 187$
$E_{7}, 187$
$E_{8}, 187$
edge, 192
equivalent, 56
Euclidean group, 10
exceptional Lie groups, 151
exterior product, 59
$F_{4}, 187$
$f(\mathcal{F}), 97,98,107$
face, 192
fibration, 150
finite abelian group, 65
Fourier analysis, 57
Fourier transforms, 58
Freudenthal, 223
Freudenthal's formula, 223
Frobenius, 77, 85, 89, 109
Frobenius character formula, 85,109 , 247
Frobenius reciprocity theorem, 89
fundamental group, 147
fundamental irreps, $228,230,231$, 232
fundamental root, 184
fundamental system, $184,193,200$, 203
fundamental translations, 181, 197, 199, 201, 203
fundamental weights, $211,228,230$, 231, 232
$G_{2}, 183,187$
G-space, 2,4
general linear, 21
generator, 167
$G L(n, \mathbb{R}), 135$
group, 1
group, abelian, 1
group, topological, 2
group algebra, 25
group of quaternionic units, 31
group representation, 21
groups of order $p^{2}, 19,55$
groups of order $p q, 19,55$
Haar measure, 133
Hausdorff-Young inequality, 58
Hilbert space, 22
Hilbert-Schmidt inner product, 38
Hilbert-Schmidt operators, 257
homogeneous space, 4
homomorphism, 2
homotopy group, 146
homotopy product, 146
I, 13
$\mathcal{I}, 210,228,230,231,232$
icosahedron, 13, 16
induced representations, 83-89
induction in stages, 90
infinitesimal Cartan-Stiefel diagram, 192
inner automorphism, 2, 3
inner product, 21
integral forms, 210
interior product, 59
intertwining map, 28
invariant subspace, 24
irreducible, 24
irreducible character, 35,40
irrep, 24
irreps of an abelian group, 28
isomorphism, 2
isotropy subgroup, 4
Jacobi identity, 125
$\mathcal{K}, 208$
Killing form, 170, 180, 197, 199, 201, 203
Klein, 11
Kostant, 222
$L^{p}(G, d \mu), 135$
Lagrange's theorem, 3
lattice, 206
lattice of weights, 210
left coset, 3
left regular representation, 27
Lie algebra, 128
Lie bracket, 125
Lie group, 128
Lie-Trotter formula, 131
lowest form, 211
Mackey, 91
Mackey irreducibility criterion, 91
manifold, 122
matrix algebras, 38
matrix groups, 135
maximal root, 197, 199, 201, 203
maximal torus, 165, 196, 199, 200, 203
maximal weight, 217
minimal central projection, 56
minimal projection, 56
modulus, 133
multiplicity, 215
normal subgroup, 2
normalized, 184
octahedron, 13
one-dimensional representations, 42
orbit, 4
order, 3
orientable, 127
orientation, 127
oriented, 127
orthogonal matrices, 10
orthogonality relations, $36,40,157$
p-group, 16-18
partitions, 96
Pauli σ-matrices, 73
permutation group, 8
permutations, 95
Peter-Weyl theorem, 158, 257
$\pi_{1}(G, e), 147$
$\pi_{n}\left(X, x_{0}\right), 146$
Platonic groups, 13
Poincaré group, 10
point derivation, 122
projection, 56
quaternionic, 140
quaternionic representation, $30-34$, 47, 50-54, 72, 74, 158, 244, 245
quotient, 5
$\mathcal{R}, 210,228,230,231,232$
Racah, 222
rank, 166
real representation, $32,47,50-54$, $72,74,158,244,245$
regular element, 189
regular representation, 25
representations of abelian groups, 6667
representations of tori, 173
representations on quaternion vector spaces, 50-54
representations on real vector spaces, 50-54
restrictions, 59
right regular representation, 27
root elements, 181, 197, 199, 201, 204
roots, 178, 197, 199, 200, 203
root space, 178
root vectors, $178,197,199,201,203$
rotations, 11
row permutations, 101
$S_{3}, 62$
$S_{4}, 83$
$S_{5}, 86$
$S_{m}, 250$
$S_{n}, 95,109,110,253$
Schur, 175
Schur's lemma, 27-28, 36
self-conjugate, 31
semidirect product, 6, 7, 77
semisimple, 225
semisimple Lie group, 165
sgn, 8
sign, 8
sign of permutation, 8
simple root, 184
simply connected, 147
singular element, 189
$\mathbf{s l}(2, \mathbb{C}), 174$
$S O(2 n), 137,199,230,241,245$
$S O(2 n+1), 137,200,231,240,245$
$S O(3), 145$
$S O(5), 145$
$S O(n), 11,138,150,152$
solvable, 225
$S p(1), 144$
$S p(2), 145$
$S p(n), 140,142,150,203,232,239$, 245
spin groups, 152
$\operatorname{Spin}(n), 151,152$
standard tableau, 97
Steinberg, 222
strongly dominant forms, 211
strongly dominant weights, 211
$S U(2), 144,174$
$S U(n), 137,150,179,182,196,228$, $237,242,244,250$
subface, 192
subgroup, 2
subgroups of index $2,60-62$
Sylow theorems, 16
symmetric group, 95,253
symmetric space, 253
symplectic group, 142
$T, 13$
T, 208
$T \circ-T^{\prime}, 102$
tangent bundle, 123
tangent space, 123
tensor product, 29, 253
tensor product representation, 29
tetrahedral group, 82
tetrahedron, 13, 15
theorem of Frobenius and Schur, 47, 256
topological group, 2, 121
torus, 165
transitive, 4
$U_{\alpha}, 190$
unitarily equivalent, 22
unitary representation, 22,26
universal covering group, 149
Vandermonde determinant, 238
Vandermonde function, 112
Vandermonde polynomial, 8
vector field, 123
weak convergence, 257
Wedderburn structure theorem, 39
weights, 210, 215
Weyl, 11, 78, 158, 174, 214, 221
Weyl chamber, 192
Weyl character formula, 217, 247
Weyl dimension formula, 221
Weyl group, 192, 197, 200, 201, 204, 215
Weyl integration formula, 213-215
Wigner, 77
$\mathcal{Y}, 210$
Young frame, 96
Young tableau, 97
Z , 206
$Z(G), 190$

Barry Simon is the author of many well-known books, including such classics as Methods of Mathematical Physics (with M. Reed) and Functional Integration and Quantum Physics. This book, based on courses given at Princeton, Caltech, ETHZurich, and other universities, is an introductory textbook on representation theory. Two facets distinguish the approach. First, the book is relatively elementary, and second, while the bulk of the books on the subject is written from the point of view of an algebraist or a geometer, this book is written with an analytical flavor.

The exposition centers around the study of representation of certain concrete classes of groups, including permutation groups and compact semisimple Lie groups. It culminates in the complete proof of the Weyl character formula for representations of compact Lie groups and the Frobenius formula for characters of permutation groups. Extremely well tailored both for a one-year course in representation theory and for independent study, this book is an excellent introduction to the subject which is unique in having so much innate beauty so close to the surface.

