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INTRODUCTION 

Oy! YABOGR—yet another book on group representations. The theory is so 
beautiful and so central to mathematics that it tends to draw authors like honey 
draws flies. Given the existence of several excellent monographs (among which I'd 
include Adams [1], Fulton-Harris [5], Samelson [17], and Serre [19]), why do I feel 
this book a worthy addition to the textbook literature on the subject? 

I think two facets distinguish my approach. First, this book is relatively ele
mentary; and second, while the bulk of books on the subject (and, in particular, 
the four quoted above) are written from the point of view of an algebraist or a 
geometer, this book is written with an analytical flavor. 

As for the elementary nature of the material, much of it is self-contained. A 
prior exposure to the notions of quotient group and the isomorphism theorems is 
assumed; but, for example, I develop the necessary theory of algebraic integers in 
proving that the dimension of an irreducible representation divides the vector of 
the group. The material on finite groups (Chapters I-VI) should be suitable for an 
upper-level undergraduate course, either as a separate course or as a supplement 
to an advanced algebra course. 

The material on compact groups is a little more sophisticated but I have discussed 
the needed calculus on manifolds and have even included an appendix on the basic 
theory of self-adjoint Hilbert-Schmidt operators, which is needed to prove the Peter-
Weyl theory. 

However, there are a few places we need some facts from algebraic topology that 
we used without proof: for example, the exact sequence of a fibration. 

As for the analyst's point of view, much of the most profound work on group 
representations has been done by analysts: Weyl, Gel'fand, and Mackey come to 
mind. Indeed, this monograph bears a strong influence of George Mackey from 
whom I first learned much of the material thirty years ago. 

The analyst's approach can be seen in several places: for example, the last three 
chapters discuss the structure and representations of the compact groups, not the 
representations of the semisimple Lie algebras. The two are closely related but 
the former is more elementary and decidedly less algebraic. In this regard, the 
discussion is closest to that of Adams [1]. 

A critical role is played by the fact that for compact groups, it is easy to show that 
any (finite-dimensional, continuous) representation supports an invariant positive 
definite inner product. This immediately implies that on the Lie algebra, the adjoint 
representation is by matrices which are skew-adjoint in a suitable inner product, 
so the operators are semisimple and the Killing form is (strictly) negative definite. 
This replaces pages of algebraic minutiae. 

XI 



X l l INTRODUCTION 

A good example of this philosophy is the proof in Chapter VIII that all maximal 
tori in a compact Lie group are conjugate and the union of all the maximal tori is the 
entire group. The standard proofs either go through the conjugacy of the Cartan 
subalgebras and considerable additional argument, or else uses Weil's approach of 
using the Lefschitz fixed point theorem, a sledgehammer for what is a rather simple 
result. Instead, I use a simple argument inductive in the dimension of G. The first 
90% of the proof is that used by Varadarajan [20], but at a critical point, he appeals 
to the structure theory of the semisimple Lie algebras, which requires tens of pages 
of careful algebraic argument. Instead, I use the existence of an invariant inner 
product for the adjoint representation. 

This is one of dozens of places where the proofs are ones I found while polishing 
the book. Nevertheless, I am not so naive as to think that there are any proofs 
here that don't appear somewhere in the literature, which is vast. But I do claim 
a coherent, elementary approach. 

Individual chapters begin with brief summaries of what they contain. Chapter I 
sets the stage, focusing on counting principles as a leitmotif. The high point is the 
Klein-Weyl determination of the finite subgroups of three-dimensional rotations. 

Chapters II-VI discuss the representations of finite groups. Chapters II—III 
develop the general theory and Chapters IV-VI, the representations of specific 
families of groups: Abelian and Clifford groups in Chapter IV, semidirect products 
in Chapter V, and permutation groups in Chapter VI. 

The final three chapters discuss the representations of compact groups, primarily 
compact Lie groups. Chapter VII discusses the general theory of Lie groups and the 
analogs of the results of Chapter III. Chapter VIII discusses the structure theory of 
compact Lie groups: maximal tori, roots, and the Weyl group. It is preparation for 
the final chapter which presents Weyl's theory of the representations of the classical 
groups. The final section draws together the two halves of the book in a fascinating 
way by providing a proof of the Probenius character formula for the permutation 
group. 

By focusing on finite and compact groups, we can present the basics completely. 
Any attempt to go beyond this would yield a multiple-volume work (as it has in 
other cases!). Nevertheless, when I've given this as a one-year graduate course, I 
have spent five weeks discussing related topics from the representation theory of 
noncompact groups. 

This book is based on a course I first gave at Princeton in the mid-70's. Over 
the ensuing twenty years, I have given the course roughly a half-dozen times at 
Princeton or Caltech, and each time additional polish was added. I am grateful to 
all the students in those courses for the feedback and insight they provided. 

Parts of the actual manuscript were written during stays at the ETH-Zurich, 
Hebrew University, and the Technion. I appreciate their hospitality and, in par
ticular, the courtesy shown to me by C M . Graf, W. Hunziker, M. Ben-Artzi, and 
J. Avron. The preparation of the manuscript, which involved taming both TeX and 
my handwriting, was well handled by C. Galvez, to whom I'm grateful. I benefited 
from a careful reading and comments from S. Miller. 

I hope you will enjoy this book. I can't think of any other course of mathematics 
with so much innate beauty so close to the surface. 
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