Fundamentals of the Theory of Operator Algebras

Volume II: Advanced Theory

Richard V. Kadison John R. Ringrose

Graduate Studies
 in Mathematics
 Volume 16

Selected Titles in This Series

16 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997
15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997
14 Elliott H. Lieb and Michael Loss, Analysis. 1997
13 Paul C. Shields, The ergodic theory of discrete sample paths. 1996
12 N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996
11 Jacques Dixmier, Enveloping algebras, 1996 Printing
10 Barry Simon, Representations of finite and compact groups, 1996
9 Dino Lorenzini, An invitation to arithmetic geometry, 1996
8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
7 Gerald J. Janusz, Algebraic number fields. second edition. 1996
6 Jens Carsten Jantzen, Lectures on quantum groups. 1996
5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995
4 Russell A. Gordon, The integrals of Lebesgue. Denjoy. Perron. and Henstock, 1994
3 William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, 1994
2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993
1 Ethan Akin, The general topology of dynamical systems, 1993

This page intentionally left blank

Fundamentals of the Theory of Operator Algebras

Volume II: Advanced Theory

Richard V. Kadison
John R. Ringrose

Graduate Studies
in Mathematics
Volume 16

American Mathematical Society

Editorial Board
 James E. Humphreys (Chair) David J. Saltman
 David Sattinger
 Julius L. Shaneson
 Originally published by Academic Press, Orlando, Florida, © 1986

2000 Mathematics Subject Classification. Primary 46Lxx;
Secondary 46-02, 47-01.

Library of Congress Cataloging-in-Publication Data
Kadison, Richard V., 1925-
Fundamentals of the theory of operator algebras / Richard V. Kadison, John R. Ringrose. p. cm. - (Graduate studies in mathematics, ISSN 1065-7339; v. 15)
Second printing, incorporating minor corrections, of the work originally published: New York :
Academic Press, 1983. (Pure and applied mathematics (Academic Press) ; 100)
Includes bibliographical references and indexes.
Contents: v. 1. Elementary theory-v. 2. Advanced theory.
ISBN 0-8218-0819-2 (v. 1 : acid-free paper). - ISSN 0-8218-0820-6 (v. 2 : acid-free paper)
1. Operator algebras. I. Ringrose, John R. II. Title. III. Series.

QA326.K26 1997
$512^{\prime} .55-\mathrm{dc} 21$ 97-20916 CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(c) 1997 by Richard V. Kadison. All rights reserved.

Reprinted by the American Mathematical Society 2002, 2009.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.
(0) The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

CONTENTS

Preface ix
Contents of Volume I xiii
Chapter 6. Comparison Theory of Projection
6.1. Polar decomposition and equivalence 399
6.2. Ordering 405
6.3. Finite and infinite projections 411
6.4. Abelian projections 419
6.5. Type decomposition 422
6.6. Type I algebras 426
6.7. Examples 433
6.8. Ideals 441
6.9. Exercises 445
Chapter 7. Normal States and Unitary Equivalence of von Neumann Algebras
7.1. Completely additive states 454
7.2. Vector states and unitary implementation 465
7.3. A second approach to normal states 473
7.4. The predual 481
7.5. Normal weights on von Neumann algebras 485
7.6. Exercises 490
Chapter 8. The Trace
8.1. Traces 504
8.2. The trace in finite algebras 510
8.3. The Dixmier approximation theorem 520
8.4. The dimension function 530
8.5. Tracial weights on factors 537
8.6. Further examples of factors 546
An operator-theoretic construction 546
Measure-theoretic examples 553
8.7. Exercises 565
Chapter 9. Algebra and Commutant
9.1. The type of the commutant 585
9.2. Modular theory 591
A first approach to modular theory 593
Tomita's theorem-a second approach 625
A further extension of modular theory 639
9.3. Unitary equivalence of type I algebras 660
9.4. Abelian von Neumann algebras 665
9.5. Spectral multiplicity 670
9.6. Exercises 689
Chapter 10. Special Representation of C^{*}-Algebras
10.1. The universal representation 711
10.2. Irreducible representations 727
10.3. Disjoint representations 734
10.4. Examples 744
Abelian C^{*}-algebras 744
Compact operators 747
$\mathscr{B}(\mathscr{H})$ and the Calkin algebra 755
Uniformly matricial algebras 759
10.5. Exercises 766
Chapter 11. Tensor Products
11.1. Tensor products of represented C^{*}-algebras 800
11.2. Tensor products of von Neumann algebras 812
Elementary properties 812
The commutation theorem 821
The type of tensor products 829
Tensor products of unbounded operators 836
11.3. Tensor products of abstract C^{*}-algebras 846
The spatial tensor product 846
C^{*}-norms on $\mathfrak{Q} \odot \mathscr{B}$ 850
Nuclear C*-algebras 858
11.4. Infinite tensor products of C^{*}-algebras 863
11.5. Exercises 877

Chapter 12. Approximation by Matrix Algebras

12.1. Isomorphism of uniformly matricial algebras 890
12.2. The finite matricial factor 895
12.3. States and representations of matricial C^{*}-algebras 904
12.4. Exercises 920
Chapter 13. Crossed Products
13.1. Discrete crossed products 937
13.2. Continuous crossed products 957
13.3. Crossed products by modular automorphism groups 974
13.4. Exercises 989
Chapter 14. Direct Integrals and Decompositions
14.1. Direct integrals 999
14.2. Decompositions relative to abelian algebras 1025
14.3. Appendix-Borel mappings and analytic sets 1031
14.4. Exercises 1041
Bibliography 1049
Index of Notation 1055
Index 1061

This page intentionally left blank

PREFACE

Most of the comments in the preface appearing at the beginning of Volume I are fully applicable to this second volume. This is particularly so for the statement of our primary goal: to teach the subject rather than be encyclopaedic. Some of those comments refer to possible styles of reading and using Volume I. The reader who has studied the first volume following the plan that avoids all the material on unbounded operators can continue in this volume, deferring Lemma 6.1.10, Theorem 6.1.11, and Theorem 7.2.1' with its associated discussion to a later reading. This program will take the reader to Section 9.2, where Tomita's modular theory is developed. At that point, an important individual decision should be made: Is it time to retrieve the unbounded operator theory or shall the first reading proceed without it? The reader can continue without that material through all sections of Chapters 9 (other than Section 9.2), 10, 11, and 12 (ignoring Subsection 11.2, Tensor products of unbounded operators, which provides an alternative approach to the commutant formula for tensor products of von Neumann algebras). However, avoiding Section 9.2 makes a large segment of the post-1970 literature of von Neumann algebras unavailable. Depending on the purposes of the study of these volumes, that might not be a workable restriction. Very little of Chapter 13 is accessible without the results of Section 9.2, but Chapter 14 can be read completely.

Another shortened path through this volume can be arranged by omitting some of the alternative approaches to results obtained in one way. For example, the first subsection of Section 9.2 may be read and the last two omitted on the first reading. The last subsection of Section 11.2 may also be omitted. It is not recommended that Section 7.3 be omitted on the first reading although it does deal primarily with an alternative approach to the theory of normal states. Too many of the results and techniques appearing in that section reappear in the later chapters. Of course, all omissions affect the exercises and groups of exercises that can be undertaken.

As noted in the preface appearing in Volume I, certain exercises (and groups of exercises) "constitute small (guided) research projects." Samples of this are: the Banach-Orliz theorem developed in Exercises 1.9.26 and 1.9.34; the theory of compact operators developed in Exercises 2.8.20-2.8.29, 3.5.17,
and 3.5.18; the theory of $\beta(\mathbb{N})$ developed in Exercises 3.5.5, 3.5.6, and 5.7.14-5.7.21. There are many other such instances. To a much greater extent, this process was used in the design of exercises for the present volume; results on diagonalizing abelian, self-adjoint families of matrices over a von Neumann algebra are developed in Exercises 6.9.14-6.9.35; the algebra of unbounded operators affiliated with a finite von Neumann algebra is constructed in Exercises 6.9.53-6.9.55, 8.7.32-8.7.35, and 8.7.60. The represen-tation-independent characterizations of von Neumann algebras appear in Exercises 7.6.35-7.6.45 and 10.5.85-10.5.87. The Friedrichs extension of a positive symmetric operator affiliated with a von Neumann algebra is described in Exercises 7.6.52-7.6.55, and this topic is needed in the development of the theory of the positive dual and self-dual cones associated with von Neumann algebras that appears in Exercises 9.5.51-9.6.65. A detailed analysis of the intersection with the center of various closures of the convex hull of the unitary conjugates of an operator in a von Neumann algebra is found in Exercises 8.7.4-8.7.22, and the relation of these results to the theory of conditional expectations in von Neumann algebras is the substance of the next seven exercises; this analysis is also applied to the development of the theory of (bounded) derivations of von Neumann algebras occurring in Exercises 8.7.51-8.7.55 and 10.5.76-10.5.79. Portions of the theory of representations of the canonical anticommutation relations appear in Exercises 10.5.88-10.5.90, 12.5.39, and 12.5.40. This list could continue much further; there are more than 1100 exercise tasks apportioned among 450 exercises in this volume. The index provides a usable map of the topical relation of exercises through key-word references.

Each exercise has been designed, by arrangement in parts and with suitable hints, to be realistically capable of solution by the techniques and skills that will have been acquired in a careful study of the chapters preceding the exercise. However, full solutions to all the exercises in a topic grouping may require serious devotion and time. Such groupings provide material for special seminars, either in association with a standard course or by themselves. Seminars of that type are an invaluable "hands-on" experience for active students of the subject.

Aside from the potential for working seminars that the exercises supply, a fast-paced, one-semester course could cover Chapters 6-9. The second semester might cover the remaining chapters of this volume. A more leisurely pace might spread Chapters 6-10 over a one-year course, with an expansive treatment of modular theory (Section 9.2) and a careful review (study) of the unbounded operator theory developed in Sections 2.7 and 5.6 of Volume I. Chapters 11-14 could be dealt with in seminars or in an additional semester course. In addition to these course possibilities, both volumes have been written with the possibility of self-study very much in mind.

The list of references and the index in this volume contain those of Volume I. Again, the reference list is relatively short, for the reasons mentioned in the preface in Volume I. A special comment must be made about the lack of references in the exercise sections. Many of the exercises (especially the topic groupings) are drawn from the literature of the subject. In designing the exercises (parts, hints, and formulation), complete, model solutions have been constructed. These solutions streamline, simplify, and unify the literature on the topic in almost all cases; on occasion, new results are included. References to the literature in the exercise sets could misdirect more than inform the reader. It seems expedient to defer references for the exercises to volumes containing the exercises and model solutions; a significant number of references pertain directly to the solutions. We hope that the benefits from the more sensible references in later volumes will outweigh the present lack; our own publications have been one source of topic groupings subject to this policy.

Again, individual purposes should play a dominant role in the proportion of effort the reader places on the text proper and on the exercises. In any case, a good working procedure might be to include a careful scanning of the exercise sets with a reading of the text even if the decision has been made not to devote significant time to solving exercises.

This page intentionally left blank

CONTENTS OF VOLUME I

Chapter 1. Linear Spaces

1.1. Algebraic results
1.2. Linear topological spaces
1.3. Weak topologies
1.4. Extreme points
1.5. Normed spaces
1.6. Linear functionals on normed spaces
1.7. Some examples of Banach spaces
1.8. Linear operators acting on Banach spaces
1.9. Exercises

Chapter 2. Basics of Hilbert Space and Linear Operators

2.1. Inner products on linear spaces
2.2. Orthogonality
2.3. The weak topology
2.4. Linear operators

General theory
Classes of operators
2.5. The lattice of projections
2.6. Constructions with Hilbert spaces

Subspaces
Direct sums
Tensor products and the Hilbert-Schmidt class
Matrix representations
2.7. Unbounded linear operators
2.8. Exercises

Chapter 3. Banach Algebras

3.1. Basics
3.2. The spectrum

The Banach algebra $L_{1}(\mathbb{R})$ and Fourier analysis

3.3. The holomorphic function calculus
 Holomorphic functions
 The holomorphic function calculus
 3.4. The Banach algebra $C(X)$
 3.5. Exercises

Chapter 4. Elementary C^{*}-Algebra Theory
4.1. Basics
4.2. Order structure
4.3. Positive linear functionals
4.4. Abelian algebras
4.5. States and representations
4.6. Exercises

Chapter 5. Elementary von Neumann Algebra Theory

5.1. The weak- and strong-operator topologies
5.2. Spectral theory for bounded operators
5.3. Two fundamental approximation theorems
5.4. Irreducible algebras-an application
5.5. Projection techniques and constructs

Central carriers
Some constructions
Cyclicity, separation, and countable decomposability
5.6. Unbounded operators and abelian von Neumann algebras
5.7. Exercises

Bibliography

PREFACE TO THE SECOND PRINTING

Minor corrections, noted during the ten years since the publication of this volume, are the only changes made to the original volume. A list of these corrections are appended to this preface for the convenience of readers with a copy of the original printing.

One mathematical point brought to our attention by Paul Halmos deserves special mention. It involves the polar decomposition of a normal operator. With T normal, $\left(T^{*} T\right)^{1 / 2}=\left(T T^{*}\right)^{1 / 2}(=H)$. Thus, as noted on page 402 (following the proof of Proposition 6.1.3), $U H=T=H U$, where $U H$ and $H U$ are the ("left" and "right") polar decompositions of T. (Use is made of Theorem 6.1.2 here.) We follow that observation with the assertion, "Conversely, from the uniqueness of the polar decomposition (left and right), if $U H=H U,\left(T^{*} T\right)^{1 / 2}=\left(T T^{*}\right)^{1 / 2}$ and $T^{*} T=T T^{*}$." Our intention here is to make, in economical form, the assertion: If T has left polar decomposition $U H$ and right polar decomposition $H U$ (so that, of course, $U H=H U$), then T is normal. This is correct, and the few words of argument given demonstrate that. Unfortunately, the economy of our statement leads to difficulty, for the reader may quite naturally interpret the stated assertion as: If T has (left) polar decomposition $U H$, and $U H=H U$, then T is normal. This is false, in general - for example, if T is an isometry of a Hilbert space onto a proper subspace.

Although no new topics have been added in this second printing, several could well have been included. In the intervening ten years, some topics have proved themselves to be of fundamental significance to the study of operator algebras. First and foremost among these is Alain Connes's brilliant development of the subject that has come to be known as "Noncommutative Geometry" (compare his "Noncommutative Geometry." Academic Press, San Diego, 1994).

The results that each abelian C^{*}-algebra \mathfrak{A} is * isomorphic with $C(X)$, where X is the compact Hausdorff space of pure states of \mathfrak{A} (topologized by the induced weak* topology of the Banach dual space of \mathfrak{A}) and that two compact Hausdorff spaces X and Y are homeomorphic if and only if $C(X)$ and $C(Y)$ are algebraically isomorphic by an isomorphism implemented by the homeomorphism (Theorems 4.4.3 and 3.4.3) make it clear that the
topology of a compact Hausdorff space is encoded in the algebraic structure of its function algebra $C(X)$. To illustrate this in a simple way, X fails to be connected precisely when $C(X)$ contains an idempotent function f (so, $f=f^{2}$) distinct from 0 and 1. At the same time, each $C(X)$ is an abelian C^{*}-algebra.

The identification of abelian C^{*}-algebras with function algebras $(C(X))$ leads, at once, to the interpretation of a non-commutative C^{*}-algebra \mathfrak{A} as the (non-commuting) "function algebra" of some "non-commutative" (compact Hausdorff) space. From the comments made before, we can readily imagine that the "management" of the projections in \mathfrak{A} is intimately related to the "connectivity properties" of the underlying non-commutative space. That system of projection management is a primary aspect of the subject that has become known as C^{*}-algebra K-theory.

The discussion, to this point, involves the topology of the non-commutative space underlying \mathfrak{A}. Other geometric aspects of that space require notions of integration and differentiation in the "function algebra" \mathfrak{A}. The integration can be supplied by appropriate states of \mathfrak{A}; the differentiation makes use of "derivations" of (dense subalgebras of) \mathfrak{A}. The theory of (bounded) derivations of operator algebras is introduced in Exercise 4.6.65 and developed further throughout the exercises of this volume (notably, in the exercises of Chapters 8 and 10). The theory of unbounded (densely defined) derivations, developed largely by Shôichiro Sakai, is described in his profound "Operator Algebras in Dynamical Systems." (Cambridge University Press, Cambridge 1993).

In Chapter 5, we introduced von Neumann algebras and factors (preceding Example 5.1.6) and proved some basic facts about them. Much of this second volume develops the more advanced therry of von Neumann algebras. At one point, we define the fascinating class of "factors of type II_{1} " (Definition 6.5.1 and Corollary 6.5.3). As it turns out, they are precisely the infinite-dimensional factors that admit a "tracial state" (a state τ with the property that $\tau(A B)=\tau(B A)$ for all A and B in the factor - compare Section 8.2). The factors of type II_{1} share some of the properties of the other class of "finite" factors, the algebras $\mathcal{B}(\mathcal{H})$ with \mathcal{H} a finite-dimensional Hilbert space. (For example, in each finite factor, if an operator has a left inverse, it has an inverse.) Many of the phenomena that occur in discrete steps for the finite factors of "type I" (isomorphic to some $\mathcal{B}(\mathcal{H})$) appear
in the case of factors of type II_{1} and occur "continuously." An instance of this is seen with the "dimension function" that assigns to each projection in $\mathcal{B}(\mathcal{H})$ the dimension of its range. Rescaled so that I has "dimension" 1 , this dimension function assigns the values $0,1 / m, 2 / m, \ldots,(m-1) / m$, 1 to the projections of $\mathcal{B}(\mathcal{H})$, when \mathcal{H} is m-dimensional. This dimension function, characterized by a few simple properties, is unique. Characterized by these same properties, there is a unique dimension function defined on the projections in a factor of type II_{1} (compare Section 8.4). This dimension function assigns all the values in $[0,1]$ to the projections of the factor. The phenomenon of (finite) "continuous dimensionality" is the essence of factors of type II_{1}.

If the Hilbert space \mathcal{H} has dimension $n m$, with n and m positive integers, and \mathcal{M} is a subfactor of $\mathcal{B}(\mathcal{H})$ isomorphic to $\mathcal{B}\left(\mathcal{H}_{1}\right)$, where \mathcal{H}_{1} has dimension n, then the commutant \mathcal{M}^{\prime} of \mathcal{M} is isomorphic to $\mathcal{B}\left(\mathcal{H}_{2}\right)$, where \mathcal{H}_{2} has dimension m. If Δ and Δ^{\prime} are the dimension functions on \mathcal{M} and \mathcal{M}^{\prime}, respectively, and E and E^{\prime} are minimal projections in \mathcal{M} and \mathcal{M}^{\prime}, respectively, then $\Delta(E)=1 / n=(m / n) \Delta^{\prime}\left(E^{\prime}\right)$, If \mathcal{K} is infinite dimensional and \mathcal{N} is a subfactor of $\mathcal{B}(\mathcal{K})$ of type $\mathrm{II}_{1}, \mathcal{N}^{\prime}$ is its commutant, F is a projection in \mathcal{N} with range $\left[\mathcal{N}^{\prime} u\right]$ for some unit vector u in \mathcal{K}, and F^{\prime} is the projection in \mathcal{N}^{\prime} with range $[\mathcal{N} u]$, then \mathcal{N}^{\prime} is a factor either of type II_{1}, again, or of type II_{∞} (compare Definition 6.5.1). In case \mathcal{N}^{\prime} is of type II_{1}, there is a constant c, independent of the vector u, such that $\Delta(F)=c \Delta^{\prime}\left(F^{\prime}\right)$, where Δ and Δ^{\prime} are the dimension functions on \mathcal{N} and \mathcal{N}^{\prime}, respectively (compare Exercise 9.6.5). This "coupling constant" was introduced by Murray and von Neumann. For the case of the finite factors of type I , where \mathcal{H} has dimension $n m$, the corresponding coupling constant is m / n; any positive rational number can occur. With \mathcal{N} and \mathcal{N}^{\prime} factors of type II_{1}, the coupling constant may be any positive real number.

It is always possible to represent a factor \mathcal{M} of type II_{1} (isomorphically) on a Hilbert space \mathcal{H} so that \mathcal{M}^{\prime} is of type II_{1} and the coupling constant is 1 . In this case, there is a unit vector u generating for both \mathcal{M} and \mathcal{M}^{\prime}. The GNS construction applied to the tracial state of \mathcal{M} provides such a representation of \mathcal{M} (compare Lemma 7.2.14). If \mathcal{M} is so represented and \mathcal{N} is a subfactor of \mathcal{M} of type II_{1}, then $\mathcal{M}^{\prime} \subseteq \mathcal{N}^{\prime}$ and $c \geq 1$, where c is the coupling constant from \mathcal{N} to \mathcal{N}^{\prime}. A puzzling question that goes back to 1950 (though not written about) asks which values of c can occur.

With an impressive display of ingenuity, technique, perseverance, and entrepreneurial skill, Vaughan Jones resolves this puzzle in "Index for subfactors," Invent. Math. 72(1983), 1-25. Jones proves the remarkable result that c, which he calls the "index" of \mathcal{N} in \mathcal{M} can (and does) take all the values $4 \cos ^{2} \frac{\pi}{n}$ in $[1,4)$ as n assumes the integer values $3,4, \ldots$, as well as all the values in $[4, \infty)$. The key to his proof is the projection E_{1} from \mathcal{H} onto [$\mathcal{N u} u$, which is the geometric representation of the "conditional expectation mapping" of \mathcal{M} onto \mathcal{N} (compare Exercises 8.7.23 and 10.5.86). The von Neumann algebra \mathcal{M}_{1} generated by \mathcal{M} and E_{1} is, again, a factor of type II_{1} and "the Jones index" of \mathcal{M} in \mathcal{M}_{1} is the same as that of \mathcal{N} in \mathcal{M}. Repeating this procedure, there is a projection E_{2} (the geometric representation of the conditional expectation of \mathcal{M}_{1} onto \mathcal{M}). Continuing in this way, we construct the sequence of "Jones projections," E_{1}, E_{2}, \ldots, and the "Jones tower" of factors $\mathcal{N}, \mathcal{M}, \mathcal{M}_{1}, \mathcal{M}_{2}, \ldots$ of type I_{1}. The projections E_{1}, E_{2}, \ldots satisfy certain relations, which imply that each finite subset generates a finite-dimensional algebra. The relations involve the index of \mathcal{N} in \mathcal{M}, intimately, and ultimately provide the surprising restrictions on the possible values of the index noted in the theorem of Jones. At the same time, Jones notes a close connection between his relations and "braid relations." Using this connection, the tower of factors of type II_{1}, and the (unique) tracial states on these factors, Jones constructs a polynomial invariant for knots and applies it to the solution of old problems in knot theory. Aspects of the Jones index theory have found their way to statistical physics and fundamental biology. Within the subject of this volume, the index of \mathcal{N} in \mathcal{M} is an invariant of \mathcal{N} under automorphisms of \mathcal{M} and has led to the area of classification of subfactors of a factor of type II_{1} (up to automorphisms of the factor). As this is written, there are already an array of deep results in this area. Certainly, the developments around the Jones index form one of the glorious chapters in operator-algebra research.

Throughout the preceding volume, we have developed the example of a normal operator as a "multiplication operator" acting on the L_{2}-space of a measure space (compare Examples 2.4.11 and 2.5.12) and the corresponding example of the "algebra of bounded multiplication operators." In Example 5.1.6, we note that this algebra is an abelian von Neumann algebra and, indeed, "maximal abelian." In Theorem 9.4.1, we establish a converse to this. Up to isomorphism, then, abelian von Neumann algebras are measure
algebras. In the same way that the study of abelian C^{*}-algebras is the general framework for (classical) analysis, the study of abelian von Neumann algebras is the general framework for classical measure theory. As the study of non-commutative C^{*}-algebras is "non-commutative analysis," the study of non-commutative von Neumann algebras is "non-commutative measure theory." This point of view makes itself apparent throughout the subject of von Neumann algebras.

Since probability and statistics are so closely related to the language and results of measure theory, the results and concepts of probability and statistics often have non-commutative analogues stated in the language of (non-commutative) von Neumann algebras. "Independence" in these subjects has commutativity as its basic requirement. As long as type I factors (von Neumann algebras) form the background for the discussion, commutativity will suffice as the main component of statistical independence. Analytic subtleties require something more restrictive when factors of other types are involved. The stronger "independence" that comes from "tensorial splitting" is usually what is needed. (Tensor products of operator algebras are studied in Chapter 11.)

Dan Voiculescu creates a truly non-commutative notion of independence by replacing commutativity (tensorial and otherwise) by "freeness." Loosely speaking, for "free" independence, A and B must be generators of a "free" (non-commutative) algebra. Of course, there are analytic requirements in this setting. He then develops the probability and statistics corresponding to "free independence." In this case, a "semi-circular distribution" takes the place of the usual Gaussian distribution. Examples of factors in which freeness plays a prominent role are introduced in Section 6.7. Countable (discrete) groups in which the conjugacy class of each element, other than the unit, is infinite (i.c.c groups) give rise to factors of type II_{1} (one of the natural "group algebras" of the group - compare Theorem 6.7.5). The free groups \mathcal{F}_{n} on $n(>1)$ generators provide specific examples of i.c.c groups. Since 1950, the problem of whether or not the associated factors $\mathcal{L}_{\mathcal{F}_{n}}$ of type II_{1} are isomorphic has been one of the most vexing "yes-or-no" questions. It is open, as this is written. At the same time, the algebra of finite matrices of order m with entries from a given factor of type II_{1} is, again, a factor of type II_{1}. Is it isomorphic to the original factor? Murray and von Neumann raised this question in [58]. It,
too, is open at this writing, though deep work of Alain Connes sheds considerable light on it (and settles an allied problem). In a breathtaking tour de force, Voiculescu uses his "free probability" theory to make significant inroads into the isomorphism problem for the free-group factors. He proves, for example, that $\mathcal{L}_{\mathcal{F}_{2}}$ is isomorphic to the 2×2 matrix algebra with entries from $\mathcal{L}_{\mathcal{F}_{s}}$.

In a related development, Voiculescu defines a concept of "free entropy," in his free probability framework, and uses it to show that the factors $\mathcal{L}_{\mathcal{F}_{n}}$ do not contain certain types of maximal abelian subalgebras (answering a longstanding question). Using Voiculescu's free entropy, Liming Ge answers an even older question about the maximal abelian subalgebras of these factors. Again, using free entropy, Ge settles a difficult and fascinating problem by showing that the factors $\mathcal{L}_{\mathcal{F}_{n}}$ are not the tensor product of two factors of type II_{1}.

ERRATA TO THE FIRST PRINTING

p. 402 line 14 A footnote is inserted here '...Conversely ${ }^{\dagger}$, from uniqueness...' The footnote should read: ${ }^{\dagger}$ See the second paragraph of the preface to the second printing.
p. 431 line $-9{ }^{\text {' }} E_{b_{0}, b_{0}}$ ' for ' $E_{b_{0}, b}$ '
p. 456 line -16 ' η ' for ' n '
p. 523 line -5 'contains a non-zero' for 'contains a non-zero' (italics)
p. 713 line $-15{ }^{\prime} \mathcal{B}\left(\mathcal{H}_{\Phi}\right)$ ' for ' $\mathcal{B}(\mathcal{H})$ '
p. 768 line -12 'approximate' for 'approximately' and 'identity' for 'identiy'
p. 773 line 12 'mappings' for 'mapppings'
p. 779 line -11 '.]' for '].'
p. 784 line -2 ' $(A \in \mathfrak{A})$ ' for ' $(A \in \mathcal{R})$ '
p. 785 line 11 'Use Exercises' for 'Use Exercise'
p. 795 line 7 ' $B_{1} \cdots B_{j}$ ' for ' B_{1}, \ldots, B_{j} '
p. 795 line 8 ' $B_{1} \cdots B_{n}$ ' for ' B_{1}, \ldots, B_{n} '
p. 806 line 4 ' $A_{1 j} \otimes \cdots \otimes A_{n j}$ ' for ' $A_{1} \otimes \cdots \otimes A_{n}$ '
p. 818 lines 13,14 read 'extension' and ' C '-algebra' (bad letters)
p. 857 line -14 ' \mathcal{B} ' for ' β '
p. 878 line 16 ' 11.5 .3 (iii)' for ' 11.5 .3 (ii)'
p. 900 lines $18,19,20,21$ missing letters at line ends: 'and' 'we' 'so' 'and'
p. 916 line -5 poor absolute value bar
p. 924 line 13 insert 'such that $\omega(E)>0$ ' after 'normal state of \mathcal{R} '
p. 931 line -19 ' $(\rho \bar{\otimes} \sigma)$ ' for ' $(\rho \otimes \sigma)$ '
p. 931 line -18 ' $(\rho \bar{\otimes} \sigma)$ ' for ' $(\rho \otimes \sigma)$ ' (twice)
p. 931 line -14 'tively' broken ' t '
p. 931 line -13 ' $\left(\rho^{\prime} \bar{\otimes} \sigma\right)$ ' for ' $\left(\rho^{\prime} \otimes \sigma\right)$ '
p. 931 line -13 ' $\left(\rho \bar{\otimes} \sigma^{\prime}\right)$ ' for ' $\left(\rho \otimes \sigma^{\prime}\right)$ '
p. 977 line 5 ' $I \otimes l_{t}$ ' for ' $I \bar{\otimes} l_{t}$ '
p. 990 line 18 ' $\mathcal{B}(\mathcal{K})$ ' for ' $B(K)$ '
p. 990 line 20 'is a ${ }^{*}$ ' for 'is *'
p. 993 line 5 ' $\sum_{n=3}^{\infty}$ ' for ' $\sum_{n=1}^{\infty}$,
p. 1046 line 9 'Lebesgue' for 'Lebsegue'

This page intentionally left blank

This page intentionally left blank

BIBLIOGRAPHY

General references

[H] P. R. Halmos, "Measure Theory." D. Van Nostrand, Princeton, New Jersey, 1950; reprinted, Springer-Verlag, New York, 1974.
[K] J. L. Kelley, "General Topology." D. Van Nostrand, Princeton, New Jersey, 1955; reprinted, Springer-Verlag, New York, 1975.
[R] W. Rudin, "Real and Complex Analysis," 2nd ed. McGraw-Hill, New York, 1974.

References

[1] W. Ambrose, Spectral resolution of groups of unitary operators, Duke Math. J. 11 (1944), 589-595.
[2] J. Anderson, Extreme points in sets of positive linear mappings on $\mathscr{B}(\mathscr{H})$, J. Fnal. Anal. 31 (1979), 195-217.
[3] J. Anderson and J. W. Bunce, A type II_{∞} factor representation of the Calkin algebra, Amer. J. Math. 99 (1977), 515-521.
[4] H. Araki and E. J. Woods, A classification of factors, Publ. Res. Inst. Math. Sci. Kyoto 4 (1968), 51-130.
[5] O. Bratteli, Inductive limits of finite dimensional C^{*}-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234.
[6] D. J. C. Bures, Certain factors constructed as infinite tensor products, Compositio Math. 15 (1963), 169-191.
[7] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. 42 (1941), 839-873.
[8] M-D. Choi and E. G. Effros, Separable nuclear C^{*}-algebras and injectivity, Duke Math. J. 43 (1976), 309-322.
[9] M-D. Choi and E. G. Effros, Nuclear C^{*}-algebras and injectivity: the general case, Indiana Univ. Math. J. 26 (1977), 443-446.
[10] F. Combes, Poids sur une C^{*}-algèbre, J. Math. Pures Appl. 47 (1968), 57-100.
[11] F. Combes, Poids associé à une algèbre hilbertienne à gauche, Compositio Math. 23 (1971), 49-77.
[12] A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. Paris 6 (1973), 133-252.
[13] A. Connes, Classification of injective factors, Cases $\mathrm{II}_{1}, \mathrm{II}_{\infty}, \mathrm{III}_{\lambda}, \hat{\lambda} \neq 1$, Ann. of Math. 104 (1976), 73-115.
[14] A. Van Daele, The Tomita-Takesaki theory for von Neumann algebras with a separating and cyclic vector, in " C^{*}-Algebras and Their Applications to Statistical Mechanics and Quantum Field Theory" (Proc. Internat. School of Physics "Enrico Fermi," Course LX, Varenna, D. Kastler, ed., 1973), pp. 19-28. North-Holland Publ., Amsterdam, 1976.
[15] A. Van Daele, A new approach to the Tomita-Takesaki theory of generalized Hilbert algebras, J. Fnal. Anal. 15 (1974), 378-393.
[16] A. Van Daele, "Continuous Crossed Products and Type III von Neumann Algebras," London Math. Soc. Lecture Note Series 31. Cambridge University Press, London, 1978.
[17] J. Dixmier, Les anneaux d'opérateurs de classe finie, Ann. Sci. École. Norm. Sup. Paris 66 (1949), 209-261.
[18] J. Dixmier, Les fonctionnelles linéaires sur l'ensemble des opérateurs bornés d'un espace de Hilbert, Ann. of Math. 51 (1950), 387-408.
[19] J. Dixmier, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France 81 (1953), 9-39.
[20] J. Dixmier, Sur les anneaux d'opérateurs dans les espaces hilbertiens, C. R. Acad. Sci. Paris 238 (1954), 439-441.
[21] J. Dixmier, "Les Algèbres d'Opérateurs dans l'Espace Hilbertien." Gauthier-Villars, Paris, 1957; 2nd ed., 1969.
[22] J. Dixmier, "Les C^{*}-Algèbres et leurs Représentations." Gauthier-Villars Paris, 1964. [English translation; C*-Algebras. North-Holland Mathematical Library, Vol. 15. North-Holland Pub., Amsterdam, 1977.]
[23] J. Dixmier, Existence de traces non normales, C. R. Acad. Sci. Paris 262 (1966), 1107-1108.
[24] H. A. Dye, The Radon-Nikodým theorem for finite rings of operators, Trans. Amer. Math. Soc. 72 (1952), 243-280.
[25] E. G. Effros and E. C. Lance, Tensor products of operator algebras, Adv. in Math. $\mathbf{2 5}$ (1977), 1-34.
[26] J. M. G. Fell and J. L. Kelley, An algebra of unbounded operators, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 592-598.
[27] L. T. Gardner, On isomorphisms of C^{*}-algebras, Amer. J. Math. 87 (1965), 384-396.
[28] I. M. Gelfand and M. A. Neumark, On the imbedding of normed rings into the ring of operators in Hilbert space, Mat. Sb. 12 (1943), 197-213.
[29] J. G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340.
[30] J. G. Glimm and R. V. Kadison, Unitary operators in C^{*}-algebras, Pacific J. Math. 10 (1960), 547-556.
[31] E. L. Griffin, Some contributions to the theory of rings of operators, Trans. Amer. Math. Soc. 75 (1953), 471-504.
[32] E. L. Griffin, Some contributions to the theory or rings of operators. II, Trans. Amer. Math. Soc. 79 (1955), 389-400.
[33] U. Haagerup, Tomita's theory for von Neumann algebras with a cyclic and separating vector (private circulation, June 1973).
[34] U. Haagerup, All nuclear C^{*}-algebras are amenable, Invent. Math. 74 (1983), 305-319.
[35] H. Hahn, Über die Integrale des Herrn Hellinger und die Orthogenal invarianten der quadratischen Formen von unendlich vielen Veränderlichen, Monatshefte für Mathematik und Physik 23 (1912), 161-224.
[36] P. R. Halmos, "Introduction to Hilbert Space and the Theory of Spectral Multiplicity." Chelsea Publ., New York, 1951.
[37] F. Hansen and G. K. Pedersen, Jensen's inequality for operators and Lö̀wner's theorem, Math. Ann. 258 (1982), 229-241.
[38] E. Hellinger, Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen, J. für Math. 136 (1909), 210-271.
[39] D. Hilbert, Grundzüge einer allgemeine Theorie der linearen Integralgleichungen IV, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. 1904, 49-91.
[40] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338.
[41] R. V. Kadison, On the additivity of the trace in finite factors, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 385-387.
[42] R. V. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 273-276.
[43] R. V. Kadison, Unitary invariants for representations of operator algebras, Ann. of Math. 66 (1957), 304-379.
[44] R. V. Kadison, The trace in finite operator algebras, Proc. Amer. Math. Soc. 12 (1961), 973-977.
[45] R. V. Kadison, Similarity of operator algebras, Acta Math. 141 (1978), 147-163.
[46] I. Kaplansky, A theorem on rings of operators, Pacific J. Math. 1 (1951), 227-232.
[47] I. Kaplansky, Projections in Banach algebras, Ann. of Math. 53 (1951), 235-249.
[48] I. Kaplansky, Algebras of type I, Ann. of Math. 56 (1952), 460-472.
[49] I. Kaplansky, Representations of separable algebras, Duke Math. J. 19 (1952), 219-222.
[50] J. L. Kelley, Commutative operator algebras, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 598-605.
[51] E. C. Lance, On nuclear C^{*}-algebras, J. Fnal. Anal. 12 (1973), 157-176.
[52] E. C. Lance, Tensor products of C^{*}-algebras, in " C^{*}-algebras and Their Applications to Statistical Mechanics and Quantum Field Theory" (Proc. Internat. School of Physics "Enrico Fermi," Course LX, Varenna, D. Kastler, ed., 1973), pp. 154-166. North-Holland Publ., Amsterdam, 1976.
[53] G. W. Mackey, Induced representations of locally compact groups. II. The Frobenius reciprocity theorem, Ann. of Math. 58 (1953), 193-221.
[54] F. I. Mautner, Unitary representations of locally compact groups I, Ann. of Math. 51 (1950), 1-25.
[55] Y. Misonou, On the direct product of W^{*}-algebras, Tôhoku. Math. J. 6 (1954), 189-204.
[56] F. J. Murray and J. von Neumann, On rings of operators, Ann. of Math. 37 (1936), 116-229.
[57] F. J. Murray and J. von Neumann, On rings of operators, II, Trans. Amer. Math. Soc. 41 (1937), 208-248.
[58] F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. 44 (1943), 716-808.
[59] H. Nakano, Unitärinvarianten im allgemeinen Euklidischen Raum, Math. Ann. 118 (1941), 112-133.
[60] H. Nakano, Unitärinvariante hypermaximale normale Operatoren, Ann. of Math. 42 (1941), 657-664.
[61] J. von Neumann, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann. 102 (1930), 370-427.
[62] J. von Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1930), 49-131.
[63] J. von Neumann, Über Funktionen von Funktionaloperatoren, Ann. of Math. 32 (1931), 191-226.
[64] J. von Neumann, Über adjungierte Funktionaloperatoren, Ann. of Math. 33 (1932), 294-310.
[65] J. von Neumann, On infinite direct products, Compositio Math. 6 (1938), 1-77.
[66] J. von Neumann, On rings of operators. III, Ann. of Math. 41 (1940), 94-161.
[67] J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. 50 (1949), 401-485.
[68] M. Neumark, Positive definite operator functions on a commutative group (in Russian, English summary), Bull, Acad. Sci. URSS Ser. Math. [Izv. Akad. Nauk SSSR] 7 (1943), 237-244.
[69] G. K. Pedersen, Measure theory for C^{*}-algebras, Math. Scand. 19 (1966), 131-145.
[70] G. K. Pedersen, "C*-Algebras and Their Automorphism Groups," London Mathematical Society Monographs, Vol. 14. Academic Press, London, 1979.
[71] A. Plessner and V. Rohlin, Spectral theory of linear operators, II (in Russian), Uspehi Mat. Nauk N.S. 1 (1946), 71-191.
[72] R.T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. 86 (1967), 138-171.
[73] G. A. Reid, On the Calkin representations, Proc. London Math. Soc. 23 (1971), 547-564.
[74] M. Rieffel and A. Van Daele, The commutation theorem for tensor products of von Neumann algebras, Bull. London Math. Soc. 7 (1975), 257-260.
[75] M. Rieffel and A. Van Daele, A bounded operator approach to the Tomita-Takesaki theory, Pacific J. Math. 69 (1977), 187-221.
[76] F. Riesz, "Les Systèmes d'Équations Linéaires à une Infinité d'Inconnues." GauthierVillars, Paris, 1913.
[77] F. Riesz, Über die linearen Transformationen des komplexen Hilbertschen Raumes, Acta Sci. Math. (Szeged) 5 (1930-32), 23-54.
[78] S. Sakai, On topological properties of W^{*}-algebras, Proc. Japan Acad. 33 (1957), 439-444.
[79] S. Sakai, On linear functionals of W^{*}-algebras, Proc. Japan Acad. 34 (1958), 571-574.
[80] S. Sakai, A Radon-Nikodym theorem in W^{*}-algebras, Bull. Amer. Math. Soc. 71 (1965), 149-151.
[81] S. Sakai, On a problem of Calkin, Amer. J. Math. 88 (1966), 935-941.
[82] S. Sakai, " C^{*}-Algebras and W^{*}-Algebras," Ergebnisse der Mathematik und ihrer Grenzgebiete, 60. Springer-Verlag, Heidelberg, 1971.
[83] J. T. Schwartz, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math. 16 (1963). 19-26.
[84] I. E. Segal, Irreducible representations of operator algebras, Bull. Amer. Math. Soc. 53 (1947), 73-88.
[85] I. E. Segal, Two-sided ideals in operator algebras, Ann. of Math. 50 (1949), 856-865.
[86] S. Sherman, The second adjoint of a C*-algebra, Proc. Int. Congress of Mathematicians, Cambridge, 1950, Vol. 1. p. 470.
[87] M. H. Stone, On one-parameter unitary groups in Hilbert space, Ann. of Math. 33 (1932), 643-648.
[88] M. H. Stone, "Linear Transformations in Hilbert Space and Their Applications to Analysis," American Mathematical Society Colloquium Publications, Vol. 15. Amer. Math. Soc., New York, 1932.
[89] M. H. Stone, The generalized Weierstrass approximation theorem, Math. Mag. 21 (1948), 167-183, 237-254.
[90] M. H. Stone, Boundedness properties in function-lattices, Canad. J. Math. 1 (1949), 176-186.
[91] S. Strǎtilǎ and L. Zsidó, "Lectures on von Neumann Algebras." Abacus Press, Tunbridge Wells, 1979.
[92] Z. Takeda, Conjugate spaces of operator algebras, Proc. Japan Acad. 30 (1954), 90-95.
[93] M. Takesaki, On the conjugate space of operator algebra, Tôhoku Math. J. 10 (1958), 194-203.
[94] M. Takesaki, On the cross-norm of the direct product of C^{*}-algebras, Tôhoku Math.J. 16 (1964), 111-122.
[95] M. Takesaki, "Tomita's Theory of Modular Hilbert Algebras and Its Applications," Lecture Notes in Mathematics, Vol. 128. Springer-Verlag, Heidelberg, 1970.
[96] M. Takesaki, A short proof for the commutation theorem $\left(\mathscr{M}_{1} \bar{\otimes} \mathscr{M}_{2}\right)^{\prime}=\mathscr{M}_{1}^{\prime} \bar{\otimes} \mathscr{M}_{2}^{\prime}$. "Lectures on Operator Algebras," Lecture Notes in Mathematics, Vol. 247, pp. 780-786. Springer-Verlag, Heidelberg, 1972.
[97] M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249-310.
[98] M. Takesaki, "Theory of Operator Algebras I," Springer-Verlag, Heidelberg, 1979.
[99] M. Tomita, Standard forms of von Neumann algebras, Fifth Functional Analysis Symposium of the Math. Soc. of Japan, Sendai, 1967.
[100] J. Tomiyama, On the projection of norm one in W^{*}-algebras, Proc. Japan Acad. 33 (1957), 608-612.
[101] T. Turumaru, Crossed product of operator algebras, Tôhoku Math. J. 10 (1958), 355-365.
[102] F. Wecken, Unitärinvarianten selbstadjungierter Operatoren, Math. Ann. 116 (1939), 422-455.
[103] S. L. Woronowicz, "Operator Systems and Their Applications to the Tomita-Takesaki Theory," Lecture Note Series, Vol. 52. Aarhus Universitet, Matematisk Institut, Aarhus, 1979.
[104] F. J. Yeadon, A new proof of the existence of a trace in a finite von Neumann algebra, Bull. Amer. Math. Soc. 77 (1971), 257-260.
[105] L. Zsido, A proof of Tomita's fundamental theorem in the theory of standard von Neumann algebras, Rev. Roum. Math. Pure Appl. 20 (1975), 609-619.

This page intentionally left blank

INDEX OF NOTATION

Algebras and related matters

$A \hat{+} B$	closed sum of operators, 352, 583
$A^{\wedge} B$	closed product of operators, 352, 583
$\mathscr{A}_{1}(\mathbb{R})$	algebra of convolution operators, 190
\mathfrak{U}^{+}	positive cone in $\mathfrak{A}, 244$
$\mathfrak{A}_{\boldsymbol{h}}$	set of self-adjoint elements of $\mathfrak{X}, 249$
\mathfrak{A}^{-}	weak-operator closure of $\mathfrak{A}, 328$
$\mathfrak{Q}=$	norm closure of $\mathfrak{M}, 328$
$\mathfrak{U}_{n}^{\text {c }}$	relative commutant, 904
$\mathfrak{U}_{1}(\mathbb{P})$	norm closure of $\mathscr{A}_{1}(\mathbb{R}), 190$
$\mathfrak{N}_{0}(\mathbb{R})$	$\mathfrak{U}_{1}(\mathbb{R})$ with unit adjoined, 190
aut(\mathfrak{A})	group of * automorphisms of $\mathfrak{A}, 789$
\mathscr{B}_{u}	algebra of Borel functions on $\mathbb{C}, 359$
$\mathscr{B}_{4}(X)$	algebra of Borel functions on $X, 358$
$C_{\text {A }}$	central carrier of $A, 333$
$\mathrm{CO}_{\boldsymbol{R}}(A)$	convex hull of unitary transforms of $A, 510,520,525$
$\mathrm{cos}_{\boldsymbol{g}}(A)^{-}$	weak-operator closure of $\mathrm{co}_{g t}(A), 525$
$\cos _{\mathscr{R}}(A)^{=}$	norm closure of $\mathrm{co}_{\mathfrak{R}}(A), 510,520,525$
E®E	reduced von Neumann algebra, 336
$E^{\prime} \mathscr{S}^{\prime} E^{\prime}$	reduced von Neumann algebra, 335
\mathscr{F}^{\prime}	commutant of $\mathscr{F}, 325$
$\mathscr{F}^{\prime \prime}$	double commutant, 326
\mathscr{F}^{*}	$\left\{A^{*}: A \in \mathscr{F}\right\}, 326$
$\mathscr{F} \mathscr{G}(\mathscr{R})$	fundamental group of $\mathscr{R}, 990$
$\mathscr{F} x$	$\{A x: A \in \mathscr{F}\}, 276$
$\mathscr{F} \mathfrak{X}$	$\{A x: A \in \mathscr{F}, x \in \mathfrak{X}\}, 276$
$\mathscr{H}(A)$	set of holomorphic functions, 206
I	unit element, identity operator, 41
$L_{\text {f }}$	operator, on L_{2}, of convolution by $f, 190$
L_{x}	operator, on $l_{2}(G)$, of convolution by $x, 433$
\mathcal{L}_{G}	left von Neumann algebra of $G, 434$
\mathscr{M}^{+}	positive cone in $\mathscr{M}, 255$
$\mathscr{M}_{\boldsymbol{F}}^{\text {c }}$	relative commutant, 876
\mathscr{M}_{h}	set of self-adjoint elements of $\mathscr{M}, 255$
$\mathscr{M}(\mathbb{R})$	set of multiplicative linear functionals on $\mathfrak{U}_{0}(\mathbb{R}), 197$
$\mathscr{M}_{0}(\mathbb{R})$	$\mathscr{M}(\mathbb{R}) \backslash\left\{\rho_{\infty}\right\}, 195$
$\mathscr{N}(\mathscr{A})$	algebra of operators affiliated with $\mathscr{A}, 352$
$\mathcal{N}(X)$	algebra of normal functions on $X, 344$

$\operatorname{prim}(\mathfrak{U})$	primitive ideal space of $\mathfrak{M}, 791,792$
P_{n}	central projection corresponding to type $\mathrm{I}_{n}, 422$
$P_{\mathrm{c}_{1}}$	central projection corresponding to type $\mathrm{II}_{1}, 422$
$P_{c_{\infty}}$	central projection corresponding to type $\mathrm{II}_{\infty}, 422$
P_{∞}	central projection corresponding to type III, 422
$\mathscr{P}(\mathscr{M})$	set of pure states of $\mathscr{M}, 261$
$\mathscr{P}(\mathscr{M})^{-}$	pure state space of $\mathscr{M}, 261$
\mathfrak{R}	dual group of $\mathbb{R}, 192$
$r(A)$	spectral radius, 180
$r_{2}(A)$	spectral radius, 180
$\boldsymbol{R}_{\boldsymbol{x}}$	operator, on $l_{2}(G)$, of convolution by $x, 433$
$\mathscr{R} E^{\prime}$	restricted von Neumann algebra, 334
$\mathscr{R}^{\prime} E$	restricted von Neumann algebra, 336
\mathscr{R} \#	predual of $\mathscr{R}, 481$
\mathscr{R}_{G}	right von Neumann algebra of G, 434
$\mathrm{sp}(A)$	spectrum of $A, 178,357$
$\mathrm{sp}_{21}(A)$	spectrum of A in $\mathfrak{Q}, 178$
$\mathrm{sp}(f)$	essential range of $f, 185,380$
$\mathscr{S}(\mathscr{A})$	set of self-adjoint affiliated operators, 349
$\mathscr{S}(\mathscr{M})$	state space of $\mathscr{M}, 257$
$\mathscr{S}(\mathcal{V})$	state space of $\mathscr{V}, 213$
$\mathscr{S}(X)$	set of self-adjoint functions on $X, 344$
$T(\mathscr{R})$	invariant for von Neumann algebra $\mathscr{R}, 947$
$T \eta \mathscr{R}$	T is affiliated with $\mathscr{R}, 342$
\widehat{T}_{1}	dual group of $\mathbb{T}_{1}, 231$
ω_{x}	vector state, 256
$\omega_{x, y}$	vector functional, 305
\mathbb{Z}	dual group of $\mathbb{Z}, 230$

Direct sums and integrals

$\mathscr{H}_{1} \oplus \cdots \oplus \mathscr{H}_{n}$	direct sum of Hilbert spaces, 121
$\sum_{1}^{n} \oplus \mathscr{H}_{j}$	direct sum of Hilbert spaces, 121
$\sum \oplus \mathscr{H}_{a}$	direct sum of Hilbert spaces, 123
$\sum \oplus x_{a}$	direct sum of vectors, 123
$\sum_{1}^{n} \oplus T_{j}$	direct sum of operators, 122
$\sum \oplus T_{a}$	direct sum of operators, 124
$\sum \oplus \varphi_{b}$	direct sum of representations, 281
$\sum \oplus \mathscr{R}_{a}$	direct sum of von Neumann algebras, 336
$\int_{X} \oplus \mathscr{H}_{\boldsymbol{\prime}} d \mu(\nsim)$	direct integral of $\left\{\mathscr{H}_{*}\right\}$ over $(X, \mu), 1000$

Equivalences and orderings

```
\leq for self-adjoint operators, 105
s for projections, 110
\leq for elements of a partially ordered vector space, 213
@ isomorphism between algebıas, 310
```

\sim	for projections in a von Neumann algebra, 402, 471
§	for projections in a von Neumann algebra, 406, 471
\prec	for projections in a von Neumann algebra, 406, 471
*	for projections in a von Neumann algebra, 406
\precsim_{q}	for representations of a C^{*}-algebra, 780
\precsim_{q}	for states of a C^{*}-algebra, 781
\sim_{q}	for representations of a C^{*}-algebra, 781
\sim_{q}	for states of a C^{*}-algebra, 781
$\mathscr{2}(\mathfrak{A})$	set of equivalence classes of representations of \mathfrak{X}, relative to $\sim_{\boldsymbol{q}}, 780$

Inner products and norms

\langle,$\rangle \quad inner product, 75$
$\|\| \quad$ norm (on a linear space), 35
bound
of a linear operator, 40
of a linear functional, 44
of a conjugate-bilinear functional, 100
of a multilinear functional, 126
$\left\|\|_{p} \quad\right.$ norm
in $L_{p}(1 \leq p \leq \infty), 55$
in $l_{p}(1 \leq p \leq \infty), 71$
$\left\|\|_{2} \quad\right.$ norm
in a factor of type $\mathrm{II}_{1}, 575$
in $\mathscr{H} \mathscr{S} \mathscr{F}, 128$
in $\mathscr{H} \mathscr{S O}, 141$
in \mathscr{N}_{ρ}, ρ a faithful tracial weight, 545
for a weak Hilbert-Schmidt mapping, 131
$\left\|\|_{I} \quad\right.$ norm associated with an order unit $I, 296$

Linear operators

$a(x), a(x)^{*}$	annihilator, creator, 934
$\mathscr{B}(\mathscr{H})^{+}$	positive cone in $\mathscr{B}(\mathscr{H}), 105$
$\mathscr{B}(\mathcal{X})$	set of bounded linear operators on $\mathfrak{X}, 41$
$\mathscr{B}(\mathfrak{X}, \mathscr{Y})$	set of bounded linear operators from \mathfrak{X} to $\mathscr{Y}, 41$
$\mathscr{D}(T)$	domain of $T, 154$
$\mathscr{G}(T)$	graph of $T, 155$
$\operatorname{Im}(T)$	imaginary part of $T, 105$
\subseteq	inclusion of operators, 155
$E \wedge F$	infimum of projections, 111
$E \vee F$	supremum of projections, 111
$\bigwedge E_{a}$	infimum of projections, 111
$\bigvee E_{a}$	supremum of projections, 111
M_{f}	multiplication operator, $108,185,341$
$N(T)$	null projection of $T, 118$
$R(T)$	range projection of $T, 118$

$\operatorname{Re}(T)$	real part of $T, 105$
\bar{T}	closure of $T, 155$
T^{*}	Banach adjoint operator, 48
T^{*}	Hilbert adjoint operator, 102, 157
$T \mid C$	T restricted to $C, 14$
$\mathscr{U}(\mathscr{H})$	group of all unitary operators on $\mathscr{H}, 282$

Linear spaces

$a X$	a multiples of vectors in $X, 1$
co X	convex hull of $X, 4$
\mathbb{C}^{n}	space of complex n-tuples, 8
\mathbb{K}^{n}	space of $\mathbb{K} n$-tuples, 8
\mathbb{R}^{n}	space of real n-tuples, 8
$\boldsymbol{V} / \mathscr{V}_{0}$	quotient linear space, 2
\mathscr{V}_{r}	real linear space associated with complex space $\mathscr{V}, 7$
$X \pm Y$	vector sum and difference of X and $Y, 1$

Linear topological spaces, Banach spaces, Hilbert spaces

$\overline{\mathrm{co}} X$ $\operatorname{dim} \mathscr{H}$ $\overline{\mathscr{H}}$	closed (sometimes, weak * closed) convex hull of $X, 31$ dimension of $\mathscr{H}, 93$ conjugate Hilbert space, 131		
$\mathscr{H} \ominus Y$	orthogonal complement, 87		
\mathscr{H}	set of Hilbert-Schmidt functionals, 128		
\mathscr{H} SO	set of Hilbert-Schmidt operators, 141		
$Y \wedge Z$	infimum (intersection) of closed subspaces, 111		
$Y \vee Z$	supremum of closed subspaces, 111		
$\wedge Y_{a}$	infimum (intersection) of closed subspaces. 111		
$\bigvee Y_{a}$	supremum of closed subspaces, 111		
$\sigma(\mathscr{V}, \mathscr{F})$	weak topology, 28		
$\sigma\left(\mathscr{V}^{\#}, \mathscr{V}\right)$	weak * topology, 31		
$\sigma\left(\mathscr{V}, \mathscr{V}^{\#}\right)$	weak topology on $\mathscr{V}, 30$		
$\boldsymbol{V}^{\#}$	continuous dual space, 30		
$\left[x_{1}, \ldots, x_{n}\right]$	subspace generated by $x_{1}, \ldots, x_{n}, 22$		
[$x^{\text {] }}$	closed subspace generated by $\mathfrak{X}, 22$		
($\boldsymbol{X}_{\text {r }}$	$\{x \in \mathfrak{X}:\\|x\\| \leq r\}, 36$		
$\mathfrak{X}^{\#}$	Banach dual space, 43		
$\mathfrak{X}^{\# \#}$	Banach second dual space, 43		
\boldsymbol{Y}^{\perp}	orthogonal complement, 87		

Modular theory

Δ	modular operator, $591,598,607,644$
F	597,644
F_{0}	597

$J \quad$ involution occurring in modular theory, 598, 644
$S \quad 597,644$
$S_{0} \quad 597,644$
$\sigma_{t} \quad$ modular automorphism, 591, 607, 640
$\mathscr{V}_{u}^{a}, \mathscr{V}_{u}^{a^{\prime}} \quad$ dual cones, 704, 705
$\mathscr{V}_{u} \quad$ self-dual cone, 705, 706

Multiplicity theory

$\bar{\varphi}$

$L_{\infty}(\varphi)$
$N(\varphi)$
$\mathcal{N}(\varphi)$
extension to $L_{\infty}(\varphi)$ of the representation φ of $C(S), 677$
space of φ-essentially bounded functions, 676
space of φ-null functions, 677
null ideal of $\varphi, 672$

Sets and mappings

$A \backslash \mathbb{B}$	set-theoretic difference, 1
$\beta(\mathbb{N})$	β-compactification of $\mathbb{N}, 224$
\mathbb{C}	complex field, 1
\varnothing	empty set, 5
\mathscr{F}_{n}	free group with n generators, 437
\subseteq	inclusion of sets
\subsetneq	strict inclusion of sets
\mathbb{K}	scalar field, \mathbb{R} or $\mathbb{C}, 1$
$f \wedge g$	minimum of functions, 214
$f \vee g$	maximum of functions, 214
$\bigwedge_{a \in A} f_{a}$	infimum of functions, 373
$V_{a \in \mathbb{A}} f_{a}$	supremum of functions, 373
\mathbb{N}	set of positive integers, 68
Π	group of permutations, 438
\mathbb{R}	real field, 1
\mathbb{R}^{+}	set of non-negative real numbers, 233
$\sigma \mid \mathscr{V}_{k+1}$	σ restricted to \mathscr{V}
$\mathbb{N}_{k+1}, 3$	
\mathbb{T}_{1}	circle group, 192
\mathbb{Z}	additive group of integers, 230

Special Banach spaces

$c, 68$	$l_{\infty}, 68$
$c_{0}, 68$	$l_{\infty}(\mathbb{A}), 49$
$C(S), 50$	$l_{\infty}(\mathbb{A}, \mathfrak{X}), 48$
$C(S, \mathfrak{X}), 49$	$L_{p}\left(=L_{p}(S, \mathscr{P}, m)\right), 52$
$l_{p}(\mathbb{A}), 51$	$L_{\infty}\left(=L_{\infty}(S, \mathscr{S}, m)\right), 52$
$l_{p}(\mathbb{A}, \mathfrak{X}), 50$	$L_{1}, 54$
$l_{2}, 84$	$L_{2}, 53$

$l_{2}(A), 84$
$l_{1}, 69$
$L_{2}(\mathbb{R}, \mathscr{H}), 958$
$\mathscr{H}_{\underset{\Psi}{(a)}, 934}$

States and weights

F_{ρ}	$\left\{A \in \mathfrak{Q}^{+}: \rho(A)<\infty\right\}, \rho$ a weight on $\mathfrak{A}, 486$
\mathscr{M}_{ρ}	linear span of F_{ρ}, ρ a weight, 486
N_{ρ}	$\left\{A \in \mathfrak{Q}: A^{*} A \in F_{\rho}\right\}, \rho$ a weight on $\mathfrak{Q}, 486$
\mathscr{N}_{ρ}	$\left\{A \in \mathfrak{Q}: \rho\left(A^{*} A\right)=0\right\}, \rho$ a weight on $\mathfrak{A}, 486$
\mathscr{L}_{ρ}	left kernel of a state $\rho, 277$
$\left(\pi_{\rho}, \mathscr{H}_{\rho}, x_{\rho}\right)$	GNS constructs for a state $\rho, 278$
$\left(\pi_{\rho}, \mathscr{H}_{\rho}\right)$	GNS constructs for a weight $\rho, 490$
ρ^{+}, ρ^{-}	positive and negative parts of a hermitian linear functional $\rho, 259,485$

Tensor products and crossed products

$A_{1} \otimes \cdots \otimes A_{n} \quad$ tensor product of bounded operators, 145
$\mathfrak{M}_{1} \otimes \cdots \otimes \mathfrak{Q}_{n} \quad$ tensor product of C^{*}-algebras, 801, 847
$\mathfrak{A} \odot \mathscr{B}$
$\mathfrak{U} \otimes_{\alpha} \mathscr{B} \quad$ tensor product of C^{*}-algebras, 850
$\otimes_{a \in \mathbb{A}} \mathfrak{M}_{a} \quad$ infinite tensor product of C^{*}-algebras, 866
$\varphi_{1} \otimes \cdots \otimes \varphi_{n} \quad$ tensor product of * homomorphisms, 807
$\varphi_{1} \bar{\otimes} \cdots \bar{\otimes} \varphi_{n} \quad$ tensor product of ultraweakly continuous * homomorphisms, 820
$\varphi \otimes I_{n} \quad *$ isomorphism, 427
$n \otimes \varphi \quad$ * isomorphism, 427
$\mathscr{H}_{1} \otimes \cdots \otimes \mathscr{H}_{n} \quad$ tensor product of Hilbert spaces, 135
$\lambda \otimes_{\alpha} v \quad$ product state of $\mathfrak{A} \otimes_{\alpha} \mathscr{B}, 854$
$\mathscr{R}_{1} \bar{\otimes} \cdots \bar{\otimes} \mathscr{R}_{n} \quad$ tensor product of von Neumann algebras, 812
$\mathscr{R} \otimes I_{n} \quad$ matrix algebra constructed from $\mathscr{R}, 427$
$n \otimes \mathscr{R} \quad$ algebra of $n \times n$ matrices over $\mathscr{R}, 427$
$\mathscr{R}(\mathscr{M}, \alpha)$
$\mathscr{R}(\mathscr{R}(\mathscr{M}, \alpha), \alpha)$
crossed product, 938, 939, 966, 968
second crossed product, 966
$\rho_{1} \otimes \cdots \otimes \rho_{n} \quad$ product state, 803
$\otimes_{a \in A} \rho_{a} \quad$ infinite product state, 870
$T_{1} \odot \cdots \odot T_{n} \quad$ algebraic tensor product of unbounded operators, 837
$T_{1} \otimes \cdots \otimes T_{n} \quad$ tensor product of unbounded operators, 837
$\otimes_{a \in \mathbb{A}} \theta_{a} \quad$ infinite tensor product of * isomorphisms, 869
$x_{1} \otimes \cdots \otimes x_{n} \quad$ tensor product of vectors, 135
$x_{1} \wedge \cdots \wedge x_{n} \quad$ exterior product of vectors, 933
$\omega_{1} \bar{\otimes} \cdots \bar{\otimes} \omega_{n} \quad$ normal product state, 818

INDEX

A

Action (of a group on a measure space)
ergodic, 554, 559, 765, 766
free, 553
Action (of a group on a von Neumann algebra)
ergodic, 546, 547, 559
free, 546
Adjoint
in an algebra with involution, 237
Banach, 48
of a conjugate linear operator, 594
Hilbert, 102
of an unbounded operator, 157
Affiliated operator, 342, 344
Algebra
abelian (commutative) Banach, 180
abelian C^{*}, see C^{*}-algebra
abelian von Neumann, see von Neumann algebra
Banach, 41, 174
of bounded operators, $102,186,236,298$, 299, 303, 309, 755-759
C^{*}, see C^{*}-algebra
Calkin, 755-759
CAR (Fermion), see CAR algebra
of compact operators, see Compact linear operator
of continuous functions, 175,210
countably decomposable (von Neumann), 338, 339, 380, 449
division, 180
Fermion (CAR), see CAR algebra
finite-dimensional $C^{*}, 288,432$
Hilbert, 643
$L_{1}, 187,233$
$L_{\infty}, 237$
maximal abelian, see Maximal abelian algebra
multiplication, see Multiplication algebra normed, 174
nuclear C^{*}, see C^{*}-algebra
operator, 173, 304
quotient, 177, 300, 715
self-adjoint, 237, 282, 309
simple C^{*}, see Simple C^{*}-algebra
*, 237
UHF, see Uniformly matricial algebra
of unbounded continuous functions, 355
of unbounded operators, 352, 355
uniformly matricial, see Uniformly matricial algebra
von Neumann, see von Neumann algebra $W^{*}, 498,794$
Algebraic theory (of von Neumann algebras), 585
Algebraically equivalent states, 909
Amenable group, 933
Analytic set, 1000, 1017, 1031, 1037, 1040
Annihilators, 934
Anti-isomorphism, 472, 584, 591, 777, 881
Approximate eigenvectors, 178, 179, 183
Approximate identity
in C^{*}-algebras, $254,293,768,769$
increasing, right, 254
in $L_{1}(\mathbb{R}), 191$
quasi-central, 769
Approximation theorems
Dixmier, 504, 523
double commutant, 326
Kaplansky density, 329
Stone-Weierstrass, 219, 221, 235
Weierstrass, 221
Archimedian (partially ordered vector space), 297

Automorphic representation
continuous, 957, 1043-1045
of a group, 937
of \mathbb{R} on a factor, 1043, 1044
unitarily implemented, $937,957,1044$, 1045
Automorphic states, 906, 907, 909

* Automorphism (of a C^{*}-algebra), 546, 766, $772,785,788,789$
acting freely, 926
inner, $624,664,665,785,789,926,927,955$
outer, $451,624,928,931,1045,1046$
universally weakly inner, 785, 789
* Automorphism group (of a C^{*}-algebra), 789

B

Baire category theorem, 60, 323
Balanced neighborhood of 0,13
Balanced set, 8
Banach algebra, 41, 174
Banach dual space, 44
Banach inversion theorem, 61
Banach lattice, 297
Banach module, 302, 771, 773
Banach-Orlicz theorem, 73
Banach space, 36
Bessel's inequality, 90, 120
β-compactification, 224
Bidual (of a C^{*}-algebra), 726, 773
Borel function calculus, see Function calculus
Borel mapping, 1031, 1032
Borel measure, regular, 53, 54
Borel measure space, 1031, 1040
regular, 1031
Borel structure, 1000, 1031
Borel sets of, 1031, 1040
generated by a family of sets, 1031
topological, 1031, 1040
Bound
of a linear functional, 44
of a linear operator, 40
Bounded linear functional, 44
Bounded linear operator, see Operator
Bounded multilinear functional, 126
Bounded multilinear mapping, 131
Bounded set (in a normed space), 36
Bounded weak-operator topology, 995

Boundedly complete lattice, see Lattice
Bounding projection, 351
Bounding sequence, 351
Bridging lemma, 633

C

C*-algebra, 236
abelian, 210, 269-275, 291, 298, 670-689, 701, 702, 744-747, 782
finite-dimensional, 288,432
nuclear, 800, 858-863, 880
simple, see Simple C^{*}-algebra
singly generated, 701
type I, 880
UHF, see Uniformly matricial algebra uniformly matricial, see Uniformly matricial algebra
C^{*}-norm, 850-858
largest, 852
smallest, 853, 858
spatial, 851
C^{*}-semi-norm, 851
largest, 852
Calkin algebra, 755-759
Canonical anti-commutation relations, see CAR
Canonical image (of \mathfrak{U}_{a} in $\otimes \mathfrak{U}_{a}$), 866
CAR, 759, 795, 796, 904
algebra, see CAR algebra
irreducible representation of, 796, 935
representation of, 796, 934, 935
CAR algebra, 759, 763-766, 794, 796, 889, 904, 910, 914, 917, 920, 955, 992-993
factor representations of, $914,920,955$, 992-993
irreducible representations of, 763-766
product states of, 889, 904, 955, 992-993
quasi-equivalent representations of, 917
states of product type a of, $910,914,917$, 920
Carrier (of a state), 454, 468
Cauchy criterion, 26
Cauchy-Schwarz inequality, 77, 215, 256, 489
Cayley transform, 327, 328, 930
Center state, 512, 582
Center-valued trace, see Trace
Central carrier, 332, 333, 403, 736
Central decomposition, 1028

Centralizer (of a state), 617

Character
of a locally compact abelian group, 1041
of $\mathbb{R}, 192,282$
of $\mathbb{T}_{1}, 231$
of $\mathbb{Z}, 230$
Clopen set, 222
Closed graph theorem, 62
Closure (of an operator), 155
Codimension, 2
Commutant, 325, 584
of a tensor product, $800,812,821,828,843$
type of, 585-590
Commutation relations, 181
Commutation theorem, 812, 821, 828, 843
Commutator, 181
Compact linear operator, $165,166,226,227$, 747-755, 782, 783
algebra of, 747-755, 782, 783
Compact self-adjoint operator, 166, 167
Compact support, 201
Comparison of projections, 399, 402, 471
in a factor, 408
Comparison theorem, 408, 409
Comparison theory, 399-422, 471
Complementary subspaces, 11, 63, 88
Complete (linear topological space), 14
Complete (measure space), 1031
Completely positive linear mapping, 881-885
Completion
of a measure space, 1031
of a normed algebra, 174
of a normed space, 38
of a pre-Hilbert space, 80
Complexification
of a real Hilbert space, 76, 161
of a real linear space, 66
of a real normed space, 66
Compression, 121, 276
Conditional expectation, 571, 572, 573, 794, 834, 836
faithful, 572
Cone, 212, 245
dual, 704, 705
self-dual, 705, 710
Conjugate-bilinear functional, 100
bounded, 100
positive, 103
symmetric, 103
Conjugate Hilbert space, 131
Conjugate-linear operator, 15, 65, 593

Continuous crossed product, see Crossed product
Continuous function calculus, see Function calculus
Convergence
of nets in a locally convex space, 25
of series in a normed space, 38
of sums in a locally convex space, 25
Convex combination (finite), 3
Convex hull (of a set), 4
closed, 31
Convex set, 3
Convolution, 187, 230, 231, 433, 1041
Core (of an unbounded operator), 155, 349
of a tensor product of operators, 838
Countably decomposable projection, 338, 340, 380, 413, 414, 492
Countably decomposable von Neumann algebra, 338, 339, 380, 449
Coupling (or Linking) constant, 690
Coupling (or Linking) operator, 691, 698
Creator, 934
Crossed product, 936-997
abstract continuous, 966
abstract discrete, 938
continuous, 936, 957-974
discrete, 936, 937-956
duality for, 936, 970
of factors, 941, 948
implemented continuous, 968
implemented discrete, 939
by a modular group, 936, 974-989
second, 936, 957, 968, 970
Cross-norm, 851, 858
Csm space, 1017, 1020, 1036, 1040
Cyclic projection, 336, 471, 478, 479, 492
comparison of, 471
Cyclic representation, 276, 278, 279, 735
Cyclic vector, 276

D

Dauns-Hoffman theorem, 793
Decomposable operator, 999, 1002 algebra of, 1005, 1027
Decomposable representation, 1007, 1008
Decomposable state, 1008
Decomposable von Neumann algebra, 999, 1009, 1010, 1011
Decomposition, see Direct integral decompositions

Definite inner product, 76
Definite state, 289
Density matrix, 462
Derivation, 301, 302, 492, 580, 581, 582, 771, $784,785,788,790,791$

* derivation, 784, 785, 788, 790
inner, 580, 582, 790
of a simple C^{*}-algebra, 790
of a von Neumann algebra, 582
Diagonalizable operator, 999, 1002
algebra of, 1005, 1027
Diagonalizable projection, 1003
Diagonalizable representation, 1008
Diagonalization (of a representation), 1008
Dimension
generalized invariance of, 416
of a Hilbert space, 93
Dimension function, 504, 529, 530-537
Direct integral decompositions, 998, 999, 1025-1031
of bounded operators, 1002
central, 1028
of the commutant, 1021
into factors, 1027, 1028
of Hilbert spaces, 1000, 1027
into irreducible representations, 1031
relative to an abelian algebra, 1025-1031
relative to a maximal abelian algebra, 1030, 1031
of a representation, 1008
of states, 1008
and type decomposition, 1015, 1028
uniqueness of, 1028-1030
of vectors, 1000
of von Neumann algebras, 1009
Direct integrals, 998-1025
of bounded operators, 1002
of faithful states, 1012
of Hilbert spaces, 1000
of normal states, 1013
of projections, 1014
of representations, 1008
of states, 1008
of tracial states, 1012
of vectors, 1000
of von Neumann algebras, 1009
Direct sum
of Hilbert spaces, 121, 123
of operators, 122, 124
of representations, 281, 734, 738
of von Neumann algebras, 336

Directed system
of C^{*}-algebras, $863-865,886,887$
of Hilbert spaces, 886,887
of simple C^{*}-algebras, 865
Discrete crossed product, see Crossed product
Division algebra, 180
Dixmier approximation theorem, 504, 523
Double commutant theorem, 326
Dual cones, 704, 705
Dual group
of $\mathbb{R}, 192$
of $T_{1}, 231$
of $\mathbb{Z}, 230$
Dual module, 771, 773
Dual normal module, 771, 932
Dual representation, $936,957,966,968$
Dual space
algebraic, 2
Banach, 44
of a C^{*}-algebra, 712, 719, 721, 726, 773
continuous, 30, 43
second, 43, 45
Duality theorem (for crossed products), 936, 937, 957, 970

E

Eigenvalue, 109
Eigenvalue list, 914-916
Eigenvector, 108
approximate, 178, 179, 183
Equivalence
of function representations, 263
of projections, 399, 402, 736
quasi-, see Quasi-equivalence
of representations, see Unitary equivalence
Ergodic action
of a group on a measure space, 554,559 , 765, 766
of a group on a von Neumann algebra. 546, 547, 559
Essential range
of an L_{∞} function, 185
of a measurable function, 380
Essential representation, 282
Essential supremum, 52
Essentially bounded function, 52

Evaluation functional, 211
Extension
by continuity, 14, 15
of pure states, 266, 296
of states, 266, 296
Extension problem, 670, 671, 680, 702, 735
Extension theorems, see Hahn-Banach theorems
Exterior product, 933
Extreme point, 31-34, 163, 164, 373
in a C^{*}-algebra unit ball, 473
in the positive unit ball, 484
in the self-adjoint unit ball, 484
Extremely disconnected space, 222, 223, 224, $310,322,324,344,349,373,374,375$, 376

F

Face, 32
Factor, 308, 408, 424, 433-441, 450-451, 537-565, 690, 829, 889, 914, 920, 936, 941, 945, 948, 955, 1043, 1044, 1045
direct integral decompositions into, 1027, 1028
discrete (i.c.c.) group examples, 433-441, 450-451, 572-573, 575-576, 579, 862, 902-903
finite type I, 872
group-measure-space examples, 553-565, 579, 580, 910-912
matricial, see Matricial factor
type I, 424, 541, 544, 552, 560, 562, 914, 920
type $I_{k}, 42^{\wedge}, 541,544,552,560,562,690$, 759
type $\mathrm{I}_{\infty}, 424,541,544,552,560,562,914$
ty"ue II, 424, 433-441, 541, 544, 552, 560, 562, 563, 895-904, 914
type $1_{1}, 424,433-441,541,544,552,560$, 562, 690, 895-904, 914
type $\mathrm{II}_{\infty}, 424,440,541,544,552,560,563$, 936, 948, 993
type III, 424, 541, 544, 552, 560, 563, 564, $914,920,936,945,948,955,1045,1046$. 1047
Factor (primary) representation, $741,742,743$
Factor (primary) state, 741, 781, 800, 875, 876, 877, 889

Factorization
of a linear mapping, 2,42
of a normal state, 874
of a state, 875
Factors through, 2, 42
Faithful conditional expectation, 572
Faithful representation, 275, 281
Faithful state, 288, 616, 623, 772
Faithful trace, 505
Faithful weight, 487, 500
Fermion algebra, see CAR algebra
Finite diagonal block (of a matrix), 154
Finite-dimensional space, 22, 23, 24
Finite-dimensional subspace, 22, 23, 24
First category (set of), 322
Fock representation (of the CAR), 934
Fock space (antisymmetric), 934
Fock vacuum, 934
Fock vacuum state, 935
Fourier coefficients, 95
Fourier series, 95
Fourier transform, 187, 197, 368
inversion of, 198, 199
for L_{2} functions, 201
Free action
of a * automorphism, 926
of a group on a measure space, 553
of a group on a von Neumann algebra, 546
Friedrichs extension, 502
Function calculus
Borel (for a bounded normal operator), 319, $321,322,324,377$
Borel (for an unbounded normal operator), $340,360,362,363,364,366,380$
continuous, $239,240,271-274,340$
holomorphic, 206-208
uniqueness of, 273, 322, 362
Function representation, 263, 264
of an abelian C^{*}-algebra, 270
of a Banach lattice, 297
equivalence of, 263
separating, 263
Functional
conjugate-bilinear, 100
linear, 2
multiplicative linear, see Multiplicative linear functional
real-linear, 7
sublinear, $8,9,65$
support, 9, 65
Fundamental group, 990

G

Gelfand-Neumark theorem, 275, 281
Generalized nilpotent, 205, 225, 226, 227
Generalized Schwarz inequality, 770
Generating nest, 759
Generating set of vectors, 336, 337
Generating vector
for a cyclic projection, 336
for a representation, 276
for a von Neumann algebra, 336, 338, 379, 380, 584, 590, 591, 689
GNS construction, 279, 489, 728
(essential) uniqueness of, 279
Gram-Schmidt orthogonalization process, 94
Graph (of an operator), 62, 155
Group
amenable, 933
i.c.c., $436,437,438$
locally finite, 224,438
topological, 789

H

Hahn-Banach theorems
extension type, $7,9,10,21,22,44$
separation type, 4, 7, 20, 21
Hahn-Jordan decomposition, 219, 258, 259, 265, 290
Half-space (closed or open), 4
Halving lemma, 412
Hermite polynomials, 97
Hermitian linear functional
on a C^{*}-algebra, 255
on $C(X), 215$
Hermitian linear mapping, 511
Hilbert algebra (left), 643
left von Neumann algebra of, 643
Hilbert space, 79
conjugate, 131
pre-Hilbert space, 79, 80, 81
Hilbert space isomorphism, 93, 103, 104
Hilbert-Schmidt functional, 127
Hilbert-Schmidt mapping (weak), 131
Hilbert-Schmidt operator, 141
Hölder's inequality, 71, 188
Holomorphic function (Banach-space valued), 203
Holomorphic function calculus, 206

* Homomorphism, 237

Hull
closed convex, 31
convex, 4
of a set, 211
Hyperplane, 4

I

I.c.c. group, 436, 437, 438

Ideal
in a Banach algebra, 177
in a C^{*}-algebra, $251,252,254,277,300,301$, 713-715, 730, 732, 733, 782
in $C(X), 210$
in a factor, 441-445
in $L_{1}(\mathbb{R})$ and related algebras, 187, 190, 233
maximal, 177, 180, 210, 733
primitive, 791
in a von Neumann algebra, 441-445, 451, 452, 569
Idempotent, 11, 208
Idempotent mapping between C^{*}-algebras, 793
Implementation problem, 671
Inductive limit
of bounded linear operators, 886
of C^{*}-algebras, 863-865, 887
of Hilbert spaces, 886,887
of representations, 887
of simple C^{*}-algebras, 865
Infinite tensor product, see also Product state, infinite
of C^{*}-algebras, $800,863-877,890$
characterization of, 867,868
of finite type I factors, $872,876,890$
of Hilbert spaces, 887
of * isomorphisms, 869
of representations, 888
Initial topology, 13
Inner derivation, 580, 582, 790
Inner product, 75, 76, 79
definite, 76, 79, 277
positive definite, 76
Inner product space, 76
Internal point, 4
Intersection (of projections), 111
Invariant mean, 224, 573
Invariant subspace, 121
in Hilbert space, 121
in L_{1} under translations, 233

Invariant $T(\mathscr{R}), 947,1046,1047$
for certain crossed products, 948,1047
for certain infinite tensor products, 953,955 , 992, 993
for tensor products, 955, 956
Inverse (in a Banach algebra), 176
Inversion theorem
Banach, 61
for Fourier transforms, 199
Invertible element (in a Banach algebra), 176
Invertible operator (unbounded), 595
Involution
on a complex Banach algebra, 236
on a Hilbert space, 501
Irreducibility
algebraic, 330, 332
topological, 330, 331, 332
Irreducible representation, 711, 727-734, 740, $741,744,745,751,753,754,756,757$, $759,763,765,766,848,1031$
Isometric isomorphism, 36
of C^{*}-algebras, 242
of function calculus, 240
natural, from \mathfrak{X} into $\mathfrak{X}^{\# \#}, 45$
Isometry between C^{*}-algebras, 492, 493, 777

* Isomorphism, 237

J

Jacobi polynomials, 97
Jacobson topology, 792
Jordan * homomorphism, 773, 776, 777
Jordan * isomorphism, 493, 777, 778, 779

K

Kaplansky density theorem, 329
Kaplansky formula, 403
Kernel
of an ideal in $C(X), 211$
left, of a state, 278
of a representation, 276
KMS boundary condition, see Modular condition
Krein-Milman theorem, 32

L
Laguerre polynomials, 97
Lattice, 214, 215, 298
Banach, 297
boundedly complete, 222, 223, 374, 375, 376
sublattice, 235
Legendre polynomials, 97
Lexicographical order, 1040
l_{2}-independent, 379
Linear combination (finite), 1
Linear dependence, 1
Linear functional, 2
bounded, 44
central, 505, 525
hermitian, see Hermitian linear functional
multiplicative, see Multiplicative linear functional
positive, see Positive linear functional
weak * continuous, 31
weakly continuous, 29,30
Linear independence, 1
Linear operator, see Operator; Unbounded operator
Linear order isomorphism, 214, 428
Linear Radon-Nikodým theorem, 480, 601
Linear topological space, 12
complete, 14
locally convex, 16
Linear transformation, see Operator; Unbounded operator
Linking constant, see Coupling constant
Linking operator, see Coupling operator
Locally compact abelian group, 1041, 1042
Locally compact (locally convex space), 24
Locally convex space, 16
finite-dimensional, 23, 24
locally compact, 24
Locally convex topology, 16
Locally finite group, 224, 438, 902, 903

M

Matricial factor, 889, 895-904, 914, 920, 928, 930, 947, 955, 992-993
criterion for, 897, 903, 930
finite, 895-904, 914, 920, 928, 930, 947, 955
type $\mathrm{II}_{\infty}, 993$
type III, $889,914,920,955$
Matricial von Neumann algebra, 895, 896, 914, 920, 955, 993
finite, 895,896
Matrix
with operator entries, 148
with scalar entries, 147

Matrix units
approximation of, 894, 899
compatible systems of, 760,932
self-adjoint system of, 429, 431
system of, 429
Maximal abelian algebra, 308, 339, 470, 473, $578,579,661,665,666,829$
in a factor, 451, 547, 578, 579
Maximal ideal
in a Banach algebra, 177, 180
in a C^{*}-algebra, 733
in $C(X), 210$
in a factor, 443,451
in $L_{1}(\mathbb{R})$ and related algebras, 187,190
in a von Neumann algebra, 443, 451, 569
Meager set, 322, 375
Measurable mapping (strongly), 1019, 1032
Measurable selection principle, 1000,1016 , 1020, 1040, 1041
Measure space
Borel, 1031, 1040
complete, 1031
Minimal projection, 309, 411, 419, 420, 424
Minkowski's inequality
for integrals, 53
for sums, 50
Modular automorphism group, 584, 591, 592, $607,609,616,618,623,640,974$
of certain crossed products, 942
of finite tensor products, 949
of infinite tensor products, 950, 951
Modular condition, 592, 608, 609, 610, 611, $616,640,694,695$
Modular operator, 591, 607
Modular theory, 591-660
for a faithful normal state, 608-625
for a faithful normal weight, 639-660
for a separating generating vector, 597-607, 625-639
for a tensor product, 842-843, 949
Multilinear functional, 126
Multilinear mapping, 131
Multiplication algebra, 308, 314, 340, 343, 376, 380, 557, 666, 670
Multiplication operator, 106, 107-9, 117, 185, 315, 341-344, 670, 746
Multiplicative linear functional, 180, 183, 187, 269
on $C(X), 211,213$
on $L_{1}(G), 1041$
on $L_{1}(\mathbb{R}), 193$
on $L_{1}\left(\widetilde{T}_{1}, m\right), 232$
on $l_{1}(\mathbb{Z}), 231$
on $l_{\infty}(\mathbb{Z}), 224$
Multiplicity (of an eigenvalue), 167, 227
Multiplicity (spectral). 670-689
uniform, 673, 685, 688, 703
Multiplicity function, 585, 672, 673
of a bounded normal operator, 689
of a representation, $672,683,684$

N

Natural image of \mathfrak{X} in $\mathfrak{X}^{\# \#}, 45$
Neighborhoods,
balanced, 13, 18
in a linear topological space, 13
in a locally convex space, 17,18
in a normed space, 35
in the strong-operator topology, 113
in the weak-operator topology, 305
in the weak * topology, 31
in a weak topology, 28
Net (of C^{*}-algebras), 864, 865
Nilpotent, 205, 292
generalized, see Generalized nilpotent
Non-singular (element of a Banach algebra), 176
Norm, 8,35
on a Banach algebra, 174
of a bounded operator, 41,100
on a C^{*}-algebra, 236,237
on $C(S), 49$
of a conjugate-bilinear functional, 100
on a direct sum of Hilbert spaces, 121, 123
on a direct sum of operators, 122,124
of a Hilbert-Schmidt functional, 128
on a Hilbert space, 77
on $l_{p}, 50,51$
on $l_{\infty}, 49$
on $L_{p}, 53$
on $L_{\infty}, 52$
of a linear functional, 44
of a matrix with operator entries, 151
of a multilinear functional, 126
of a multilinear mapping, 131
on $\mathscr{N}_{p}, 545$
on a normed algebra, 174
on a quotient normed space, 39
on a tensor product of Hilbert spaces, 132, 135
of a tensor product of operators, 146
of a weak Hilbert-Schmidt mapping, 131
Norm-preserving (linear mapping), 36
Norm topology, 35, 66
Normal element of a C^{*}-algebra, 237
Normal factorization (of a state), 874
Normal function, 344, 355
Normal operator
bounded, 103, 319, 321, 322, 688, 689
unbounded, $340,350,353,354,357,360$
Normal product state, 818
Normal representation, 464
Normal state, 376, 454, 458, 462, 467, 473, $492,498,616,623$
Normal von Neumann algebra, 930, 1046
Normed algebra, 174
Normed space, 35
Nowhere-dense set, 60, 322
n-state, 884, 885
Nuclear C^{*}-algebra, 800, 858-863, 880
Null function, 52
Null ideal, 672
of a representation, 672, 676, 680
of separable type, 672
Null ideal sequence, 585, 672, 673, 685
of a bounded normal operator, 689
of a representation, $672,683,685$
of separable type, 672
Null projection (of a linear operator), 118
Null set, 52
Null space (of a linear operator), 2 118, 171

0

One-parameter automorphism group, 591, 607, 610, 611, 616, 640
One-parameter subgroup (of a topological group), 789
One-parameter unitary group, 282, 367, 596
Open mapping, 59
Open mapping theorem, 61
Operator, see also Unbounded operator affiliated, 342, 344
bounded, 41, 100
compact, see Compact linear operator compact self-adjoint, 166, 167
conjugate-linear, 15, 65, 593
decomposable, see Decomposable operator diagonalizable, see Diagonalizable operator

Hilbert-Schmidt, see Hilbert-Schmidt operator
linear, 2
modular, see Modular operator
multiplication, see Multiplication operator
normal, see Normal operator
positive, 103
real-linear, 15
self-adjoint, see Self-adjoint operator
trace-class, 462, 543
unitary, see Unitary operator
Operator-monotonic increasing function, 250, 294, 295
Order unit, 213, 249, 255, 297
Orthogonal, 87
Orthogonal complement, 88
Orthogonal family of projections, 113
Orthogonal projection, 109
Orthogonal set, 88
Orthogonalization process, 94
Orthonormal basis, 91
Orthonormal set, 88

P

Parallelogram law, 80, 81
Parseval's equation, 91, 120
Partial isometry, 400, 473, 474
final projection of, 400
final space of, 400
initial projection of, 400
initial space of, 400
Partially ordered vector space, 213, 249, 255, 295, 296, 297
archimedian, 297
Pauli spin matrices, 795
Plancherel's theorem, 201, 231, 232
Point spectrum, 357, 376
Polar decomposition
for bounded operators, 105, 399, 401, 402
for conjugate-linear operators, 594
for elements of a C^{*}-algebra, 294
for linear functionals, 474
for tensor products of operators, 841
for unbounded operators, 404
Polarization identity, 102
Polish space (csm space), 1017
Polynomials
Hermite, 97
Jacobi, 97

Polynomials (continued)
Laguerre, 97
Legendre, 97
Positive element of a C^{*}-algebra, 244
Positive linear functional
on a C^{*}-algebra, 255
on $C(X), 213$
on a partially ordered vector space, 213 , 295, 296
Positive linear mapping, 511, 770
completely, 881-885
Positive nth root, 275
Positive operator, 103, 357, 840
Positive square root, 167, 248, 364
Predual (of a von Neumann algebra), 481, 712
of a tensor product, 818
Pre-Hilbert space, 79, 81
Primary representation, see Factor representation
Primary state, see Factor state
Primitive ideal, 791
Primitive ideal space, 792, 793
Primitive spectrum, 792
Principle of uniform boundedness, 64, 65, 74
Product state, 803, 847, 848, 853, 857, 870, 877, 889, 904
of the CAR algebra, see CAR algebra
infinite, 870, 877, 904
normal, 818
pure, 848,870
tracial, 848,870
of a uniformly matricial algebra, 877, 904
Projection, see also Projection in a von Neumann algebra; 12, 24, 109, 110
intersection of, 111
join of, 111
meet of, 111
orthogonal, 109
orthogonal family of, 113
spectral, 362
union of, 111
Projection (in a von Neumann algebra)
abelian, 419, 420, 446, 447, 588
comparison of, 399, 402, 471
countably decomposable, $338,340,380$, 413, 414, 492
cyclic, $336,471,478,479,492$
equivalence of, $399,402,471,736$
finite, $399,411,414,447,588,832$
infinite, 399, 411, 588
minimal, 411, 419, 420, 424
monic, 510
properly infinite, 411, 412-414, 447, 588
rational, 922
σ-finite, 338
stronger, 406, 471
weaker, 406, 471
Projection-valued measure, 318, 321, 360
Pure state
of $\mathscr{B}(\mathscr{H}), 302,303,783$
of a C^{*}-algebra, $261,269,728,730,731$, $733,740,750,781,782,848,870$
of $C(X), 213$
extension of, 234, 266, 296
of a partially ordered vector space with order unit, 213
tensor product of, 848, 870
Pure state space, 261, 782, 783, 784

Q

Quasi-equivalence, 711, 720, 735, 736, 737, $740,741,742,743,780,781,905,917$
Quasi-subequivalence, 780, 781
Quotient
Banach algebra, 177
Banach space, 39
C^{*}-algebra, 300, 715
linear space, 2
mapping, 2, 39, 42
norm, 39
normed space, 39

R

Radical, 228
Radius of convergence, 204
Radon-Nikodým derivative, 56
Radon-Nikodým theorem, 56
linear, 480, 601
Sakai-Radon-Nikodým theorem, 473, 477
Range (of a linear mapping), 2
Range projection, 118, 171
Range space, 118
Rational operator, 922
Rational projection, 922
Real-linear functional, 7
Real-linear operator, 15

Real-linear subspace, 7
Reduced atomic representation, 282, 711, $740,741,744,745,746,754,784$
Reflections (about a vector); 631
Reflection sequence, 631
of vectors, 634
weak, 631
Reflexive Banach space, 45, 47, 67, 70, 73, 98, 772
Regular Borel measure, 53, 54
Regular element (of a Banach algebra), 176
Relative commutant, 876
Relative invariance, 976, 983
Representation
of a * algebra, 282
automorphic, see Automorphic representation
of a C^{*}-algebra, 275, 281
commuting pair of, 852
cyclic, $276,278,279,735$
decomposable, 1007, 1008
diagonalizable, 1008
direct sum, 281, 734, 738
disjoint, 711, 720, 734-743, 780, 781
equivalent, see Unitary equivalence
essential, 282
factor, $741,742,743$
faithful, 275, 281
function, 263, 264
irreducible, see Irreducible representation
normal, 464
primary, see Representation, factor
quasi-equivalent, see Quasi-equivalence
quasi-subequivalent, 780, 781
reduced atomic, see Reduced atomic representation
\mathbb{R}-essential, 316
universal normal, 458, 459
universal, see Universal representation
Resolution of the identity, 311
bounded, 311, 313
unbounded, $311,316,343,344,345,348$, 350
\mathbb{R}-essential representation, 316
Riemann-Lebesque lemma, 197
Riesz decomposition property, 214
Riesz representation theorem, 53
Riesz's representation theorem, 97
Rodrigues's formula. 97
Russo-Dye theorem, 768

Sakai-Radon-Nikodým theorem, 473, 477
Self-adjoint algebra of operators, 237, 282, 309
Self-adjoint element of a C^{*}-algebra, 237
Self-adjoint function, 344
representing an operator, 348
Self-adjoint operator, 103, 157, 160, 310, 313, $341,345,348,840$
Self-adjoint set, 237
Self-dual cone, 705, 710
Semi-norm, 8, 10, 17, 28
Semi-simple, 228
Separable Banach space, 57, 58, 73, 74
Separable Hilbert space, 94
Separable metric space, 57
Separable topological space, 57
Separating family of linear functionals, 28
Separating family of semi-norms, 17
Separating set of vectors, 336, 337
Separating vector, $336,338,339,380,584$, 590, 591, 689
Separation of convex sets, 4
strict, 4
Separation theorems, 4, 7, 20, 21
Shift
one-sided, 186
two-sided, 186, 227
σ-finite projection, 338
σ-finite von Neumann algebra, 338
σ-ideal, 375, 672
σ-normal homomorphism, 321, 322, 323, 324, $325,359,360,362,364$
σ-normal mapping, 320
Simple C^{*}-algebra, 377, 442, 756, 759, 762, $763,784,790,865,878,879,921$
derivation of, 790
Simple tensor, 135
Singular element (of a Banach algebra), 176, 229
Singular functional, 723, 724, 725, 750, 772, 782
Spatial theory (of von Neumann algebras), 585
Spectral mapping theorem, 181, 207, 241, 273
Spectral multiplicity, 670-689
Spectral projection, 362
Spectral radius, 180, 185, 205
Spectral radius formula, 202, 204

Spectral resolution, 310, 312, 313, 360
of a representation, $315,316,367$
Spectral theorem
algebraic, 239, 270, 310, 349
for a bounded self-adjoint operator, 310 , 313
for an unbounded self-adjoint operator, 345, 348
Spectral value, 178
Spectrum, 178
point spectrum, 357,376
of an unbounded operator, 357
Square root
in a Banach algebra, 233, 234
in a C^{*}-algebra, 248
of a positive operator, 364
Stable subspace, 121
State, 213, 255
algebraically equivalent, 909
automorphic, 906, 907, 909
of a C^{*}-algebra, 255, 739
of the CAR algebra, see CAR algebra
center state, 512, 582
completely additive, 454
of $C(X), 213$
decomposable, 1008
definite, 289, 292
extension of, 234, 266, 296
factor, see Factor state
faithful, $288,616,623,772$
normal, see Normal state
normal product, 818
n-state, 884,885
of a partially ordered vector space with order unit, 213
primary, see Factor state
product, see Product state
of product type a, see CAR algebra
pure, see Pure state
tracial, see Tracial state
of type $\mathrm{I}_{n}, \mathrm{II}_{1}, \mathrm{II}_{\infty}$, III, 780
of uniformly matricial algebras, see Uniformly matricial algebra
vector, see Vector state
State space, 257
vector, 782
Stone's theorem, 187, 282, 367, 381, 612, 657, 658
Stone-Weierstrass theorem, 219, 221, 235
Strong-operator continuity (of functions), 327, 328, 378

Strong-operator topology, 113, 304, 305, 329, 380, 456
Strong-operator * topology, 1044
Strong topology on $i\left(\mathscr{R}_{\sharp}\right), 995$

* Subalgebra, 237

Sublattice, 235
Sublinear functional, 8, 9, 65
Subprojection, 110
Subrepresentation, 734, 735, 736, 737
Subspace
closed, generated by a set, 22
complementary, 11, 63, 88
finite-dimensional, 22, 23, 24
generated by a set, 2
invariant, 121
linear, 2
real-linear, 7
reducing, 121
stable, 121
Summable, 25
Support
of a measure, 219
of a normal state, 454,468
of a positive linear functional on $C(X)$, 219
Support functional, 9, 65

T

Tensor product, see also Product state of abstract C^{*}-algebras, 800, 846-863
algebraic, 139, 846, 849
associativity of, 136, 146, 802, 813, 847
of bounded operators, 145
center of, $800,829,878$
commutant of, 800, 812, 821, 828, 843
of factors, 829
of Hilbert spaces, 125, 135
of * homomorphisms, $805,807,819$
infinite, see Infinite tensor product
of irreducible representations, 848
of * isomorphisms, 805,820
of maximal abelian von Neumann algebras, 829
predual of, 818
of representations, 848
of represented C^{*}-algebras, $800-812$
spatial, 800, 846-850
type of, 800, 812, 829-836
of unbounded operators, $812,836-845$
universal property of, $125,135,139$
of vectors, 135
of von Neumann algebras, 800, 812-845
Tomita's theorem, 472, 591, 607, 625, 631, 638, 640
Topological divisor of zero, 229
Topological group, 789
Topology
bounded weak-operator, 995
coarser (weaker), 29
induced by semi-norms, 17
initial, 13
Jacobson, 792
locally convex, 16,23
norm, 35, 66
strong-operator, 113, 304, 305, 329, 380, 456
ultraweak, 482
weak, see Weak topology
weak *, see Weak * topology
weaker (coarser), 29
weak-operator, $304,305,306,371,456$
Totally disconnected, 222, 374
Trace, 462
center-valued, 504, 508,509,527, 535, 537
faithful, 505
normalized, 289
numerical, 505
Trace class, 543
Trace class operator, 462,543
Trace norm, 545, 895
Trace vector, 436, 471
generating, 471, 472, 501
Tracial state, $505,506,537,575,611,848$, 870
Tracial weight, 504, 537-545, 575
on $\mathscr{B}(\mathscr{H}), 543,576,578$
relatively invariant, 976, 983
Transformation
linear, see Operator; Unbounded operator unitary, 104
Transitivity, 332, 727
of the automorphism group, 904,907
Triangle inequality, 35
Type decomposition (of a von Neumann algebra), 399, 422
of the commutant, 585-590
and direct integrals, 1015,1028
of tensor products, 800, 812, 829-836

\mathbf{U}

UHF algebra, see Uniformly matricial algebra
Ultraweak continuity (criteria for), 720, 722, $725,726,748$
Ultraweak topology, 482
Unbounded operator
adjoint of, 157, 594
affiliated, 342, 344
closable (preclosed), 155, 593
closed, 155, 357, 593
closure of, 155
conjugate-linear, 593
core of, 155
densely defined, 155, 593
domain of, 154, 155
extension of, 155
graph of, 155
invertible, 595
maximal symmetric, 160
multiplication, see Multiplication operator
normal, see Normal operator
positive, 357,840
preclosed (closable), 155, 593
products of, 157, 352
self-adjoint, see Self-adjoint operator
spectrum of, 357
sums of, 157, 352
symmetric, 160
tensor product of, 812, 836-845
von Neumann algebra generated by, 349, 354
Unbounded similarity theory, 625
Uniform boundedness (principle of), 64, 65, 74
Uniform multiplicity
bounded normal operator of, 703
representation of, 685, 688
set of, 673, 685
Uniform structure
in a linear topological space, 14
in a normed space, 35
Uniformly convex Banach space, 67, 161
Uniformly matricial algebra, 759-766, 889-895, 904-920
algebraically equivalent states of, 909
automorphic states of, 907, 909
criterion for, 893
isomorphism classes of, 889, 890, 891, 893
isomorphism invariant for, $890,891,893$

Uniformly matricial algebra (continued)
primary states of, 889,905
product states of, 877, 904
pure states of, 904, 907
quasi-equivalent representations of, 905 , 909
quasi-equivalent states of, 889, 905,909
transitive action of automorphism group, 907
Union of projections, 111
Unit ball, 36
Unit element, 174, 236
Unitary element (of a C^{*}-algebra), 237, 242, 767, 768
exponential, 275, 286, 287, 288, 313, 314, 728, 767, 768
Unitary equivalence
of bounded normal operators, 670, 688, 703
of representations of an abelian C^{*}-algebra, 670-689, 702
of representations of a C^{*}-algebra, 280, 697, 730, 736, 740
of von Neumann algebras, $469,470,661$, 662, 663, 697
Unitary group, 237, 286, 287
Unitary implementation (of * isomorphisms), 469, 661, 663, 664, 671, 696-700
Unitary implementation theorem, 454, 469
Unitary operator, 103, 313
Unitary representation, 282, 367, 710
Unitary transformation, 104
Universal normal representation, 458, 459
Universal representation, 281, 711-727, 735, 744, 746, 766, 768, 770, 772, 773, 777, 779, 780, 790, 793
Unordered sums, 25-28

V

Vector state, 256, 281, 289, 298, 302, 467, 469, 478, 480, 492, 496, 783
Vector state space, 782
von Neumann algebra, see also Factor; 308 abelian, 308, 310, 340-366, 665-670, 700, 701
continuous, 424, 426
countably decomposable, 338, 339, 380, 449
decomposable, $999,1009,1010,1011$
discrete, 424
finite, 411, 447, 449, 517
generated by a bounded normal operator, 700, 701
generated by an unbounded normal operator, 349, 354
infinite, 411
matricial, 895, 896
maximal abelian, see Maximal abelian algebra
normal, 930, 1046
properly infinite, 411, 449
purely infinite, 411
semi-finite, 424, 589, 592, 618, 623, 1045
of type I, 399, 422, 426-432, 447, 584, 588, 589, 660-665, 689, 699, 700
of type $\mathrm{I}_{n}, 422,432,447,589,699$
of type $\mathrm{I}_{\infty}, 447,589,699$
of type II, 422, 588, 589
of type $\mathrm{II}_{1}, 422,447,589$
of type $\mathrm{II}_{\infty}, 422,447,589,976,985,989$
of type III, 411, 422, 447, 588, 589, 937, 976, 985, 989
type decomposition of, see Type decomposition

w

W^{*}-algebra, 498, 500, 794
Weak topology
induced by a family of linear functionals, 28, 29
the weak topology, 30, 43, 47, 66
Weak * topology, 31, 43, 45, 46, 48, 68
Weakly measurable mapping, 1019
Weak-operator topology, 304, 305, 306, 371, 456
Wedge product, 933
Weierstrass approximation theorem, 221
Weight, 486, 490, 500
faithful, 487
normal, 487
semi-finite, 487
tracial, 504, 537-545, 575, 576, 578
Wick-ordered monomial, 934
Wick-ordered product, 795
Wiener's Tauberian theorems, 233
Word, 437
reduced, 437
W^{*}-topology, 31

From the reviews for Volumes I and II:

... these two volumes represent a magnificent achievement. They will be an essential item on every operator algebraist's bookshelves and will surely become the primary source of instruction for research students in von Neumann algebra theory.

—Bulletin of the London Mathematical Society

This book is extremely clear and well written and ideally suited for an introductory course on the subject or for a student who wishes to learn the fundamentals of the classical theory of operator algebras.
—Zentralblatt MATH
This work and Fundamentals of the Theory of Operator Algebras.Volume I, Elementary Theory (Graduate Studies in Mathematics,Volume I5) present an introduction to functional analysis and the initial fundamentals of C^{*} - and von Neumann algebra theory in a form suitable for both intermediate graduate courses and self-study. The authors provide a clear account of the introductory portions of this important and technically difficult subject. Major concepts are sometimes presented from several points of view; the account is leisurely when brevity would compromise clarity. An unusual feature in a text at this level is the extent to which it is self-contained; for example, it introduces all the elementary functional analysis needed. The emphasis is on teaching. Well supplied with exercises, the text assumes only basic measure theory and topology. The book presents the possibility for the design of numerous courses aimed at different audiences.

