Topics in Classical Automorphic Forms

Henryk Iwaniec

Graduate Studies in Mathematics
Volume 17

American Mathematical Society
Selected Titles in This Series

17 Henryk Iwaniec, Topics in classical automorphic forms, 1997
14 Elliott H. Lieb and Michael Loss, Analysis, 1997
12 N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996
11 Jacques Dixmier, Enveloping algebras, 1996
10 Barry Simon, Representations of finite and compact groups, 1996
9 Dino Lorenzini, An invitation to arithmetic geometry, 1996
8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
7 Gerald J. Janusz, Algebraic number fields, second edition, 1996
6 Jens Carsten Jantzen, Lectures on quantum groups, 1996
5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995
4 Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993
1 Ethan Akin, The general topology of dynamical systems, 1993
This page intentionally left blank
Topics in Classical Automorphic Forms
This page intentionally left blank
Topics in Classical Automorphic Forms

Henryk Iwaniec

Graduate Studies in Mathematics
Volume 17

American Mathematical Society
Providence, Rhode Island
Editorial Board
James E. Humphreys (Chair)
David J. Saltman
David Sattinger
Julius L. Shaneson

2000 Mathematics Subject Classification. Primary 32Nxx.

Library of Congress Cataloging-in-Publication Data
Iwaniec, Henryk.
 Topics in classical automorphic forms / Henryk Iwaniec.
 p. cm. — (Graduate studies in mathematics ; v. 17)
 Includes bibliographical references and index.
 1. Automorphic forms. I. Title. II. Series.
QA243.I95 1997
512.7—dc21 97-24332
CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by
e-mail to reprint-permission@ams.org.

© 1997 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2
Contents

Preface xi

Chapter 0. Introduction 1

Chapter 1. The Classical Modular Forms 3
 1.1. Periodic functions 3
 1.2. Elliptic functions 6
 1.3. Modular functions 10
 1.4. The Fourier expansion of Eisenstein series 13
 1.5. The modular group 15
 1.6. The linear space of modular forms 18

Chapter 2. Automorphic Forms in General 23
 2.1. The hyperbolic plane 23
 2.2. The classification of motions 27
 2.3. Discrete groups — Fuchsian groups 29
 2.4. Congruence groups 34
 2.5. Double coset decomposition 37
 2.6. Multiplier systems 40
 2.7. Automorphic forms 42
 2.8. The eta-function and the theta-function 44
Chapter 3. The Eisenstein and the Poincaré Series 47
 3.1. General Poincaré series 47
 3.2. Fourier expansion of Poincaré series 49
 3.3. The Hilbert space of cusp forms 52

Chapter 4. Kloosterman Sums 57
 4.1. General Kloosterman sums 57
 4.2. Kloosterman sums for congruence groups 58
 4.3. The classical Kloosterman sums 59
 4.4. Power-moments of Kloosterman sums 61
 4.5. Sums of Kloosterman sums 65
 4.6. The Salié sums 66

Chapter 5. Bounds for the Fourier Coefficients of Cusp Forms 69
 5.1. General estimates 69
 5.2. Estimates by Kloosterman sums 72
 5.3. Coefficients of cusp forms with theta multiplier 75
 5.4. Linear forms in Fourier coefficients of cusp forms 81
 5.5. Spectral analysis of the diagonal symbol 83

Chapter 6. Hecke Operators 91
 6.1. Introduction 91
 6.2. Hecke operators T_n 92
 6.3. The Hecke operators on periodic functions 94
 6.4. The Hecke operators for the modular group 98
 6.5. The Hecke operators with a character 101
 6.6. An overview of newforms 107
 6.7. Hecke eigencuspforms for a primitive character 108
 6.8. Final remarks 118

Chapter 7. Automorphic L-functions 119
 7.1. Introduction 119
 7.2. The Hecke L-functions 120
 7.3. Twisting automorphic forms and L-functions 124
 7.4. Converse theorems 126
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Cusp Forms Associated with Elliptic Curves</td>
<td>133</td>
</tr>
<tr>
<td>8.1</td>
<td>The Hasse-Weil L-function</td>
<td>133</td>
</tr>
<tr>
<td>8.2</td>
<td>Elliptic curves E_r</td>
<td>136</td>
</tr>
<tr>
<td>8.3</td>
<td>Computing $\lambda(p)$</td>
<td>138</td>
</tr>
<tr>
<td>8.4</td>
<td>A Hecke Grossencharacter</td>
<td>141</td>
</tr>
<tr>
<td>8.5</td>
<td>A theta series</td>
<td>142</td>
</tr>
<tr>
<td>8.6</td>
<td>The automorphy of f</td>
<td>143</td>
</tr>
<tr>
<td>9</td>
<td>Spherical Functions</td>
<td>147</td>
</tr>
<tr>
<td>9.1</td>
<td>Positive definite quadratic forms</td>
<td>147</td>
</tr>
<tr>
<td>9.2</td>
<td>Space spherical functions</td>
<td>150</td>
</tr>
<tr>
<td>9.3</td>
<td>The spherical functions reconsidered</td>
<td>155</td>
</tr>
<tr>
<td>9.4</td>
<td>Harmonic analysis on the sphere</td>
<td>159</td>
</tr>
<tr>
<td>10</td>
<td>Theta Functions</td>
<td>165</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>10.2</td>
<td>An inversion formula</td>
<td>166</td>
</tr>
<tr>
<td>10.3</td>
<td>The congruent theta functions</td>
<td>168</td>
</tr>
<tr>
<td>10.4</td>
<td>The automorphy of theta functions</td>
<td>175</td>
</tr>
<tr>
<td>10.5</td>
<td>The standard theta function</td>
<td>176</td>
</tr>
<tr>
<td>11</td>
<td>Representations by Quadratic Forms</td>
<td>179</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>179</td>
</tr>
<tr>
<td>11.2</td>
<td>Siegel’s mass formula</td>
<td>180</td>
</tr>
<tr>
<td>11.3</td>
<td>Representations by Eisenstein series and cusp forms</td>
<td>185</td>
</tr>
<tr>
<td>11.4</td>
<td>The circle method after Kloosterman</td>
<td>190</td>
</tr>
<tr>
<td>11.5</td>
<td>The singular series</td>
<td>196</td>
</tr>
<tr>
<td>11.6</td>
<td>Equidistribution of integral points on ellipsoids</td>
<td>199</td>
</tr>
<tr>
<td>12</td>
<td>Automorphic Forms Associated with Number Fields</td>
<td>203</td>
</tr>
<tr>
<td>12.1</td>
<td>Automorphic forms attached to Dirichlet L-functions</td>
<td>203</td>
</tr>
<tr>
<td>12.2</td>
<td>Hecke L-functions with Grossencharacters</td>
<td>206</td>
</tr>
<tr>
<td>12.3</td>
<td>Automorphic forms associated with quadratic fields</td>
<td>211</td>
</tr>
<tr>
<td>12.4</td>
<td>Class group L-functions reconsidered</td>
<td>215</td>
</tr>
<tr>
<td>12.5</td>
<td>L-functions for genus characters</td>
<td>219</td>
</tr>
<tr>
<td>12.6</td>
<td>Automorphic forms of weight one</td>
<td>224</td>
</tr>
</tbody>
</table>
Chapter 13. Convolution L-functions 231
 13.1. Introduction 231
 13.2. Rankin–Selberg integrals 232
 13.3. Selberg’s theory of Eisenstein series 235
 13.4. Statement of general results 240
 13.5. The scattering matrix for $\Gamma_0(N)$ 240
 13.6. Functional equations for the convolution L-functions 243
 13.7. Metaplectic Eisenstein series 246
 13.8. Symmetric power L-functions 248

Bibliography 255

Index 257
Preface

Automorphic forms are present in almost every area of modern number theory. They also appear in other areas of mathematics and in physics. I have lectured on these topics many times at Rutgers University with only slight overlapping of content, and I still have new material to teach that is important. It is indeed a vast territory which cannot be grasped by any one person. While research publications on automorphic forms are rapidly increasing in quantity and quality, the demand for textbooks, particularly on the graduate level, is also growing. There are fine books on this subject such as [Lan], [Miy], [Sh2], but still more are needed, especially those which favor analytic methods.

The present book is based on my lecture notes (almost verbatim except for Section 5.5) from a graduate course which I delivered in the Fall of 1994 and in the Spring of 1995 at Rutgers. The course was formulated, as the title implies, to acquaint our new students with the subject matter from various perspectives. Thus I have not followed direct or traditional paths, but rather I have frequently ventured into areas where different ideas and methods mix and interact. To cover a lot in a limited time, some material is necessarily presented as a survey. For example, the numerous connections of automorphic forms with L-functions of number fields are discussed in Chapter 12 without details. However we do provide complete proofs of the most basic results in the earlier sections.

An experienced reader will find some of our arguments to be nonstandard. It would be pointless to argue which approach is better, since our choice was made simply for the purpose of showing different possibilities. For example, our presentation of the theory of Hecke operators in Chapter 6
is completed for primitive characters quickly by establishing the multiplicity-one principle using Gauss and Ramanujan sums instead of lengthy considerations of inner products. Of course, this is only a special case (the whole space is spanned by newforms), but it is an important case.

We pay great attention to detail in the subjects of theta functions and representations by quadratic forms (Chapters 10 and 11) because these are not sufficiently covered in textbooks, despite having a long history of research.

Because the original notes where written as the course was progressing, inevitably some redundancy has occurred. Nevertheless we have decided not to eliminate this redundancy, because it offers the option of selective reading. For example, our account of the Shimura-Taniyama conjecture for special curves (the congruent number curves) is self-contained in Chapter 8, even though one could instead appeal to the later chapters on general theta functions.

Sergei Gelfand, Peter Sarnak and others have convinced me that these lecture notes might be useful for a large number of graduate students, and they have urged me to publish them. I would like to thank them for their encouragement. I am grateful to W. A. Gonzalez, C. L. Hamer and C. J. Moz-zochi for helping me in the technical preparation of the original notes. Special thanks are expressed to T. Khovanova for corrections and improvements which she contributed when editing these notes for publication.

Henryk Iwaniec
This page intentionally left blank
Bibliography

Bibliography

Index

absolute inner product, 6.5
adjoint operator, 6.4
ambiguous class, 12.5
angle of a Kloosterman sum, 4.4
Artin conjecture, 12.6
Artin L-function, 12.6
automorphic form, 2.7
automorph of a quadratic form, 11.2
Bernoulli numbers, 1.3
B-group of integral translations, 2.5
chart, 2.3
circle method of Kloosterman, 11.4
class group, 12.2
class group L-function, 12.4
complete L-function, 7.2
complex conjugation operator K, 6.7
congruence group, 2.4
congruent number, 8.2
congruent theta function, 10.1
conjugacy class, 2.2
consistency condition, 2.6
converse theorem, 7.4
convolution L-functions, 13.1
criterion for cusp forms, 7.4
cusp, 2.3
cusp form, 2.7
cusp forms for the modular group, 1.6
cuspidal zone, 2.3
decomposition group, 12.6
Dedekind sum, 2.8
Dedekind zeta-function, 12.2
deformation factor, 2.1
determinant of a quadratic form, 11.2
diagonal symbol, 5.3
different of a field, 12.2
differential operator of Euler, 9.2
Dirichlet class number formula, 11.2
discontinuous group, 2.3
discrete group, 2.3
discriminant function, 1.2
discriminant of a field, 12.2
discriminant of a quadratic form, 11.2
discriminant of an elliptic curve, 8.1
double cosets, 2.5
eigenvalue η of W, 6.7
Eisenstein series $E_2(z, Q)$, 11.3
Eisenstein series for the modular group, 1.3
Eisenstein series of weight zero, 13.2
Eisenstein series with a multiplier, 3.2
ellipsoid K_A, 9.1
elliptic curve, 8.1
elliptic function, 1.2
elliptic, hyperbolic, parabolic motions, 2.2
equidistribution, 11.6
equivalence class of forms, 11.2
equivalent quadratic forms, 11.2
eta-function, 2.8
Euler product for Hecke L-function, 6.8
even quadratic form $A[x]$, 10.1
factor system of weight k, 2.6
Fourier coefficient at a cusp, 2.7
Fourier expansion at a cusp, 2.7
Fourier transform, 1.1
fractional part, 1.1
Fricke involution W, 6.7
Frobenius automorphism, 12.6
Frobenius conjugacy class, 12.6
Fuchsian group, 2.3
Fuchsian group of the first kind, 2.3
functional equation for Hecke L-function, 7.2
fundamental domain, 2.3
fundamental units, 12.2
gamma function, 7.1
Gauss sum, 4.3
Gauss sum $W(\xi)$, 12.2
generating function of Poincaré series, 3.1
genus characters, 12.5
genus group, 12.5
genus mass, 11.2
genus of quadratic forms, 11.2
geodesics, 2.1
Grossencharacter, 12.2
group of fractional ideals, 12.2
harmonic function, 9.2
harmonic polynomial, 9.2
Hasse-Weil L-function, 8.1
Hecke congruence group, 2.4
Hecke eigencuspform, 6.6
Hecke eigenform, 6.4
Hecke L-function, 7.2
Hecke operators, 6.2
Hilbert space of cusp forms, 3.3
homogenous space \mathbb{R}^n, 9.3
hyperbolic isometries, 2.1
hyperbolic measure, 2.1
hyperbolic plane, 2.1
inertia group, 12.6
inner product, 3.3
integral basis, 12.2
integral representation for L-function, 7.2
isometric circle, 2.1
isotropic vector, 9.1
Jacobi function $\Theta(z, v)$, 10.1
Jacobi inversion formula, 10.2
Jacobi sum, 8.3
Jacobi symbol extended, 2.8
Jacobian of a diffeomorphism, 9.1
j-function, 2.1
j-invariant function, 1.3
Kloosterman sum with a multiplier, 3.2
Kronecker symbol, 12.3
Laplace operator Δ, 13.2
Laplace operator Δ_A, 9.1
lattice, 1.2
Legendre function $P_n^m(z)$, 9.4
Legendre polynomial $P_n(z)$, 9.4
level of a congruence group, 2.4
L-function with Grossencharacter, 12.2
linear fractional transformations, 1.3
local densities $\delta_p(n, Q)$, $\delta_\infty(n, Q)$, 11.2
metaplectic Eisenstein series, 13.7
modular function of weight k, 1.3
modular group, 1.3
multiplicity-one principle, 6.6
multiplier system of weight k, 2.6

Neumann series, 5.5
newform, 6.6
normal operator, 6.4
normal polygon, 2.3
number field, 12.2
orbit of a point, 2.3
orthogonal group $O(n)$, 9.3
principal genus, 11.2, 12.5
principal ideals, 12.2
quadratic form of level one, 11.3
quadratic form of Liouville type, 11.3
quadratic form of Mordell type, 11.3
quadratic form of Weil type, 11.3
quadratic form of Weil-Eichler type, 11.3
quaternion group, 2.3
Ramanujan sum, 6.7
Ramanujan τ-function, 1.4
ramified primes, 12.2
Rankin-Selberg integrals, 13.1
ray class group, 12.2
real and complex integrals, 12.2
regulator, 12.2
representation number $r(n, Q)$, 11.2
residue class field, 12.6
Riemann surface, 2.3
Riemann zeta-function, 7.1
ring of integers, 12.2
root number, 8.1
Salié sum, 4.6
Sato-Tate measure, 4.4
scaling matrix, 2.3
scattering matrix, 13.2
Shimura-Taniyama conjecture, 8.1
Siegel mass formula, 11.2
sifting operator S_q, 6.7
signature, 2.3
singular cusp, 2.7
singular series, 11.5
slash operator, 2.6
space of modular forms of weight k, 1.6
special orthogonal group $SO(n)$, 9.3
sphere S^{m-1}, 9.3
spherical function, 9.2
spherical function $Y(\theta, \varphi)$, 9.4
spherical polar coordinates, 9.3
stability group, 2.3
standard fundamental polygon for the modular group, 1.5
standard polygon, 2.3
Stokes' theorem, 9.2
surface Laplacian Δ^*, 9.3
symmetric power L-function, 13.8
symmetric square L-function, 13.8
Tchebyshev polynomials, 4.4
theta function $\Theta(z)$, 10.1
theta function $\Theta_\pi(z)$, 10.5
theta multiplier, 2.8
theta-function, 2.8
total mass, 11.2
trace of motion, 2.2
tridiagonal matrix, 10.4
twisted automorphic form, 7.3
unimodular transformation, 1.3
unit group, 12.2
upper half-plane, 1.3

volume element, 9.1

Weierstrass equation, 1.2
Weierstrass equation for an elliptic curve, 8.1
Weierstrass \(\wp \)-function, 1.2
Weil’s bound for Kloosterman sums, 4.3
Whittaker function, 13.7
width of a cusp, 2.4

zonal spherical function, 9.4
The main purpose of the book is to present the reader with various perspectives of the theory of automorphic forms. In addition to detailed and often nonstandard exposition of familiar topics of the theory, with a particular emphasis on analytic aspects, special attention is paid to such subjects as theta-functions and representations of integers by quadratic forms.