Selected Titles in This Series

21 John B. Conway, A course in operator theory, 2000
20 Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
19 Lawrence C. Evans, Partial differential equations, 1998
18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997
17 Henryk Iwaniec, Topics in classical automorphic forms, 1997
14 Elliott H. Lieb and Michael Loss, Analysis, 1997
12 N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996
11 Jacques Dixmier, Enveloping algebras, 1996 Printing
10 Barry Simon, Representations of finite and compact groups, 1996
9 Gerald J. Janusz, Algebraic number fields, second edition, 1996
8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
7 Dino Lorenzini, An invitation to arithmetic geometry, 1996
6 Jens Carsten Jantzen, Lectures on quantum groups, 1996
5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995
4 Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993
1 Ethan Akin, The general topology of dynamical systems, 1993
A Course in Operator Theory
This page intentionally left blank
A Course in Operator Theory

John B. Conway

Graduate Studies in Mathematics
Volume 21

American Mathematical Society
Providence, Rhode Island
For Ann, my source for happiness
Contents

Preface xiii

Chapter 1. Introduction to C*-Algebras 1
 §1. Definition and examples 1
 §2. Abelian C*-algebras and the Functional Calculus 7
 §3. The positive elements in a C*-algebra 12
 §4. Approximate identities 17
 §5. Ideals in a C*-algebra 21
 §6. Representations of a C*-algebra 24
 §7. Positive linear functionals and the GNS construction 29

Chapter 2. Normal Operators 37
 §8. Some topologies on $\mathcal{B}(\mathcal{H})$ 37
 §9. Spectral measures 41
 §10. The Spectral Theorem 47
 §11. Star-cyclic normal operators 51
 §12. The commutant 55
 §13. Von Neumann algebras 60
 §15. The functional calculus for normal operators 65

Chapter 3. Compact Operators 71
 §16. C*-algebras of compact operators 71
§17. Ideals of operators 82
§18. Trace class and Hilbert-Schmidt operators 86
§19. The dual spaces of the compact operators and the trace class 93
§20. The weak-star topology 95
§21. Inflation and the topologies 99

Chapter 4. Some Non-Normal Operators 105
§22. Algebras and lattices 105
§23. Isometries 111
§24. Unilateral and bilateral shifts 118
§25. Some results on Hardy spaces 126
§26. The functional calculus for the unilateral shift 132
§27. Weighted shifts 136
§28. The Volterra operator 143
§29. Bergman operators 147
§30. Subnormal operators 157
§31. Essentially normal operators 170

Chapter 5. More on C*-Algebras 181
§32. Irreducible representations 181
§33. Positive maps 187
§34. Completely positive maps 190
§35. An application: Spectral sets and the Sz.-Nagy Dilation Theorem 198
§36. Quasicentral approximate identities 204

Chapter 6. Compact Perturbations 207
§37. Behavior of the spectrum under a compact perturbation 207
§38. B_p perturbations of hermitian operators 211
§39. The Weyl-von Neumann-Berg Theorem 214
§40. Voiculescu’s Theorem 220
§41. Approximately equivalent representations 229
§42. Some applications 236

Chapter 7. Introduction to Von Neumann Algebras 241
§43. Elementary properties and examples 242
§44. The Kaplansky Density Theorem 250
This page intentionally left blank
Preface

The genesis of this book is a pair of courses I taught, one at Indiana University and another at the University of Tennessee. Both of these followed a standard two semester course in functional analysis, though this book is written with only a one semester course in functional analysis as its prerequisite. The aim is to cover with varying depth a variety of subjects that are central to operator theory. Many of these topics have treatises devoted to their explication, and some care has been taken to alert the reader to additional sources for deeper study. So you can think of this book as a sequel to a basic functional analysis course or as a foundation for the study of operator theory.

The prerequisites for this book are a bit fuzzy. The reader is assumed to know fundamental functional analysis. Specifically it will be assumed that the reader knows the material in the first seven chapters of [ACFA]. (Repeated reference to [ACFA] is made in this text and it is referenced in this way rather than the form of other references.) The desire is to make the book as accessible as possible. It is incumbent on me to avoid the arrogance of assuming or requiring familiarity with one of my previous books. But I have to set the standard somewhere, so I will assume the reader knows what I believe to be the material common to all basic courses in functional analysis: the three basic principles of Banach spaces, the definition and elementary properties of locally convex spaces, the foundations of Banach algebras, including the Riesz functional calculus, and the rudiments of operator theory, including the spectral theory of compact operators. This constitutes the first seven chapters of [ACFA].

This book starts with an introduction to C^*-algebras followed by a chapter on normal operators that culminates with the Spectral Theorem and the functional calculus. There is considerable overlap between these first two chapters and Chapters VIII and IX in [ACFA]. If the reader really knows these first nine chapters of [ACFA], he/she will be able to fly through the first two chapters here. Such a reader could realistically begin reading Chapter 3 of the present book. There is,
however, material in the first two chapters of this book, specifically §4, that does not appear in [ACFA].

Chapter 3 examines compact operators. Again there is some overlap with [ACFA], but most of this material does not appear there. Chapter 4 begins the study of non-normal operators, which has seen so much significant progress in recent times. In particular the reader is introduced to some rather deep connections between operator theory and analytic functions. This is a hallmark of much that has been done in recent years. The Fredholm index appears here. This is not part of the stated prerequisites and is the subject of Chapter XI in [ACFA]. On the other hand, the need for the index is not that substantial that the reader should be dismayed by encountering it. Indeed, Fredholm theory is discussed later in §37, where the reader will see statements of the pertinent results from this topic, some proofs, and references to [ACFA] for the omitted proofs. The reader who feels some insecurity on this point may examine §37 during the study of Chapter 4.

Chapter 5 returns to the theory of C*-algebras and examines irreducible representations as well as completely positive maps. As an application, a proof is presented of the Sz.-Nagy Dilation Theorem, which is the basis for a large portion of modern operator theory. The chapter closes with the existence of a quasicentral approximate identity in a C*-algebra. This is used in the following chapter.

Chapter 6 explores the general topic of compact perturbations. After an abbreviated treatment of Fredholm theory, the Weyl–von Neumann–Berg Theorem is proved as is Voiculescu’s Theorem on the approximation of representations of a separable C*-algebra. The chapter concludes with some applications of these ideas to single operators.

Chapter 7 is a rather extended introduction to von Neumann algebras. The classification scheme is obtained as is complete information on Type I algebras. This is used to recapture the multiplicity theory of normal operators. The chapter includes a proof that a von Neumann algebra is finite if and only if it has a faithful, centered-valued trace.

Chapter 8, the last chapter, gives an introduction to reflexive subspaces of operators. Here the word “reflexive” is used differently from its meaning in Banach space theory. Reflexive subspaces are spaces of operators that are determined by their invariant subspaces. An operator is reflexive if and only if the weakly closed algebra it generates is a reflexive subspace. This, together with the related notion of a hyperreflexive subspace, is a still developing area of research. In many ways this subject is one of the more successful episodes in the modern exploration of asymmetric algebras.

There are many topics in operator theory that are not included here. Given the vastness of the subject, that is no surprise. Many important topics have been omitted because good treatments already exist in the literature. For example, nothing is in this book on the Brown–Douglas–Fillmore theory, which would have been a natural sequel to the chapter on compact perturbations. But whatever approach I would have used would not have differed in any substantial way from that in Davidson [1996]. Also the theory of dual algebras is not presented, but this is due more to space and time limitations. So much has happened since Bercovici, Foias, and Pearcy [1985] that the area is ripe for a further exposition. Such an
exposition would have almost doubled the size of the present book. This list of omissions could continue.

Like all books, especially more advanced ones, the material is not linearly dependent. The reader can skip around, especially after the first three chapters. For example, Chapter 8 on reflexivity does not depend on the preceding three chapters in any substantial way. Developing a dependency chart was a temptation, but instead I'll encourage readers to skip around, covering the topics that interest them and filling in the gaps as necessary.

One final caveat. Be aware that I am a bit schizophrenic about separability. On the one hand, I don't wish to present anything in that setting as though it depends on the assumption of separability. On the other hand, in Hilbert space this is where the interest lies. There are also parts of operator theory that really only hold in a reasonable way when the underlying Hilbert space is separable. There are others that are connected to measure theory and I did not want to get into discussing non-separable measure spaces. So I start out with no assumption of separability, but occasionally giving a result that does depend on this. Later, in §51, all Hilbert spaces are assumed to be separable for the remainder of the book.

Throughout the text I give references for further study. I frequently also will cite the source of some, but not all, of the results. I have confidence in the attributions I give, but I certainly am not infallible. I'll maintain a list of corrections and updates on this book linked to my web page (http://www.math.utk.edu/~conway), and any corrections or changes in attribution will be found there as well in future printings should they come to be.

I have many people to thank for their assistance during the preparation of this book. My former student Nathan Feldman read various editions of the manuscript and made many helpful suggestions. Similar help came from my current students Gabriel Prajitura and Sherwin Kouchekian, who, with Nathan, were in one of the courses that eventually led to this book. In the final analysis, of course, I am the one who is responsible for any errors.
This page intentionally left blank
The numbers appearing in parentheses following each entry give the page number(s) on which reference is made to this entry.

J Agler [1985], “Rational dilation on an annulus,” *Ann Math* 121 537–563. (197, 202)

W B Arveson [1976], An Invitation to C*-algebras, Springer–Verlag, New York. (181)

S Axler, J B Conway, and G McDonald [1982], “Toeplitz operators on Bergman spaces,” *Canadian Math J* **34** 466–483. (148, 149)

H Bercovici [1988], *Operator Theory and Arithmetic in H∞*, Amer Math Soc, Providence. (146, 343)

H Bercovici [preprint], (344)

H Bercovici, C Foias, and C Pearcy [1985], *Dual algebras with applications to invariant subspaces and dilation theory,* *CBMS Lecture Notes* **56**, Amer Math Soc, Providence. (97, 154, 335, 352)

C A Berger and B I Shaw [1973a], “Selfcommutators of multicyclic hyponormal operators are trace class,” *Bull Amer Math Soc* 79 1193–1199. (178)

C A Berger and B I Shaw [preprint], “Hyponormality: its analytic consequences.” (178)

L de Branges and J Rovnyak [1966b], *Square summable power series*, Holt, Reinhart and Winston, New York. (125)

E Christensen [1977b], “Perturbations of operator algebras, II,” *Indiana U Math J* 26 891–904. (347)
J B Conway [1985], “Arranging the disposition of the spectrum,” *Proc Royal Irish Acad* 85A, 139–142. (211)
J B Conway and P Y Wu [1977], “The splitting of $\mathcal{A}(T_1 \oplus T_2)$ and related questions,” *Indiana Univ Math J* 26 41–56. (108)

J Dixmier [1949], “Les operateurs permutables à l’opérateur integral,” \textit{Portugal Math} \textbf{8} 73–84. (143)

W F Donoghue [1957], “The lattice of invariant subspaces of a quasi-nilpotent completely continuous transformation,” \textit{Pacific J Math} \textbf{7} 1031–1035. (140, 143)

O J Farrell [1934], “On approximation to an analytic function by polynomials,” \textit{Bull Amer Math Soc} \textbf{40} 908–914. (151)

H Hedenmalm [1993], “An invariant subspace of the Bergman space having
the codimension two property,” *J Reine Angew Math* 443 1–9. (155)

H Hedenmalm, B Korenblum, and K Zhu [1996], “Beurling type invariant
(155)

H Hedenmalm, S Richter, and K Seip [1996], “Interpolating sequences and
invariant subspaces of given index in Bergman spaces,” *J Reine Angew Math*
477 13–30. (155)

H Helson and D Lowdenslager [1958], “Prediction theory and Fourier series

K Hoffman [1962], *Banach Spaces of Analytic Functions*, Prentice-Hall, Englewood
Cliffs. (124)

University. (153)

B E Johnson [1979], “Characterisation and norms of derivations on von
Neumann algebras,” Lecture Notes in Math, 725 228–236, Springer-Verlag, New
York. (347)

B E Johnson and S K Parrott [1972], “Operators commuting with a von Neu-
mann algebra modulo the set of compact operators,” *J Functional Analysis*
11 39–61. (239)

R V Kadison [1956], “Operator algebras with a faithful weakly-closed rep-
resentation,” *Annals Math* 64 175–181. (256)

R V Kadison [1957], “Irreducible operator algebras,” *Proc Nat Acad Sci
USA* 43 273–276. (186)

R V Kadison [1985], “The von Neumann algebra characterization theorems,”
Exp Math 3 193–227. (256)

I. Stability of type,” *Amer J Math* 94 38–54. (347)

R V Kadison and J R Ringrose [1983], *Fundamentals of the Theory of Op-

R V Kadison and J R Ringrose [1986], *Fundamentals of the Theory of Op-

G K Kalisch [1957], “On similarity, reducing manifolds, and unitary equiva-
ce of certain Volterra operators,” *Ann Math* 66 481–494. (143)

T Kato [1957], “Perturbation of continuous spectra by trace class operators,”
Proc Japan Acad 33 260–264. (212)

A I Markusevic [1934], "Conformal mapping of regions with variable boundary and applications to the approximation of analytic functions by polynomials," Dissertation, Moskow. (151)

R Mercer [1986], "Dense $G_δ$'s containing orthonormal bases," *Proc Amer Math Soc* **97** 449–452. (64)

N K Nikolskii [1965], “Invariant subspaces of certain completely continuous operators,” *Vestnik Leningrad Univ (Math 1)* 7 68–77. (140)

S Popa [1987], “The commutant modulo the set of compact operators of a von Neumann algebra,” *J Functional Anal* 71 393–408. (239)

C R Putnam, [1970], “An inequality for the area of hyponormal spectra,”

H Radjavi and P Rosenthal [1969], “On invariant subspaces and reflexive

H Radjavi and P Rosenthal [1973], *Invariant subspaces*, Springer–Verlag,
Berlin. (58, 106, 146)

J R Ringrose [1971a], *Compact Non-self-adjoint Operators*, Van Nostrand-
Reinhold, New York. (93)

J R Ringrose [1971b], “Lectures on the trace in a finite von-Neumann
algebra,” Springer–Verlag Lecture Notes vol 247. (311, 314)

J R Robertson [1965], “On wandering subspaces for unitary operators,” *Proc
Amer Math Soc* **16** 233–236. (116)

M Rosenblum [1957], “Perturbation of the continuous spectrum and unitary

Math Soc* **33** 376–377. (58)

M Rosenblum and J Rovnyak [1985], *Hardy Classes and Operator Theory*,
Oxford Univ Press, New York. (125)

S Rosenoer [1982], “Distance estimates for von Neumann algebras,” *Proc
Amer Math Soc* **86** 248–252. (347)

L A Rubel and A L Shields [1964], “Bounded approximation by polynomials,”
Acta Math **112** 145–162. (152)

(60, 241, 307, 344)

D Sarason [1965a], “On spectral sets having connected complements,” *Acta
Sci Math* (Szeged) **26** 289–299. (201)

D Sarason [1965b], “A remark on the Volterra operator,” *J Math Anal Appl*
12 244–246. (143, 146)

D Sarason [1966], “Invariant subspaces and unstarred operator algebras,”
Pacific J Math **17** 511–517. (343)

D Sarason [1967], “Generalized interpolation in H^∞, ” *Trans Amer Math
Soc* **127** 179–203. (147)

D Sarason [1972], “Weak-star density of polynomials,” *J Reine Angew Math*
252 1–15. (110)

R Schatten [1960], *Norm Ideals of Completely Continuous Operators*, Springer–Verlag, Berlin. (93)

M Schecter [1965], “Invariance of the essential spectrum,” *Bull Amer Math
Bibliography

D Voiculescu [1981], “Some results on norm-ideal perturbations of Hilbert space operators, II” *J Operator Theory* 5 77–100. (217)

H Weyl [1909], “Über beschränkte quadratischen Formen deren Differenz vollstetig ist,” *Rend Circ Mat Palermo* 27 373–392. (212)

S Wright [1989], *Uniqueness of the injective III_1 factor*, Springer–Verlag Lecture Notes 1413. (305)

K Zhu [1990], *Operator theory in function spaces*, Dekker, New York. (155)
Index

abelian C*-algebra, 7
abelian projection, 272, 275
abelian von Neumann algebra, 291, 342
absolute value, 15
additivity of equivalence, 267
adjoining an identity, 3
algebraic homomorphism, 5
all state representation, 34
analytic Toeplitz operator, 121
approximate identity, 18, 204
approximate point spectrum, 116
approximately equivalent representations, 229
approximately unitarily equivalent, 218
Arveson's Extension Theorem, 203
attached space, 39
Banach limit, 36, 345
Bergman operator, 147, 178, 198
Beurling's Theorem, 123
bilateral shift, 113
bilateral weighted shift, 137, 157
Blaschke product, 124
boundedly mutually absolutely continuous, 52
$C(X)$, 2, 10, 11, 12, 23, 30, 45, 189, 192, 194
$C_0(X)$, 2
Carathéodory region, 149
Cauchy transform, 173
Cauchy–Schwarz–Bunyakowski Inequality, 30
central cover, 245
central support, 245
commutant, 55
compact operator, 50, 71, 85, 93
Comparison Theorem, 268
completely bounded map, 192
completely positive map, 191
continuous algebra, 273, 283, 302
continuous projection, 273
convolution, 248
cornucopia, 150
C*-algebra, 1
C*-equivalent, 239
cyclic operator, 164
cyclic representation, 26
cyclic vector, 26, 165
d-fold inflation, 25
d-reflexive, 340
degenerate algebra, 71
decomposable measure space, 54
derivation, 344
diagonal algebra, 214
diagonalizable, 55
dilation, 196
direct sum of representations, 25
Dirichlet algebra, 202
discrete algebra, 272
discrete projection, 273
Donoghue shift, 140
double commutant, 55, 239
Double Commutant Theorem, 56
Douglas's Range Inclusion Theorem, 82
dual algebra, 97
dual algebra homomorphism, 97
dual algebra isomorphism, 97
equivalent projections, 265
equivalent representations, 25
essential boundary point, 148
essential spectrum, 116, 209
essentially normal, 170
extreme point, 145, 185, 306
F and M Riesz Theorem, 110, 127
factor, 249
faithful projection, 282
finite algebra, 270, 315, 316
finite projection, 270
Fourier transform, 119
Fredholm Alternative, 83
Fredholm index, 118, 139, 148, 170, 209
Fredholm operator, 207
Fuglede–Putnam Theorem, 58
functional calculus, 8, 162, 153, 166
functional calculus for a normal operator, 69
Gelfand transform, 7
Glimm’s Lemma, 221
GNS Construction, 32
greatest common divisor, 131
Hardy spaces, 119
Hartogs–Rosenthal Theorem, 175
hereditary subalgebra, 21, 262
Herglotz’s Theorem, 144
hermitian, 4
hermitian functional, 33, 308
Hilbert–Schmidt operator, 86, 92, 147
homogeneous algebra, 285
homomorphism, 2
**-homomorphism, 2, 5, 23
hyperreflexive, 328
hyponormal, 158, 169
ideal, 262
ideal (in C*-algebra), 21
ideal (in von Neumann algebra), 262
ideal (in B(H)), 83
index of nilpotency, 324
infinite algebra, 270
infinite projection, 270, 280
inflation, 25, 99
inner function, 123
involution, 1
irreducible algebra, 73
irreducible representation, 46, 75, 181, 184, 236
isometry, 112, 114, 118, 253
isomorphism, 2
**-isomorphism, 2, 268
join, 105
Jordan canonical form, 107, 324
Jordan decomposition of functional, 35
Kaplansky Density Theorem, 251
Krein–Smulian Theorem, 96, 156
$L^\infty(\mu)$, 8, 10, 11, 57, 63, 97, 263, 292
lattice, 105
lattice of invariant subspaces, 106
least common multiple, 131
left essential spectrum, 116, 209
left Fredholm operator, 207
left spectrum, 116
M_ϕ, 10, 49, 53
maximal abelian von Neumann algebra, 63
maximal ideal space, 7
measurable (vector-valued function), 296
measurable (operator-valued function), 294
meet, 105
minimal normal extension, 163
minimal projection, 73
minimal unitary dilation, 203
multiplicity, 290
multiplicity function, 79, 294
mutually absolutely continuous, 52
n-th root, 13
Sz.-Nagy Dilation Theorem, 200
negative part, 13
non-degenerate representation, 27
normal, 4
normal functional, 259
normal map, 258, 261
normal operator, 48, 51, 53, 55, 58, 69, 293, 342, 347
normal spectrum, 164
operator system, 187
operator-valued measure, 195
orthogonal functionals, 308
outer function, 127
partial isometry, 15, 16, 306
Pedersen Up-Down Theorem, 254
polar decomposition, 15, 17, 50
polynomially convex, 109, 156
polynomially convex hull, 109
positive element, 12, 13
positive element of $B(H)$, 14
positive linear functional, 29, 30
positive map, 187
positive part, 13
preannihilator, 98
properly infinite, 280, 302
property A_1, 335
property $A_1(r)$, 335
pure isometry, 113
pure state, 183, 185
purely infinite, 275
Putnam’s Inequality, 176
quasicentral approximate identity, 205
quasinormal, 169
Radon–Nikodym Theorem, 182
rationally cyclic operator, 165
Rat (K) cyclic vector, 165
reflexive, 319
relatively dominates, 265
removable boundary point, 148
representation, 24, 181
reproducing kernel, 121
Riesz Functional Calculus, 8
right essential spectrum, 116, 209
right Fredholm operator, 207
scalar-valued spectral measure, 66, 69
Schatten p-class, 93
Schröder–Bernstein, 269
semi-Fredholm, 207
semi-invariant subspace, 201
separable measure space, 54
separating vector, 62
sequential approximate identity, 18
SOT (strong operator topology), 37, 40, 251
spatially isomorphic, 62
Spectral Mapping Theorem, 11, 69
spectral measure, 41
spectral set, 200
Spectral Theorem, 47, 50
spectrum of a C*-algebra, 79
star-cyclic, 51
*-homomorphism, 2, 5, 23
*-isomorphism, 2, 261
state, 29
state space, 29
Stinespring's Theorem, 194
Stone–Čech compactification, 265
strong operator topology (SOT), 37, 40, 251
strong* topology, 41
subequivalent, 265
subnormal operator, 157, 176, 177, 197, 198
subrepresentation, 26, 75
support (of a functional), 308
support (of a measure), 9
The Gelfand–Naimark–Segal Construction, 31
Titchmarsh Convolution Theorem, 146
Toeplitz operator, 125, 322, 343
trace, 89, 286, 311
trace class, 86, 93, 94, 99, 101, 353
trace norm, 86
transitive, 353
trigonometric polynomial, 119
Type (of a von Neumann algebra), 275, 303
Type I factor, 284
Type I von Neumann algebra, 262, 283, 288, 290, 291
Type II₁ factor, 301
uniform infinite multiplicity, 339
unilateral shift, 40, 111, 120, 178, 198, 321
unilateral weighted shift, 136
unital, 1
unitary, 4
unitary operator, 50
universal representation, 34
Up–Down Theorem, 254
Voiculescu's Theorem, 220
Volterra operator, 143
von Neumann algebra, 60, 247, 353, 358
von Neumann's Inequality, 200
von Neumann–Wold decomposition, 112
weak operator topology (WOT), 37, 351
weak* topology, 95, 102, 351
weakly approximately equivalent representations, 232
weighted shift, 155, 169
Weyl spectrum, 210
Weyl–von Neumann Theorem, 211
Weyl–von Neumann–Berg Theorem, 216
WOT (weak operator topology), 37, 351
This page intentionally left blank
List of Symbols

\(\text{cl } A \) = the closure of a set \(A \)
\(\text{int } A \) = the interior of a set \(A \)
\(\partial A \) = the boundary of the set \(A \)

\(\mathbb{C} \) is the field of complex numbers, \(\mathbb{R} \) the field of real numbers, \(\mathbb{Z} \) the integers, \(\mathbb{N} \) the natural numbers, and \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \)

\(\text{ball } X = \{ x \in X : \| x \| \leq 1 \} \)
\(\text{ran } T \) and \(\text{ker } T \) denote the range and kernel of a linear transformation

\(B = B(\mathcal{H}) \), 1
\(B_0 = B_0(\mathcal{H}) \), 2
\(C(X) \), 2
\(C_0(X) \), 2
\(\sigma (a) \), 4
\(r(a) \), 4
\(\text{Re } A \), 4
\(C_0(X,A) \), 6
\(\bigoplus \{ A_i : i \in I \} \), 6
\(C_0^* (S) \), 8
\(C^* (S) \), 8
\(\text{ess-ran } (\phi) \), 9
\(N_\mu \), 9
\(M_\theta \), 10
\(C_b(X) \), 12
\(\beta X \), 12
\(A_+ \), 12
\(a_+ , a_- \), 13
\(|a| \), 15
\(M_\tau \), 24
\(\pi_\mu \), 25
\(\mathcal{H}^d , A^{(d)} , \pi^{(d)} , \mathcal{H}^{(\infty)} , A^{(\infty)} \), and \(\pi^{(\infty)} \), 25
\(\pi_1 \cong \pi_2 \), 25
\([S] \), 26

\(\phi_+ , \phi_- \), 34
\(\text{LiM} \), 36
\(\text{Ref } S \), 39
\(E_{g,h} \), 42
\(\int \phi dE \), 43
\(B(X) \), 44
\(|\mu| = |\nu| \), 52
\(S', S'' \), 55
\(A_\mu \), 57
\(W^*(S) \), 61
\(S_1 \cong S_2 \), 62
\(\odot \), 72
\(I_0 \), 83
\(B_1 = B_1(\mathcal{H}) , A_1 \), 86
\(B_2 = B_2(\mathcal{H}) , A_2 \), 86
\(\text{tr } A \), 89
\(B_{00} = B_{00}(\mathcal{H}) \), 89
\(B_p , \| A \|_p \), 93
\(P^\infty (\mu) \), 97
\(S'_\perp \), 98
\(M \lor N \), \(M \land N \), 105
\(\text{Lat } A , \text{Alg } L \), 106
\(P(S) , P^\infty (S) , W(S) \), 107
\(\bar{K} \), 109
\(R(T) \), 111
\(\sigma_{\text{sp}} (T) , \sigma_{\text{el}} (T) , \sigma_{\text{el}} (T) , \sigma_{\text{el}} (T) , \sigma_{\text{el}} (T) \), 116
\(\tilde{f} \), 119 (also see page 133)
\(H^p \), 119
\(k_\lambda \), 120
\(\tilde{f} \), 133 (also see page 119)
\(P_z \), 144
\(\text{dA} , \text{Area} \), 147
\(L_0^2 (G) \), 147
\(P^2 (G) , R^2 (G) \), 149
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H^\infty(G)$</td>
<td>153</td>
</tr>
<tr>
<td>$P^2(\mu)$</td>
<td>157</td>
</tr>
<tr>
<td>$\text{Rat } K$</td>
<td>157</td>
</tr>
<tr>
<td>$R^2(K,\mu)$</td>
<td>164</td>
</tr>
<tr>
<td>$\sigma_n(S)$</td>
<td>166</td>
</tr>
<tr>
<td>$R(K)$</td>
<td>166</td>
</tr>
<tr>
<td>$|f|_K$</td>
<td>170</td>
</tr>
<tr>
<td>$[T^*,T]$</td>
<td>170</td>
</tr>
<tr>
<td>$C^n(G)$, $C^n_c(G)$</td>
<td>172</td>
</tr>
<tr>
<td>$\partial u \equiv \partial_x u \equiv \frac{\partial u}{\partial x}$, $\partial u \equiv \partial_x u \equiv \frac{\partial u}{\partial x}$</td>
<td>172</td>
</tr>
<tr>
<td>μ</td>
<td>173</td>
</tr>
<tr>
<td>$\Sigma(A)$</td>
<td>185</td>
</tr>
<tr>
<td>$M_n(A)$</td>
<td>190</td>
</tr>
<tr>
<td>ϕ_n</td>
<td>191</td>
</tr>
<tr>
<td>$P(\lambda;T)$</td>
<td>199</td>
</tr>
<tr>
<td>$\mathcal{F}(\lambda;T)$, $\mathcal{S}\mathcal{F}$, \mathcal{F}</td>
<td>209</td>
</tr>
<tr>
<td>$\text{ind } T$</td>
<td>209</td>
</tr>
<tr>
<td>$P_n(T)$</td>
<td>210</td>
</tr>
<tr>
<td>$\sigma_w(T)$</td>
<td>210</td>
</tr>
<tr>
<td>$\mathcal{D} = \mathcal{D}({e_k})$</td>
<td>214</td>
</tr>
<tr>
<td>$A \cong_a B$</td>
<td>218</td>
</tr>
<tr>
<td>$A \cong_{sa} B$</td>
<td>219</td>
</tr>
<tr>
<td>$\rho \cong_a \kappa$, $\rho \cong_{sa} \kappa$</td>
<td>229</td>
</tr>
<tr>
<td>$\rho \cong_w \kappa$</td>
<td>232</td>
</tr>
<tr>
<td>$C^(A) \approx C^(B)$</td>
<td>239</td>
</tr>
<tr>
<td>\mathcal{Z}</td>
<td>243</td>
</tr>
<tr>
<td>M_Φ</td>
<td>244</td>
</tr>
<tr>
<td>$L^\infty(\mu; M_d)$</td>
<td>244</td>
</tr>
<tr>
<td>C_A</td>
<td>245</td>
</tr>
<tr>
<td>$\text{cran } A$</td>
<td>245</td>
</tr>
<tr>
<td>A_E</td>
<td>246</td>
</tr>
<tr>
<td>R_a, I_{sa}</td>
<td>247</td>
</tr>
<tr>
<td>$\pi(G)$, $\mathcal{L}(G)$</td>
<td>247</td>
</tr>
<tr>
<td>$f * g$</td>
<td>248</td>
</tr>
<tr>
<td>S_σ, S^{σ}</td>
<td>254</td>
</tr>
<tr>
<td>$E \sim F$, $E \sim W F$, $E \not\subseteq F$</td>
<td>265</td>
</tr>
<tr>
<td>I_n, I_∞, Π_1, Π_∞, Π_∞, Π_∞, Π_∞</td>
<td>275</td>
</tr>
<tr>
<td>$M_n(A)$</td>
<td>285</td>
</tr>
<tr>
<td>$\kappa(\mu)$</td>
<td>292</td>
</tr>
<tr>
<td>$L^p(\mu; H)$</td>
<td>295</td>
</tr>
<tr>
<td>$L^\infty(\mu; B(H))$</td>
<td>297</td>
</tr>
<tr>
<td>M_Φ</td>
<td>297</td>
</tr>
<tr>
<td>$\phi \perp \psi$</td>
<td>308</td>
</tr>
<tr>
<td>T</td>
<td>321</td>
</tr>
<tr>
<td>J_n</td>
<td>323</td>
</tr>
<tr>
<td>$\alpha(T,S)$</td>
<td>327</td>
</tr>
<tr>
<td>$\kappa(S)$</td>
<td>328</td>
</tr>
<tr>
<td>A_1, $A(r)_1$</td>
<td>335</td>
</tr>
<tr>
<td>$[S]_{ij}$</td>
<td>348</td>
</tr>
<tr>
<td>\mathcal{P}</td>
<td>349</td>
</tr>
</tbody>
</table>
Operator theory is a significant part of many important areas of modern mathematics: functional analysis, differential equations, index theory, representation theory, mathematical physics, and more. This text covers the central themes of operator theory, presented with the excellent clarity and style that readers have come to associate with Conway's writing.

Early chapters introduce and review material on C^*-algebras, normal operators, compact operators, and non-normal operators. Some of the major topics covered are the spectral theorem, the functional calculus, and the Fredholm index. In addition, some deep connections between operator theory and analytic functions are presented.

Later chapters cover more advanced topics, such as representations of C^*-algebras, compact perturbations, and von Neumann algebras. Major results, such as the Sz.-Nagy Dilation Theorem, the Weyl–von Neumann–Berg Theorem, and the classification of von Neumann algebras, are covered, as is a treatment of Fredholm theory. The last chapter gives an introduction to reflexive subspaces, which along with hyperreflexive spaces, are one of the more successful episodes in the modern study of asymmetric algebras.

Professor Conway's authoritative treatment makes this a compelling and rigorous course text, suitable for graduate students who have had a standard course in functional analysis.