Selected Titles in This Series

21 John B. Conway, A course in operator theory, 2000
20 Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
19 Lawrence C. Evans, Partial differential equations, 1998
18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997
17 Henryk Iwaniec, Topics in classical automorphic forms, 1997
14 Elliott H. Lieb and Michael Loss, Analysis, 1997
12 N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996
11 Jacques Dixmier, Enveloping algebras, 1996 Printing
10 Barry Simon, Representations of finite and compact groups, 1996
9 Dino Lorenzini, An invitation to arithmetic geometry, 1996
8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
7 Gerald J. Janusz, Algebraic number fields, second edition, 1996
6 Jens Carsten Jantzen, Lectures on quantum groups, 1996
5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995
4 Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993
1 Ethan Akin, The general topology of dynamical systems, 1993
Growth of Algebras
and Gelfand-Kirillov
Dimension

Revised Edition
This page intentionally left blank
Growth of Algebras and Gelfand-Kirillov Dimension

Revised Edition

Günter R. Krause
Thomas H. Lenagan

Graduate Studies
in Mathematics
Volume 22

American Mathematical Society
Providence, Rhode Island
ABSTRACT. The Gelfand-Kirillov dimension measures the asymptotic rate of growth of algebras. Since it provides important structural information, this invariant has become one of the standard tools in the study of infinite dimensional algebras. This book gives a systematic treatment of the basic properties of Gelfand-Kirillov dimension and presents applications to various areas, such as Weyl algebras, universal enveloping algebras of finite dimensional Lie algebras, polynomial identity algebras, and groups.

Library of Congress Cataloging-in-Publication Data
Krause, G. R.
p. cm. — (Graduate studies in mathematics, ISSN 1065-7339 ; v. 22)
“Second edition”—Pref.
Includes bibliographical references and index.
ISBN 0-8218-0859-1
QA251.5.K7 1999
512’.24—dc21 99-39164
CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2000 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/
Contents

Preface ix
Introduction 1

Chapter 1. Growth of Algebras 5
Chapter 2. Gelfand-Kirillov Dimension of Algebras 13
Chapter 3. Gelfand-Kirillov Dimension of Related Algebras 23
Chapter 4. Localization 37
Chapter 5. Modules 51
Chapter 6. Graded and Filtered Algebras and Modules 61
Chapter 7. Almost Commutative Algebras 73
Chapter 8. Weyl Algebras 87
Chapter 9. Enveloping Algebras of Solvable Lie Algebras 109
Chapter 10. Polynomial Identity Algebras 125
Chapter 11. Growth of Groups 139
Chapter 12. New Developments 153
§12.1. Notes on Chapter 1 153
§12.2. Notes on Chapter 2 | 155
§12.3. Notes on Chapter 3 | 163
§12.4. Notes on Chapter 4 | 167
§12.5. Notes on Chapter 5 | 170
§12.6. Notes on Chapter 6 | 173
§12.7. Notes on Chapter 7 | 182
§12.8. Notes on Chapter 8 | 183
§12.9. Notes on Chapter 9 | 187
§12.10. Notes on Chapter 10 | 191
§12.11. Notes on Chapter 11 | 195

Bibliography | 199

Index | 209
Preface

During the two decades that preceded the publication of the first edition of this book, [101], the Gelfand-Kirillov dimension had emerged as a very useful and powerful tool for investigating noncommutative algebras. Since the basic ideas and results required to work with this concept were scattered over various journal articles, the need arose for providing a coherent and reliable source of information for researchers working in this area. This gave the motivation for writing the earlier version of this book. Since it has become a standard reference, we have incorporated the original text into the second edition with only minor modifications. In particular, the numbering of theorems, lemmas, etc., has not been changed. Errors that we have become aware of have been corrected, quite a few items have been rephrased, and more mathematical expressions have been displayed for better clarity. Otherwise, the reader familiar with the first edition will find that it is virtually identical with the first eleven chapters of the second one.

Since 1984, many articles have been published on this subject, and a detailed account of even a small portion of all the work that has been done would have greatly exceeded the scope of this text. Thus, in the added Chapter 12, we provide for the most part only sketches of the new developments that have surfaced in the last few years, referring to the literature for details. The bibliography has been updated accordingly, it is now almost twice the size of the original one.

We wish to express our gratitude to the many mathematicians with whom we were able to discuss the ideas presented in this book. Special thanks are due to Paul Smith for numerous suggestions and detailed criticism, and to John McConnell for his advice and for allowing us to use
material from various manuscripts that had not yet been published at the time the first edition went into print.

Thanks are due to Bill Blair, Allan Heinicke, and Donald Passman for pointing out some errors in the first edition and for their suggestions of corrections.

On the technical side, we are greatly indebted to Helena Cameron of the University of Edinburgh who typed the manuscript for the first edition, and who, more than ten years later, prepared the base \LaTeX{} version of the current Chapters 1–11. We are also grateful to Michael Doob and Craig Platt of the University of Manitoba for providing assistance with the electronic typesetting of this book.

Finally, the authors gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada.
Bibliography

14. ______, *Generalized Weyl algebras, kernel and tensor-simple algebras, their simple modules*, Proceedings of the Sixth International Conference on Representations of

94. ———, Dimension en algèbre non-commutative, Cours de troisième cycle, Université de Paris VI, 1980, unpublished mimeographed notes.
95. ———, Applications de la théorie des anneaux aux algèbres enveloppantes, Cours de troisième cycle, Université de Paris VI, 1981, unpublished mimeographed notes.

This page intentionally left blank
Index

algebra
almost commutative, 61, 73
associated \mathbb{N}^n-graded, 182
associated graded, 64
noetherian, 70
Auslander-Gorenstein, 187
Auslander-regular, 187
catenary, 112, 188
central simple, 126
Cohen-Macaulay, 188
commutative, 39
filtered, 64
multi-, 181
finite dimensional, 7
locally, 14
finitely generated, 5
free, 7
GK-partitive, 190
graded, 61
connected, 61
connected \mathbb{N}^n-, 180
finitely, 61
homogeneous element of, 61
group, 139
Heisenberg, 75
Lie, see Lie algebra
locally finite, 180
monomial, 157
normally separated, 188
PI-, see PI-algebra
polynomial, 9
polynomial identity, 125, 191
prime, 48
primitive, 162
quotient, 39
representable, 191
semi-commutative, 179
semiprime, 49
somewhat commutative, 179

strongly finitely presented, 172
locally, 172
symmetric, 67
universal enveloping, 7, 109
Weyl, 26, 87, 183
quotient division algebra of, 100
annihilator, 33

Bass’s formula, 151
Bergman’s Gap Theorem, 18, 155
Bernstein class, 89
Bernstein number, 78
Bernstein’s inequality, 88, 189
bimodule, 54
catenarity, see algebra, catenary
center, 39
c.l.Kdim, see Krull dimension, classical
commom denominator property, 38
commutator subgroup, 140
derivation, 24
locally nilpotent, 42, 169
locally triangulizable, 41, 169
σ-, 164
differential operator, 87
dimension
bandwidth, 155
faithful, 191
filter, 189
Gelfand-Kirillov, 14, 51
ideal invariant, 56
Krull
classical, 40
Gabriel-Rentschler, 33
of level q, 154
q-, 154
super, 13, 154
symmetric, 56
uniform, 33
distribution, 95
Dixmier map, 112, 187
eigenvalue, 41
endomorphism
 locally algebraic, 164
 locally nilpotent, 41
 locally triangulizable, 41
equivalent filtrations, see filtration, of module
essential, see module, essential submodule of
exact, see Gelfand-Kirillov dimension

f-generating set, see group, nilpotent
f-growth, see group, nilpotent
f-length, see group, nilpotent
faithful dimension, see dimension, faithful
filter dimension, see dimension, filter
filtration
 of algebra, 64
 discrete, 64
 finite, 64
 multi-, 181
 of module, 64
 discrete, 64
 equivalent, 68
 finite, 64
 multi-, 182
 standard, 67
finite uniform dimension, 33
free semigroup, 15
 order ideal in, 18
 word in, 15
 minimal period of, 16
 periodic, 16
function
 analytic, 95
 growth of, see growth, of function
 meromorphic, 95
 periodically polynomial, 175
 rational, 174
 return, 189
 test, 95

Gelfand-Kirillov Conjecture, 2
Gelfand-Kirillov dimension, 1
 of algebra, 14
 lower, 166
 upper, 166
 of bimodule, 55
 of module, 51
 exact, 53, 69, 73, 131, 136, 172, 191
generating subspace
 of algebra, 5
 of module, 51

GKdim, see Gelfand-Kirillov dimension
Goldie conditions, see ring, Goldie
Goldie’s Theorem, 33, 48
grade, see module, grade of grading
 of algebra, 61
 of module, 62
growth, 156
 adjacency matrix of, 156
 chain, 156
 cycle, 156
 overlap, 158
 faithful, 159
 path, 156
 cyclic, 156
 length of, 156
 Poincaré series of, 156
Ufnarovski, 157
Gromov’s Theorem, 139, 196
 group
 algebra, 139
 finitely generated, 139
 fundamental, 140
 growth, see growth, of group
 linear, 151
 nilpotent, 139
 f-generating set, 147
 f-growth, 147
 f-length, 147
 length of filtration, 147
 nilpotent-by-finite, 145
 polycyclic, 142
 Hirsch number of, 143
 solvable, 139
growth, 1
 curve, 155
 exponential, 6
 intermediate, 153
 logarithmic, 154
 of algebra, 6
 of function, 6
 of group, 140
 exponential, 140
 intermediate, 196
 polynomial, 140
 subexponential, 196
 of module, 51
O(g(n))-growth, 155
of polynomial, 6
 subexponential, 6, 153
 g-stable ideal, 110

height, see prime ideal, height of
Heisenberg group, 145, 197
Hilbert series, 159
Hilbert-Samuel polynomial, 68, 76, 78
Index

Hodge algebra, 19
holonomic, see module, holonomic
homogeneity, see module, homogeneous

Jacobson radical, 126
nilpotent, 126

Kaplansky’s Theorem, 126
Kdim, see Krull dimension
Krull dimension
classical, 40
Gabriel-Rentschler, 33, 81

Ld, see transcendence degree, lower
Ld-stable, 186
leading submodule, 65

Lie algebra
ad$_g$-nilpotent subalgebra of, 44
algebraic, 116
enveloping algebra of, 44, 67, 109
finite dimensional, 41
infinite dimensional, 7
nilpotent, 112, 119
semisimple, 109
solvable, 44, 84, 109
localization, 37
at Ore sets arising from locally triangulizable inner derivations, 169
central, 127, 167
normal, 168

Markov’s Theorem, 195
module
associated N^a-graded, 182
associated graded, 64
noetherian, 70
essential submodule of, 33
filtered, 64
multi-, 182
grade of, 187
graded, 62
N^n, 180, 182
finitely, 62
homogeneous element of, 62
holonomic, 89, 183, 191
homogeneous, 60, 113
multiplicity of, 178
noetherian, 65
pure with respect to grade, 187
smooth, 59
uniform, 33
multi-filtration, 181
finite, 182
multiplicity, see Bernstein number

nilpotent
group, see group, nilpotent
ideal, 57, 172
Lie algebra, see Lie algebra, nilpotent radical, 57, 173
Noether Normalization Theorem, 40
normal element, 115, 168
local, 168

order
admissible, 181
good, 181
Ore
condition, 37
extension, 24, 164
set, 37
of normal elements, 168

partitive, see algebra, GK-partitive
periodically polynomial function, 175

PI-algebra, 18, 125
finitely generated, 127
noetherian, 131
prime, 126
simple, 126

PI-degree, 130
Poincaré series
multi-variable, 180
nonrational, 197
of filtered algebra, 174
of graded algebra, 174
of graph, 156
of group, 197
of monomial algebra, 159
rational, 156, 174–176, 181, 183
Poincaré-Birkhoff-Witt
extension, 163
Theorem, 67
polynomial
central, 126
Hilbert, see Hilbert-Samuel polynomial
Hilbert-Serre, see Hilbert-Samuel polynomial
polynomial identity, 125

Posner’s Theorem, 126
prime ideal
height of, 34, 109
of enveloping algebra of solvable Lie algebra, 110
primitive ideal, 109
pure, see module, pure with respect to grade

Quillen’s Lemma, 88
quotient ring, see ring, of fractions

rank, 137
of abelian group, 169
reduced, 137
rational function, 174
regular element, 33
\(E(x) \)-, 169
return function, see function, return
ring
catenary, 112
Goldie, 33
irreducible, 134
Krull symmetric, 116
noetherian, 33
of fractions, 38
of differential operators, 87
polynomial, 26
power series, 26
primary, 134
prime, 35
right FBN, 173
semiprime, 48
skew polynomial, 164
skew-Laurent polynomial, 144, 190
skew-Laurent power series, 101

sensitive multiplicity condition, 165
superdimension, see dimension, super

Taavel’s height formula, 109
Tdeg-stable, 184
tensor product, 28, 165
transcendence degree
 Gelfand-Kirillov, 106, 167, 183
 lower, 185
 of a field, 40
 of PI-algebra, 126

volume difference inequality, 185

width of multi-index, 104