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Preface 

Le caractere propre des methodes de l'Analyse et de 
la Geometrie modernes consiste dans l'emploi d'un 
petit nombre de principes generaux, independants 
de la situation respective des differentes parties ou 
des valeurs relatives des differents symboles; et les 
consequences sont d'autant plus et endues que les 
principes eux-memes ont plus de generalite. 
from G. DARBOUX: Principes de Geometrie Analy-
tique 

This text is written for the graduate student who has previous training 
in analysis and linear algebra, as for instance S. Lang's Analysis / a n d Lin
ear Algebra. It is meant as an introduction to what is today an intensive 
area of research linking several disciplines of mathematics and physics in 
the sense of the Greek word avinrXeKStu (which means to interconnect, or 
to interrelate in English).1 The difficulty (but also the fascination) of the 
area is the wide variety of mathematical machinery required. In order to 
introduce this interrelation, this text includes extensive appendices which 
include definitions and developments not usually covered in the basic train
ing of students but which lay the groundwork for the specific constructions 

I want to thank P. Slodowy for pointing out to me that the name symplectic group, which 
eventually gave rise to the term symplectic geometry, was proposed by H. W E Y L , [W], 1938, in 
his book, The Classical Groups (see footnote on p. 165). The symplectic group was also called 
the complex group or an Abelian linear group, this last to honor ABEL, who was the first to study 
them. 

XI 



Xl l Preface 

needed in symplectic geometry. Furthermore, more advanced topics will 
continue to rely heavily on other disciplines, in particular on results from 
the study of differential equations. 

Specifically, the text tries to reach the following two goals: 

• To present the idea of the formalism of symplectic forms, to in
troduce the symplectic group, and especially to describe the sym
plectic manifolds. This will be accompanied by the presentation of 
many examples of how they come to arise; in particular the quotient 
manifolds of group actions will be described, 

and 

• To demonstrate the connections and interworking between math
ematical objects and the formalism of theoretical mechanics; in 
particular, the Hamiltonian formalism, and that of the quantum 
formalism, namely the process of quantization. 

The pursuit of these goals proceeds according to the following plan. We 
begin in Chapter 0 with a brief introduction of a few topics from theoretical 
mechanics needed later in the text. The material of this chapter will already 
be familiar to physics students; however, for the majority of mathematics 
students, who have not learned the connections of their subject to physics, 
this material will perhaps be new. 

We are constrained, in the first chapter, to consider symplectic (and a 
little later Kdhler) vector spaces. This is followed by the introduction of the 
associated notion of a symplectic group Sp(V) along with its generation. We 
continue with the introduction of several specific and theoretically important 
subspaces, the isotropic, coisotropic and Lagrangian subspaces, as well as 
the hyperbolic planes and spaces and the radical of a symplectic space. 

Our first result will be to show that the symplectic subspaces of a given 
dimension and rank are fixed up to symplectic isomorphism. A consequence 
is then that the Lagrangian subspaces form a homogeneous space C(V) for 
the action of the group Sp(V). The greatest effort will be devoted to the 
description of the spaces of positive complex structures compatible with the 
given symplectic structure. The second major result will be that this space 
is a homogeneous space, and is, for dim V = 2n, isomorphic to the Siegel 
half space fin = Spn(M)/U(n). 

The second chapter is dedicated to the central object of the book, namely 
symplectic manifolds. Here the consideration of differential forms is unavoid
able. In Appendix A their calculus will be given. The first result of this 
chapter is then the derivation of a theorem by Darboux that says that the 
symplectic manifolds are all locally equivalent. This is in sharp contrast 
to the situation with Riemannian manifolds, whose definition is otherwise 
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somewhat parallel to that of the symplectic manifolds. The chapter will 
then take a glance at new research by considering the assignment of invari
ants to symplectic manifolds; in particular, the symplectic capacities and 
the pseudoholomorphic curves will be given. 

In the course of the second chapter, we will present several examples of 
symplectic manifolds: 

• First, the example which forms the origin of the theory and remains 
the primary application to physics is the cotangent bundle T*Q of 
a given manifold Q. 

• Second, the general Kahler manifold. 

• Third, the coadjoint orbits. This description of symplectic mani
folds with the operation of a Lie group G can be taken as the sec
ond major result of this chapter. We describe a theorem of Kostant 
and Souriau that says that for a given Lie group G with Lie alge
bra g satisfying the condition that the first two cohomology groups 
vanish, that is i?1(fl) = H2(g) = 0, there is, up to covering, a 
one-to-one correspondence between the symplectic manifolds with 
transitive G-action and the G-orbits in the dual space g* of g. 
Here we will need several facts from the theory of Lie algebras and 
systems of differential equations, and we will at least cover some of 
the rudiments we require. This will then offer yet another means 
for introducing one of the central concepts of the field, namely the 
moment map. This will, however, be somewhat postponed so that 

• In the fourth and last example, complex projective space can be 
presented as a symplectic manifold; this will be seen as a specific 
example of the third example, as well as the second; that is, as a 
coadjoint orbit as well as as a Kahler manifold. 

As preparation for the higher level construction of symplectic manifolds, 
Chapter 3 will introduce the standard concepts of a Hamiltonian vector 
field and a Poisson bracket. With the aid of these ideas, we can give the 
Hamiltonian formulation of classical mechanics and establish the following 
fundamental short exact sequence: 

0 —> IR -> T(M) -+ Ham M - • 0, 

where T{M) is the space of smooth functions / defined on the symplectic 
manifold and given the structure of Lie algebra via the Poisson bracket, and 
Ham M is the Lie algebra of Hamiltonian vector fields on the manifold. 

The third chapter continues with a brief introduction to contact man
ifolds. A theory for these manifolds in odd dimension can be developed 
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which corresponds precisely to that of the symplectic manifolds. On the 
other hand, both may be viewed as pre-symplectic manifolds. Here the 
connection will be given through the example of a contact manifold as the 
surface of constant energy of a Hamiltonian system. 

The fourth and fifth chapters will be a mix of further mathematical 
constructions and their physical interpretations. This will begin with the 
description of the moment map attached to the situation of a Lie group G 
acting symplectically on a symplectic manifold such that every Hamiltonian 
vector field is global Hamiltonian. This is a certain function 

The most important examples of the moment maps are the Ad*-equivariant 
ones, that is, those that satisfy a compatibility condition with respect to the 
coadjoint representation Ad*. The first result of Chapter 4 is that for a sym
plectic form uu = —dfi and a G invariant 1-form i? such an Ad*-equivariant 
map can be constructed. This will then be applied to the cotangent bundle 
T*Q, as well as to the tangent bundle TQ, where it will turn out that for 
a regular Lagrangian function L G F(Q) the associated moment map is an 
integral for the Lagrangian equation associated to L. As examples, we will 
discuss the linear and angular momenta in the context of the formalism of 
the moment map, and so make clear the reason for this choice of terminology. 

Next, we describe symplectic reduction. Here, we are given a symplectic 
G-operation on M and an Ad*-equivariant moment map <t>; under some 
relatively easy-to-check conditions, for fi G 0*, the quotient 

is again a symplectic manifold. This central result of Chapter 4 has many 
applications, including the construction of further examples of symplectic 
manifolds (in particular, we obtain other proofs that the projective space 
Pn(C) as well as the coadjoint orbits are symplectic). Another application is 
the result of classical mechanics on the reduction of the number of variables 
by the application of symmetry, leading to the appearance of some integrals 
of the motion. 

In the fifth and last chapter, we consider quantization', that is, the tran
sition from classical mechanics to quantum mechanics, which leads to many 
interesting mathematical questions. The first case to be considered is the 
simplest: M — R2n = T*Rn. In this case the important tools are the groups 
SX2O&), 5p2n(lK0, the Heisenberg group Heis2n(IR)> the Jacobi group G ^ R ) 
(as a semidirect product of the Heisenberg and symplectic groups) and their 
associated Lie algebras. It will follow that quantization assigns to the poly
nomials of degree less than or equal to 2 in the variables p and q of R2n 

an operator on L2(M) with the help of the Schrodinger representation of 
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the Heisenberg group and the Weil representation of the symplectic group 
(more precisely, its metaplectic covering). The theorem of Groenewold and 
van Hove then says that this quantization is maximal; that is, it cannot be 
extended to polynomials of higher degree. 

The remainder of the fifth chapter consists in laying the groundwork 
for the general situation, which essentially follows KlRiLLOV [Ki]. Here a 
subalgebra p, the primary quantities, comes into play, which for the case 
of M = T*Q turns out to be the arbitrary functions in q and the linear 
functions in p. Here yet more functional analysis and topology are required 
in order to demonstrate the result of Kirillov that for a symplectic manifold, 
with an algebra p in ^(M) of primary quantities relative to the Poisson 
bracket, a quantization is possible. That is, there is a map which assigns 
to each / E p a self-adjoint operator / on Hilbert space TL satisfying the 
conditions 

(1) the function 1 corresponds to the identity id^, 

(2) the Poisson bracket of the two functions corresponds to the Lie 
bracket of operators, and 

(3) the algebra of operators operates irreducibly. 

There is a one-to-one correspondence between the set of equivalence classes 
of such representations of p and the cohomology group Hl(M, C*). 

In the first two appendices, manifolds, vector bundles, Lie groups and 
algebras, vector fields, tensors, differential forms and their basic handling 
are covered. In particular, the various derivation processes are covered so 
that one may follow the proofs in the cited literature. A quick reading of 
this synopsis is perhaps recommended as an entrance to the second chapter. 
In Chapter 2 some material about cohomology groups will also be required. 
The third appendix presents some of the rudiments of cohomology theory. 
In the final appendix, the central concept of coadjoint orbits is prepared by 
a consideration of the fundamental concepts and constructions of represen
tation theory. 

As already mentioned, somewhat more from the theory of differential 
equations than is usually presented in a beginner's course on the topic, in 
particular Frobenius' theorem, is required to fully follow the treatment of 
symplectic geometry given here. Since in these cases the difficulty is not 
in grasping the statements, this material is left out of the appendices and 
simply used in the text as needed, though again without proof. 

It is not the intention of this text to compete with the treatment of the 
classical and current literature over the research in the various subtopics 
of symplectic geometry as can be found, for example, in the books by 
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ABRAHAM-MARSDEN [AM], AEBISCHER et al. [Ae], GUILLEMIN-STERN-

BERG [GS], HOFER-ZEHNDER [HZ], MCDUFF-SALAMON [MS], SIEGEL 

[Sil], SOURIAU [So], VAISMAN [V], WALLACH [W] and WOODHOUSE [Wo]. 
Instead we have tried to introduce the reader to the material in these sources 
and, moreover, to follow the work contained in, for example, GROMOV [Gr] 
and KiRlLLOV [Ki]. In the hope that this will provide each reader with a 
starting point into this fascinating area a few parts of chapters 1,2, and 4 
may be skipped by those whose interests lie in physics, and one may begin 
directly with the sections on Hamiltonian vectorfields, moment maps and 
quantization. 

This text is, with minor changes, a translation of the book "Einfuhrung 
in die Symplektische Geometrie" (Vieweg, 1998). The production of this text 
has only been possible through the help of many. U. Schmickler-Hirzebruch 
and G. Fischer, on the staff of Vieweg-Verlag, have made many valuable 
suggestions, as has E. Dunne from the American Mathematical Society. 
My colleagues J. Michalicek, O. Riemenschneider and P. Slodowy, from the 
Mathematische Seminar of the Universitat Hamburg, were always, as ever, 
willing to discuss these topics. A. Glint her prepared one draft of this text, 
and I. Kowing did a newer draft and also showed great patience for my eter
nal desire to have something or other changed. I also had very successful 
technical consultation with F. Berndt, D. Nitschke and R. Schmidt. The last 
of these went through the German text with great attention and smoothed 
out at least some of what was rough in the text. I would also thank T. 
Wurzbacher, W. Foerg-Rob and P. Wagner for carefully reading (parts of) 
the German text and finding some misprints, wrong signs and other mis
takes. The translation was done by M. Klucznik, who had an enormous task 
in producing very fluent English (at least in my opinion) and a fine layout 
of my often rather involved German style. It is a great joy for me to thank 
each of these. 

R. Berndt 
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Christoffel symbol, 159 
coadjoint orbit, 110 
coadjoint cocycle, 96 
coadjoint orbit, 54 
coboundary operator, 52, 172 
cocycle identity, 96 
cocycle relation, 145 
cohomology groups 

De Rham, 175 
of a group, 172 
of a Lie algebra, 52, 174 
of a manifold, 175 

configuration space, 1, 45 
conjugation, 53 

connection, 48, 158 
integrable, 161 

contact manifold, 86 
weak, 85 

contravariant or covariant vector, 149 
coordinates, symplectic, 36 
cotangent space, 142 
covariant derivative, 158 
curvature matrix, 161 

derivation, 141, 164 
diffeomorphism, 139 

symplectic, 83, 84 
different iable function , 139 
differentiate section, 146 
differential form 

closed, 155 
covariant derivative of a, 162 
degree 1, 148 
exact, 155 
qth degree, 153 
reduced representation, 153 
skew symmetric representation, 154 

differential system, 56 
involutive, 57 

differentiation, exterior, 154 
dual space, 11 

energy function, 74 
equations of motion for a charged particle, 

75 
Euler-Lagrange equation, 2 
exponent map, 168 

fiber derivative, 102 
flow, 41, 156 

189 
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form 
closed of type (1,1), 49 
Kahler, 50 
left invariant q, 52 
Liouville, 45 
of type (1,1), 49 
presymplectic, 85 
symplectic, 9, 35 

fundamental 
duality, 72 
exact sequence, 78, 83, 111 

geodesic, 159 
group 

general linear, 24 
Heisenberg, 166 
Jacobi, 120 
orthogonal, 24 
symplectic, 15, 24 
unitary, 24, 28 

Hamilton's equations, 3 
Hamilton-Jacobi equation, 4 
Hamiltonian equations, 74 
Hamiltonian function, 3 

time dependent, 89 
Hamiltonian G—space, 94 
Hamiltonian system, 74 

completely integrable, 108 
harmonic oscillator, 104 
Heisenberg algebra, 117 
Heisenberg group, 116, 117 
horizontal section, 161 
hyperbolic pair, 19 
hyperbolic plane, 19 

infinitesimal generator, 94, 97 
inner product, 6, 13, 72 
integral curve, 6 
integral manifold, 57 
intertwining operator, 177 
isotropy group, 22 

Jacobi identity, 163 

Lagrange distribution, 132 
Lagrange function, 2, 102 
left translation, 166 
Legendre transformation, 3 
lemma 

Poincare's, 155 
Schur's, 180 

Lie algebra, 163 
Lie bracket, 7, 163 

Lie derivative 
of a differential form, 52, 72, 156 
of a function, 71 
of a vector field, 72, 165 

Lie group, 165 

manifold 
hermitian, 49 
Kahler, 45 
of the solution of constant energy, 109 
real, 1 
Riemannian, 101 
smooth, 35 
symplectic, 35 

map, 
different iable, 138 
moment, 94 
symplectic, 36 

map of 
tangent and cotangent spaces, 143 
vector fields and 1-forms, 149 

matrix, symplectic, 16 
metric 

Fubini-Study, 64 
hermitian, 26, 28 
Kahler, 47 
Poincare, 33 
Riemannian, 48, 151 
^-compatible pseudohermitian, 26 

Minkowski space, 75 
moment map 

Ad*-equivariant, 96, 105 
momentum, 103 
morphism, 55 

of different iable manifolds, 138 
stable, 17 
strongly stable, 17 
symplectic, 14 

multiplication 
exterior, 154 
inner, 156 

Mumford's criterion, 48 

normal form 
of bilinear forms, 10 
of contact forms, 86 

observable, 7 
one-parameter subgroup, 168 
orientation, 12 
orthogonal, 13 

phase space, 3, 45, 88, 99 
reduced, 105 

Poincare's lemma, 155 
Poisson bracket, 79, 80 
position function, 101 
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potential of a Kahler form, 50, 66 
prequantization, 130 
primary quantities, 7, 130 
principle of least action, 2 
pseudoholomorphic curve, 68 

quantization, 7, 112, 129 
full, 130 

radical, 18 
rank of a bilinear form, 10 
regular energy plane, 88 
representation 

adjoint, 54, 95, 183 
coadjoint, 54, 95, 184 
continuous, 179 
contragredient, 178 
induced, 183 
infinitesimal, 112, 182 
irreducible, 112, 178 
left regular, 180 
linear, 177 
of a Lie algebra, 182 
projective, 121, 179 
Schrodinger, 118 
Schrodinger-Weil, 122 
unitary, 179 
Weil, 121 

right translation, 166 

scalar product 
Euclidean, 26 
hermitian, 24 

Siegel upper half plane, 30, 32 
skew hermitian operator, 113 
space 

affine, 23 
complex projective, 63, 109, 137 
hermitian, 28 
homogeneous, 22 
hyperbolic, 19 
reduced, 105 

structure 
canonical Euclidian, 24 
canonical symplectic, 24 
compatible complex, 25 
complex, 25, 46 
contact, 85 
differentiable linear, 146 
hermitian, 26 
positive compatible complex, 30 

structure constants, 164 
submersion, 144 

subspace 
coisotropic, 19, 21 
isotropic, 19, 21 
Lagrangian, 19, 21 
real Lagrangian, 31 
symplectic, 19 

suspension of a vector field, 90 
symplectic 

capacity, 69 
invariant, 17, 21, 70 
operation, 54, 93 
radius, 69 
reduction, 58, 104 
space, standard, 14 
transvection, 17 

symplectomorphism, 15, 36 

tangent field of M' along Ft, 36 
tangent space, 35, 139 
tensor, 150 

Riemannian fundamental, 152 
theorem 

Darboux's, 42, 85 
de Rham's, 175 
Darboux's, 36 
Frobenius', 57 
Groenewold- van Hove, 124 
Gromov's, 68 
Jacobi's, 83 
Liouville's, 76 
of Kostant and Souriau, 52, 60 
of Stone and von Neumann, 118 
Witt 's , 21 

unit ball, 49 

vector 
analytic, 182 
smooth, 113 

vector field 
characteristic, 87 
differentiable, 146 
Hamiltonian, 6, 74 
left invariant, 166 
local Hamiltonian, 77 

vector space 
Kahler-, 26 
positive Lagrangian, 30 
symplectic, 10 
Hamiltonian, 6 

volume form, 12 

Wirtinger calculus, 49 
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Symbols 

S y m p l e c t i c vec tor spaces 

(V, co) symplectic vector space 14 

W to W CV the orthogonal space relative to uo 22 

rad W = W n WL radical of W 22 

W r e d = W/ rad W the symplectic space associated to W 23 

L = L C V Lagrangian subspace 23 

£ ( V) collection of Lagrangian spaces L C V 26 

T ( L ) = {L' G £(V), L e L ^ F } 27 

J7 = J{V, uS) space of ^-compatible positive complex 

structures J 36 

S)n = Spn(R)/U(n) Siegel upper half-space ~ J ( R n , CJ0) 36 

h(v, w) = g(v, w) + icj(v, w) 

hermitian, Riemannian and outer form 32, 55 

J G Aut V complex structure (J 2 = —id) 29 

S y m p l e c t i c manifo lds 

m G M point of a differentiable real 

manifold of dimension 2n 

Lp : [7 -+ E 2 n chart of a neighborhood £7 C M 144 

(p(m) = (q, p) symplectic standard coordinates 40 



194 Symbols 

f e ?{M) 
X G V(M) 

a G fi«(M) 

u) G Q2(M) 

# = J2Pidqi 

00 

UT 

# 

F :M -+M' 

F 

i(X)ct 

Lxf 
LXOL 

LXY = [X, Y] 

V 

V j a , VXY 

Ft 

if,h} 
Xf G Ham (M) 

0:GxM ^M 

Pgo = ##0 

#0##0 

Representations 

G 

g = Lie G 

7T 

-̂* 7T 

differentiable function on M 147 

differentiable vector field on M (= r (TM)) 155 

differentiate exterior g-form on M 161 

symplectic form on M, in particular 39 

the standard form 40 

the Liouville form 49 

fundamental duality Q1(M) - ^ V{M) 78 

inverse mapping t o w # 78 

diffeomorphism m i—> F(m) — m' 146 

mapping of the tangent vectors F*m(Xm) = X^, 151 

mapping of the 1-forms F^(af
mf) = a m 151 

inner product of X G V(M) with a G Qq(M) 17, 78 

Lie derivative of / G J^(M) by X G V(M) 77 

Lie derivative of a G Q9(M) 

by X G V(M) 56, 164 

Lie derivative of Y G V(M) by X G F(M) 78, 173 

connection 166 

covariant derivative 166 

flow of X G V(M) 45, 165 

Poisson bracket of / , h G J^(M) 85, 86 

Hamiltonian vector field to / G P(M) 80 

infinitesimal generator of X G 0 = Lie G 

and the group operation (ft 99, 103 

with </>(g, m) = gm = </>g{m) = i/>m(g) 99 

right translation of g with go 17r4 

left translation of # with go 174 

conjugation with go 57 

moment map 100 

Lie group 173 

associated Lie algebra 174 

continuous representation of a Lie group G 187 

associated contragredient representation 186 



associated infinitesimal representation 

(ofg = LieG) 120, 190 

representation of a Lie algebra g 190 

adjoint representation Ad (g) = (/%)* 

(thus =: Adg) 57, 191 

coadjoint representation Ad*(g) = (Ad(# - 1))* 

(thus = Ad*_x) 58, 191 

Schrodinger representation of the Heisenberg 

group jff(R) 126 

Weil representation (projective representation) 

ofSL2(R) 130 

Schrodinger-Weil representation (projective 

representation) of the Jacobi group GJ(R) 130 

part of the quantization mapping, A, assigning 

to each / G J70 a self-adjoint operator / 120 
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