An Introduction to Symplectic Geometry

Rolf Berndt

Graduate Studies
in Mathematics
Volume 26

Selected Titles in This Series

26
Rolf Berndt, An introduction to symplectic geometry, 2001
Thomas Friedrich, Dirac operators in Riemannian geometry, 2000
Helmut Koch, Number theory: Algebraic numbers and functions, 2000
Alberto Candel and Lawrence Conlon, Foliations I, 2000
Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 2000
21 John B. Conway, A course in operator theory, 2000
20 Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
Lawrence C. Evans, Partial differential equations, 1998
Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997
Henryk Iwaniec, Topics in classical automorphic forms, 1997
Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997
15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997
Elliott H. Lieb and Michael Loss, Analysis, 1997
Paul C. Shields, The ergodic theory of discrete sample paths, 1996
N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996

Jacques Dixmier, Enveloping algebras, 1996 Printing
Barry Simon, Representations of finite and compact groups, 1996
Dino Lorenzini, An invitation to arithmetic geometry, 1996
Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
Gerald J. Janusz, Algebraic number fields, second edition, 1996
Jens Carsten Jantzen, Lectures on quantum groups, 1996
Rick Miranda, Algebraic curves and Riemann surfaces, 1995
Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, 1994
Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993
1 Ethan Akin, The general topology of dynamical systems, 1993

This page intentionally left blank

An Introduction
to Symplectic Geometry

This page intentionally left blank

An Introduction to Symplectic Geometry

Rolf Berndt

Graduate Studies
in Mathematics

Volume 26

American Mathematical Society Providence, Rhode Island

Editorial Board

James Humphreys (Chair)
David Saltman David Sattinger Ronald Stern

2000 Mathematics Subject Classification. Primary 53C15, 53Dxx, 20G20, 81S10.

Originally published in the German language by Friedr. Vieweg \& Sohn Verlagsgesellschaft mbH, D-65189 Wiesbaden, Germany, as "Rolf Berndt: Einführung in die Symplektische Geometrie. 1. Auflage (1st edition)" © by Friedr. Vieweg \& Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1998.

Translated from the German by Michael Klucznik

Abstract. The notions of symplectic form, symplectic manifold and symplectic group appear in many different contexts in analysis, geometry, function theory and dynamical systems. This book assembles tools from different mathematical regions necessary to define these notions and to introduce their application. Among the topics treated here are

- symplectic and Kähler vector spaces,
- the symplectic group and Siegel's half space,
- symplectic and contact manifolds, the theorem of Darboux,
- methods of constructing symplectic manifolds: Kähler manifolds, coadjoint orbits and symplectic reduction,
- Hamiltonian systems,
- the moment map,
- and a glimpse into geometric quantization (in particular the theorem of Groenewold and van Hove) leading to some rudiments of the representation theory of the Heisenberg and the Jacobi group.
The goal of the book is to provide an entrance into a fascinating area linking several mathematical disciplines and parts of theoretical physics.

Library of Congress Cataloging-in-Publication Data

Berndt, Rolf.
[Einführung in die symplektische Geometrie. English]
An introduction to sympletic geometry / Rolf Berndt ; translated by Michael Klucznik. p. cm. - (Graduate studies in mathematics, ISSN 1065-7339; v. 26)

Includes bibliographical references and index.
ISBN 0-8218-2056-7 (alk. paper)

1. Symplectic manifolds. 2. Geometry, Differential I. Title. II. Series.

QA649.B47 2000
$516.3^{\prime} 6$-dc21
00-033139

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.
(c) 2001 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/

Contents

Preface ix
Chapter 0. Some Aspects of Theoretical Mechanics 1
§0.1. The Lagrange equations 1
§0.2. Hamilton's equations 2
§0.3. The Hamilton-Jacobi equation 4
§0.4. A symplectic interpretation 6
§0.5. Hamilton's equations via the Poisson bracket 6
§0.6. Towards quantization 7
Chapter 1. Symplectic Algebra 9
§1.1. Symplectic vector spaces 9
§1.2. Symplectic morphisms and symplectic groups 14
§1.3. Subspaces of symplectic vector spaces 17
§1.4. Complex structures of real symplectic spaces 24
Chapter 2. Symplectic Manifolds 35
§2.1. Symplectic manifolds and their morphisms 35
§2.2. Darboux's theorem 36
§2.3. The cotangent bundle 45
§2.4. Kähler manifolds 45
§2.5. Coadjoint orbits 51
§2.6. Complex projective space 63
§2.7. Symplectic invariants (a quick view) 68
Chapter 3. Hamiltonian Vector Fields and the Poisson Bracket 71
§3.1. Preliminaries 71
§3.2. Hamiltonian systems 74
§3.3. Poisson brackets 79
§3.4. Contact manifolds 85
Chapter 4. The Moment Map 93
§4.1. Definitions 93
§4.2. Constructions and examples 97
§4.3. Reduction of phase spaces by the consideration of symmetry 104
Chapter 5. Quantization 111
§5.1. Homogeneous quadratic polynomials and $\mathfrak{s l}_{2}$ 111
$\S 5.2$. Polynomials of degree 1 and the Heisenberg group 114
§5.3. Polynomials of degree 2 and the Jacobi group 120
§5.4. The Groenewold-van Hove theorem 124
§5.5. Towards the general case 128
Appendix A. Differentiable Manifolds and Vector Bundles 135
§A.1. Differentiable manifolds and their tangent spaces 135
§A.2. Vector bundles and their sections 144
§A.3. The tangent and the cotangent bundles 146
§A.4. Tensors and differential forms 150
§A.5. Connections 158
Appendix B. Lie Groups and Lie Algebras 163
§B.1. Lie algebras and vector fields 163
§B.2. Lie groups and invariant vector fields 165
§B.3. One-parameter subgroups and the exponent map 167
Appendix C. A Little Cohomology Theory 171
§C.1. Cohomology of groups 171
§C.2. Cohomology of Lie algebras 173
§C.3. Cohomology of manifolds 174
Appendix D. Representations of Groups 177
§D.1. Linear representations 177
§D.2. Continuous and unitary representations 179
§D.3. On the construction of representations 180
\square
Bibliography 185
Index 189
Symbols 193

This page intentionally left blank

Preface

> Le caractère propre des méthodes de l'Analyse et de la Géométrie modernes consiste dans l'emploi d'un petit nombre de principes généraux, indépendants de la situation respective des différentes parties ou des valeurs relatives des différents symboles; et les conséquences sont d'autant plus étendues que les principes eux-mêmes ont plus de généralité.
> from G. Darboux: Principes de Géométrie Analytique

This text is written for the graduate student who has previous training in analysis and linear algebra, as for instance S. Lang's Analysis I and Linear Algebra. It is meant as an introduction to what is today an intensive area of research linking several disciplines of mathematics and physics in the sense of the Greek word $\sigma v \mu \pi \lambda \varepsilon ́ \kappa \varepsilon \iota \nu$ (which means to interconnect, or to interrelate in English). ${ }^{1}$ The difficulty (but also the fascination) of the area is the wide variety of mathematical machinery required. In order to introduce this interrelation, this text includes extensive appendices which include definitions and developments not usually covered in the basic training of students but which lay the groundwork for the specific constructions

[^0]needed in symplectic geometry. Furthermore, more advanced topics will continue to rely heavily on other disciplines, in particular on results from the study of differential equations.

Specifically, the text tries to reach the following two goals:

- To present the idea of the formalism of symplectic forms, to introduce the symplectic group, and especially to describe the symplectic manifolds. This will be accompanied by the presentation of many examples of how they come to arise; in particular the quotient manifolds of group actions will be described,
and
- To demonstrate the connections and interworking between mathematical objects and the formalism of theoretical mechanics; in particular, the Hamiltonian formalism, and that of the quantum formalism, namely the process of quantization.

The pursuit of these goals proceeds according to the following plan. We begin in Chapter 0 with a brief introduction of a few topics from theoretical mechanics needed later in the text. The material of this chapter will already be familiar to physics students; however, for the majority of mathematics students, who have not learned the connections of their subject to physics, this material will perhaps be new.

We are constrained, in the first chapter, to consider symplectic (and a little later Kähler) vector spaces. This is followed by the introduction of the associated notion of a symplectic group $S p(V)$ along with its generation. We continue with the introduction of several specific and theoretically important subspaces, the isotropic, coisotropic and Lagrangian subspaces, as well as the hyperbolic planes and spaces and the radical of a symplectic space.

Our first result will be to show that the symplectic subspaces of a given dimension and rank are fixed up to symplectic isomorphism. A consequence is then that the Lagrangian subspaces form a homogeneous space $\mathcal{L}(V)$ for the action of the group $S p(V)$. The greatest effort will be devoted to the description of the spaces of positive complex structures compatible with the given symplectic structure. The second major result will be that this space is a homogeneous space, and is, for $\operatorname{dim} V=2 n$, isomorphic to the Siegel half space $\mathfrak{H}_{n}=S p_{n}(\mathbb{R}) / U(n)$.

The second chapter is dedicated to the central object of the book, namely symplectic manifolds. Here the consideration of differential forms is unavoidable. In Appendix A their calculus will be given. The first result of this chapter is then the derivation of a theorem by Darboux that says that the symplectic manifolds are all locally equivalent. This is in sharp contrast to the situation with Riemannian manifolds, whose definition is otherwise
somewhat parallel to that of the symplectic manifolds. The chapter will then take a glance at new research by considering the assignment of invariants to symplectic manifolds; in particular, the symplectic capacities and the pseudoholomorphic curves will be given.

In the course of the second chapter, we will present several examples of symplectic manifolds:

- First, the example which forms the origin of the theory and remains the primary application to physics is the cotangent bundle $T^{*} Q$ of a given manifold Q.
- Second, the general Kähler manifold.
- Third, the coadjoint orbits. This description of symplectic manifolds with the operation of a Lie group G can be taken as the second major result of this chapter. We describe a theorem of Kostant and Souriau that says that for a given Lie group G with Lie algebra \mathfrak{g} satisfying the condition that the first two cohomology groups vanish, that is $H^{1}(\mathfrak{g})=H^{2}(\mathfrak{g})=0$, there is, up to covering, a one-to-one correspondence between the symplectic manifolds with transitive G-action and the G-orbits in the dual space \mathfrak{g}^{*} of \mathfrak{g}. Here we will need several facts from the theory of Lie algebras and systems of differential equations, and we will at least cover some of the rudiments we require. This will then offer yet another means for introducing one of the central concepts of the field, namely the moment map. This will, however, be somewhat postponed so that
- In the fourth and last example, complex projective space can be presented as a symplectic manifold; this will be seen as a specific example of the third example, as well as the second; that is, as a coadjoint orbit as well as as a Kähler manifold.

As preparation for the higher level construction of symplectic manifolds, Chapter 3 will introduce the standard concepts of a Hamiltonian vector field and a Poisson bracket. With the aid of these ideas, we can give the Hamiltonian formulation of classical mechanics and establish the following fundamental short exact sequence:

$$
0 \rightarrow \mathbb{R} \rightarrow \mathcal{F}(M) \rightarrow \operatorname{Ham} M \rightarrow 0
$$

where $\mathcal{F}(M)$ is the space of smooth functions f defined on the symplectic manifold and given the structure of Lie algebra via the Poisson bracket, and Ham M is the Lie algebra of Hamiltonian vector fields on the manifold.

The third chapter continues with a brief introduction to contact manifolds. A theory for these manifolds in odd dimension can be developed
which corresponds precisely to that of the symplectic manifolds. On the other hand, both may be viewed as pre-symplectic manifolds. Here the connection will be given through the example of a contact manifold as the surface of constant energy of a Hamiltonian system.

The fourth and fifth chapters will be a mix of further mathematical constructions and their physical interpretations. This will begin with the description of the moment map attached to the situation of a Lie group G acting symplectically on a symplectic manifold such that every Hamiltonian vector field is global Hamiltonian. This is a certain function

$$
\Phi: M \rightarrow \mathfrak{g}^{*}, \mathfrak{g}=\operatorname{Lie} G
$$

The most important examples of the moment maps are the Ad^{*}-equivariant ones, that is, those that satisfy a compatibility condition with respect to the coadjoint representation Ad^{*}. The first result of Chapter 4 is that for a symplectic form $\omega=-d \vartheta$ and a G invariant 1-form ϑ such an Ad^{*}-equivariant map can be constructed. This will then be applied to the cotangent bundle $T^{*} Q$, as well as to the tangent bundle $T Q$, where it will turn out that for a regular Lagrangian function $L \in \mathcal{F}(Q)$ the associated moment map is an integral for the Lagrangian equation associated to L. As examples, we will discuss the linear and angular momenta in the context of the formalism of the moment map, and so make clear the reason for this choice of terminology.

Next, we describe symplectic reduction. Here, we are given a symplectic G-operation on M and an Ad^{*}-equivariant moment map Φ; under some relatively easy-to-check conditions, for $\mu \in \mathfrak{g}^{*}$, the quotient

$$
M_{\mu}=\Phi^{-1}(\mu) / G_{\mu}
$$

is again a symplectic manifold. This central result of Chapter 4 has many applications, including the construction of further examples of symplectic manifolds (in particular, we obtain other proofs that the projective space $\mathbb{P}^{n}(\mathbb{C})$ as well as the coadjoint orbits are symplectic). Another application is the result of classical mechanics on the reduction of the number of variables by the application of symmetry, leading to the appearance of some integrals of the motion.

In the fifth and last chapter, we consider quantization; that is, the transition from classical mechanics to quantum mechanics, which leads to many interesting mathematical questions. The first case to be considered is the simplest: $M=\mathbb{R}^{2 n}=T^{*} \mathbb{R}^{n}$. In this case the important tools are the groups $S L_{2}(\mathbb{R}), S p_{2 n}(\mathbb{R})$, the Heisenberg group $\operatorname{Heis}_{2 n}(\mathbb{R})$, the Jacobi group $G_{2 n}^{J}(\mathbb{R})$ (as a semidirect product of the Heisenberg and symplectic groups) and their associated Lie algebras. It will follow that quantization assigns to the polynomials of degree less than or equal to 2 in the variables p and q of $\mathbb{R}^{2 n}$ an operator on $L^{2}(\mathbb{R})$ with the help of the Schrödinger representation of
the Heisenberg group and the Weil representation of the symplectic group (more precisely, its metaplectic covering). The theorem of Groenewold and van Hove then says that this quantization is maximal; that is, it cannot be extended to polynomials of higher degree.

The remainder of the fifth chapter consists in laying the groundwork for the general situation, which essentially follows Kirillov [Ki]. Here a subalgebra \mathfrak{p}, the primary quantities, comes into play, which for the case of $M=T^{*} Q$ turns out to be the arbitrary functions in q and the linear functions in p. Here yet more functional analysis and topology are required in order to demonstrate the result of Kirillov that for a symplectic manifold, with an algebra \mathfrak{p} in $\mathcal{F}(M)$ of primary quantities relative to the Poisson bracket, a quantization is possible. That is, there is a map which assigns to each $f \in \mathfrak{p}$ a self-adjoint operator \tilde{f} on Hilbert space \mathcal{H} satisfying the conditions
(1) the function 1 corresponds to the identity $\mathrm{id}_{\mathcal{H}}$,
(2) the Poisson bracket of the two functions corresponds to the Lie bracket of operators, and
(3) the algebra of operators operates irreducibly.

There is a one-to-one correspondence between the set of equivalence classes of such representations of \mathfrak{p} and the cohomology group $H^{1}\left(M, \mathbb{C}^{*}\right)$.

In the first two appendices, manifolds, vector bundles, Lie groups and algebras, vector fields, tensors, differential forms and their basic handling are covered. In particular, the various derivation processes are covered so that one may follow the proofs in the cited literature. A quick reading of this synopsis is perhaps recommended as an entrance to the second chapter. In Chapter 2 some material about cohomology groups will also be required. The third appendix presents some of the rudiments of cohomology theory. In the final appendix, the central concept of coadjoint orbits is prepared by a consideration of the fundamental concepts and constructions of representation theory.

As already mentioned, somewhat more from the theory of differential equations than is usually presented in a beginner's course on the topic, in particular Frobenius' theorem, is required to fully follow the treatment of symplectic geometry given here. Since in these cases the difficulty is not in grasping the statements, this material is left out of the appendices and simply used in the text as needed, though again without proof.

It is not the intention of this text to compete with the treatment of the classical and current literature over the research in the various subtopics of symplectic geometry as can be found, for example, in the books by

Abraham-Marsden [AM], Aebischer et al. [Ae], Guillemin-Sternberg [GS], Hofer-Zehnder [HZ], McDuff-Salamon [MS], Siegel [Si1], Souriau [So], Vaisman [V], Wallach [W] and Woodhouse [Wo]. Instead we have tried to introduce the reader to the material in these sources and, moreover, to follow the work contained in, for example, Gromov [$\mathbf{G r}$] and Kirillov [Ki]. In the hope that this will provide each reader with a starting point into this fascinating area a few parts of chapters 1,2 , and 4 may be skipped by those whose interests lie in physics, and one may begin directly with the sections on Hamiltonian vectorfields, moment maps and quantization.

This text is, with minor changes, a translation of the book "Einführung in die Symplektische Geometrie" (Vieweg, 1998). The production of this text has only been possible through the help of many. U. Schmickler-Hirzebruch and G. Fischer, on the staff of Vieweg-Verlag, have made many valuable suggestions, as has E. Dunne from the American Mathematical Society. My colleagues J. Michaliček, O. Riemenschneider and P. Slodowy, from the Mathematische Seminar of the Universität Hamburg, were always, as ever, willing to discuss these topics. A. Günther prepared one draft of this text, and I. Köwing did a newer draft and also showed great patience for my eternal desire to have something or other changed. I also had very successful technical consultation with F. Berndt, D. Nitschke and R. Schmidt. The last of these went through the German text with great attention and smoothed out at least some of what was rough in the text. I would also thank T. Wurzbacher, W. Foerg-Rob and P. Wagner for carefully reading (parts of) the German text and finding some misprints, wrong signs and other mistakes. The translation was done by M. Klucznik, who had an enormous task in producing very fluent English (at least in my opinion) and a fine layout of my often rather involved German style. It is a great joy for me to thank each of these.
R. Berndt

Bibliography

[AM] Abraham, R., and Marsden, J.E., Foundations of Mechanics, Benjamin-Cummings, Reading, MA, 1978.
[Ae] Aebischer, B., Borer, M., Kälin, M., Leuenberger, Ch., and Reimann, H.M., Symplectic Geometry, Prog. Math., vol. 124, Birkhäuser, Basel, 1994.
[A] Arnold, V.I., Mathematical Methods of Classical Mechanics, Springer, New York, 1978.
[Ar] Artin, E., Geometric Algebra, Interscience Publ., New York, 1957.
[Be] Berndt, R., Darstellungen der Heisenberggruppe und Thetafunktionen, Hamburger Beiträge zur Mathematik, Heft 3, 1988.
[BeS] Berndt, R., and Schmidt, R., Elements of the Representation Theory of the Jacobi Group, Prog. Math., vol. 163, Birkhäuser, Basel, 1998.
[BS] Berndt, R., and Slodowy, P., Seminar über Darstellungen von $S L_{2}(F)$ und $G L_{2}(F), F$ ein lokaler Körper, Hamburger Beiträge zur Mathematik, Heft 20, 1992.
[Bl] Blair, D., Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., vol. 509, Springer, Berlin, 1976.
[Bo] Bourbaki, N., Eléments de Mathématique, Algèbre, Chapitre III: Algèbre multilinéaire. Hermann, Paris, 1948.
[C] Cartan, H., Differential forms, Houghton-Mifflin, Boston, 1970.
[Ca] Cartier, P., Quantum Mechanical Commutation Relations and Theta Functions, in Algebraic Groups and Discontinuous Groups (A. Borel and G.D. Mostow, editors) Proc. Symp. Pure Math., vol. 9, Amer. Math. Soc., Providence, RI, 1966, pp.361-383.
[Ch] Chern, S.S., Complex Manifolds without Potential Theory, Van Nostrand, Princeton, NJ, 1967.
[Ce] Chevalley, C., Théorie des groupes de Lie, Hermann, Paris, 1951.
[CH] Courant, R. and Hilbert, D., Methods of Mathematical Physics, Volume I, Interscience, New York, 1953.
[D] Deligne, P., Equations Différentielles à Points Singuliers Réguliers, Lecture Notes in Math., vol. 163, Springer, Berlin, 1970.
[dC] do Carmo, M., Riemannian Geometry, Birkhäuser, Boston, 1992.
[E] Eichler, M., Introduction to the theory of algebraic numbers and functions, Academic Press, New York, 1966.
[EG] El Gradechi, M.A., Théories classiques et quantiques sur l'espace-temps anti-de Sitter et leurs limites à courbure null, Thèse de Doctorat, Université Paris 7, Paris, 1991.
[FL] Fischer, W., Lieb, I., Funktionentheorie, 7. Auflage. Vieweg, BraunschweigWiesbaden, 1994.
[F] Forster, O., Analysis 1, 3. Auflage. Vieweg, Braunschweig-Wiesbaden, 1984.
[FRF] Forster, O., Lectures on Riemann surfaces, Springer, New York, 1981.
[Go] Godement, R., Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958.
[GW] Goodman, R., and Wallach, N.R., Representations and invariants of the classical groups, Cambridge University Press, 1998.
[Gb] Greub, W., Multilinear Algebra, Springer, New York 1997.
[Gr] Gromov, M., Pseudoholomorphic Curves in Symplectic Manifolds, Invent. Math. 82 (1985), 307-347.
[GS] Guillemin, V., and Sternberg, S., Symplectic Techniques in Physics, Cambridge University Press, 1984.
[HR] Holmann, H., and Rummler, H., Alternierende Differentialformen, Bibbliogr. Inst., Mannheim, 1972.
[HZ] Hofer, H., and Zehnder, E., Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, Basel, 1994.
[Ja] Jacobson, N., Basic Algebra, Freeman, San Francisco, 1974.
[K] Kähler, E., Über eine bemerkenswerte Hermitesche Metrik, Abh. Math. Sem. Univ. Hamburg 9 (1933) 173-186.
[K1] Kähler, E., Einführung in die Theorie der Systeme von Differentialgleichungen, Teubner, Leipzig, 1934.
[K2] Kähler, E., Der innere Differentialkalkül, Rendiconti die Matematica 21 (1962) 425-523.
[Ki] Kirillov, A.A., Elements of the Theory of Representations, Springer, Berlin, 1976.
[Kn] Knapp, A.W., Representation Theory of Semisimple Groups, Princeton University Press, 1986.
[L1] Lang, S., Algebra, Addison-Wesley, Menlo Park, NJ, 1984.
[L2] Lang, S. Fundamentals of Differential Geometry, Springer, New York, 1999.
[L3] Lang, S., Linear Algebra, Springer, New York, 1985.
[L4] Lang, S., $S L_{2}(\mathbb{R})$, Springer, New York, 1989.
[L5] Lang, S., Undergraduate Analysis, Springer, New York, 1983.
[LL] Landau, L.D., and Lifschitz, E.M., The Classical Theory of Fields, AddisonWesley, Reading, MA., 1961.
[LV] Lion, G., and Vergne, M., The Weil Representation, Maslov Index and Theta Series, Prog. Math., vol.6, Birkhäuser, Basel, 1980.
[M] Mackey, G.W., Unitary Group Representations in Physics, Probability, and Number Theory, Benjamin/Cummings, Reading, MA, 1978.
[Ma] Marcus, M., Finite Dimensional Multilinear Algebra (in two parts), Marcel Dekker, New York, 1977.
[ML] Mac Lane, S., Homology, Springer, Berlin, 1963.
[MS] McDuff, D., and Salamon, D.A., Introduction to Symplectic Topology, Oxford University Press, 1995.
[Mu] Mumford, D., Algebraic Geometry, I. Springer, New York 1976.
[Mu1] Mumford, D., Tata Lectures on Theta II, Prog. Math., vol. 28, Birkhäuser, Boston, 1984.
[Mu2] Mumford, D., Tata Lectures on Theta III, Prog. Math., vol. 97, Birkhäuser, Boston, 1991.
[Sa] Satake, I., Algebraic Structures of Symmetric Domains, Iwanami Shoten, Tokyo, and Princeton University Press, Princeton, 1980.
[Sch] Schottenloher, M., Geometrie und Symmetrie in der Physik, Vieweg, Braunschweig/Wiesbaden, 1995.
[Si1] Siegel, C.L., Symplectic Geometry, Academic Press, New York, 1964.
[Si2] Siegel, C.L., Topics in Complex Function Theory, Vol. III. Wiley-Interscience, New York, 1973.
[SM] Siegel, C.L., and Moser, J.K., Lectures on Celestial Mechanics, Springer, Berlin, 1971.
[So] Souriau, J.-M., Structure of Dynamical Systems, A Symplectic View of Physics, Prog. Math., vol. 149, Birkhäuser, Boston, 1997.
[St] Sternberg, S., Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, 1964; 2nd ed., Chelsea, New York, 1983.
[V] Vaisman, I., Symplectic Geometry and Secondary Characteristic Classes, Prog. Math., vol. 72, Birkhäuser, Boston, 1987.
[Wa] Wallach, N.R., Symplectic Geometry and Fourier Analysis, Math. Sci. Press, Brookline, MA, 1977.
[We] Weil, A., Variétés Kählériennes, Hermann Paris, 1957
[We1] Weil, A., Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964) 143-211.
[W] Weyl, H. The Classical Groups. Princeton University Press, 1946.
[Wi] Wigner, E., Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York, 1959.
[Wo] Woodhouse, N., Geometric Quantization, Clarendon Press, Oxford, 1980.

This page intentionally left blank

Index

angular momentum, 104
atlas
of a vector bundle, 145
automorphic factor, 181
basis
complex unitary, 28
dual, 11
L-related unitary, 29
real unitary, 28
related symplectic, 22
symplectic, 12
Bianchi identity, 161
bundle,
characteristic, 87
cotangent, 45, 147
differentiable vector, 146
tangent, 147
vector, 144
canonical form, 12
characteristic line fields, 91
Christoffel symbol, 159
coadjoint orbit, 110
coadjoint cocycle, 96
coadjoint orbit, 54
coboundary operator, 52,172
cocycle identity, 96
cocycle relation, 145
cohomology groups
De Rham, 175
of a group, 172
of a Lie algebra, 52, 174
of a manifold, 175
configuration space, 1,45
conjugation, 53
connection, 48, 158
integrable, 161
contact manifold, 86
weak, 85
contravariant or covariant vector, 149
coordinates, symplectic, 36
cotangent space, 142
covariant derivative, 158
curvature matrix, 161
derivation, 141, 164
diffeomorphism, 139
symplectic, 83,84
differentiable function, 139
differentiable section, 146
differential form
closed, 155
covariant derivative of a, 162
degree 1,148
exact, 155
q th degree, 153
reduced representation, 153
skew symmetric representation, 154
differential system, 56
involutive, 57
differentiation, exterior, 154
dual space, 11
energy function, 74
equations of motion for a charged particle, 75

Euler-Lagrange equation, 2
exponent map, 168
fiber derivative, 102
flow, 41, 156

form

closed of type (1,1), 49
Kähler, 50
left invariant $q, 52$
Liouville, 45
of type (1,1), 49
presymplectic, 85
symplectic, 9,35
fundamental
duality, 72
exact sequence, $78,83,111$
geodesic, 159
group
general linear, 24
Heisenberg, 166
Jacobi, 120
orthogonal, 24
symplectic, 15,24
unitary, 24,28

Hamilton's equations, 3
Hamilton-Jacobi equation, 4
Hamiltonian equations, 74
Hamiltonian function, 3 time dependent, 89
Hamiltonian G-space, 94
Hamiltonian system, 74
completely integrable, 108
harmonic oscillator, 104
Heisenberg algebra, 117
Heisenberg group, 116, 117
horizontal section, 161
hyperbolic pair, 19
hyperbolic plane, 19
infinitesimal generator, 94, 97
inner product, $6,13,72$
integral curve, 6
integral manifold, 57
intertwining operator, 177
isotropy group, 22

Jacobi identity, 163

Lagrange distribution, 132
Lagrange function, 2, 102
left translation, 166
Legendre transformation, 3 lemma

Poincaré's, 155
Schur's, 180
Lie algebra, 163
Lie bracket, 7, 163

Lie derivative
of a differential form, $52,72,156$
of a function, 71
of a vector field, 72, 165
Lie group, 165
manifold
hermitian, 49
Kähler, 45
of the solution of constant energy, 109
real, 1
Riemannian, 101
smooth, 35
symplectic, 35
map,
differentiable, 138
moment, 94
symplectic, 36
map of
tangent and cotangent spaces, 143
vector fields and 1 -forms, 149
matrix, symplectic, 16
metric
Fubini-Study, 64
hermitian, 26, 28
Kähler, 47
Poincaré, 33
Riemannian, 48, 151
ω-compatible pseudohermitian, 26
Minkowski space, 75
moment map
Ad*-equivariant, 96, 105
momentum, 103
morphism, 55
of differentiable manifolds, 138
stable, 17
strongly stable, 17
symplectic, 14
multiplication
exterior, 154
inner, 156
Mumford's criterion, 48
normal form
of bilinear forms, 10
of contact forms, 86
observable, 7
one-parameter subgroup, 168
orientation, 12
orthogonal, 13
phase space, $3,45,88,99$
reduced, 105
Poincaré's lemma, 155
Poisson bracket, 79, 80
position function, 101
potential of a Kähler form, 50, 66
prequantization, 130
primary quantities, 7,130
principle of least action, 2
pseudoholomorphic curve, 68
quantization, 7, 112, 129
full, 130
radical, 18
rank of a bilinear form, 10
regular energy plane, 88
representation
adjoint, 54, 95, 183
coadjoint, 54, 95, 184
continuous, 179
contragredient, 178
induced, 183
infinitesimal, 112, 182
irreducible, 112, 178
left regular, 180
linear, 177
of a Lie algebra, 182
projective, 121, 179
Schrödinger, 118
Schrödinger-Weil, 122
unitary, 179
Weil, 121
right translation, 166
scalar product
Euclidean, 26
hermitian, 24
Siegel upper half plane, 30, 32
skew hermitian operator, 113
space
affine, 23
complex projective, 63, 109, 137
hermitian, 28
homogeneous, 22
hyperbolic, 19
reduced, 105
structure
canonical Euclidian, 24
canonical symplectic, 24
compatible complex, 25
complex, 25, 46
contact, 85
differentiable linear, 146
hermitian, 26
positive compatible complex, 30
structure constants, 164
submersion, 144
subspace
coisotropic, 19, 21
isotropic, 19, 21
Lagrangian, 19, 21
real Lagrangian, 31
symplectic, 19
suspension of a vector field, 90
symplectic
capacity, 69
invariant, 17, 21, 70
operation, 54, 93
radius, 69
reduction, 58, 104
space, standard, 14
transvection, 17
symplectomorphism, 15, 36
tangent field of M^{\prime} along $F_{t}, 36$
tangent space, 35, 139
tensor, 150
Riemannian fundamental, 152
theorem
Darboux's, 42, 85
de Rham's, 175
Darboux's, 36
Frobenius', 57
Groenewold- van Hove, 124
Gromov's, 68
Jacobi's, 83
Liouville's, 76
of Kostant and Souriau, 52, 60
of Stone and von Neumann, 118
Witt's, 21
unit ball, 49
vector
analytic, 182
smooth, 113
vector field
characteristic, 87
differentiable, 146
Hamiltonian, 6, 74
left invariant, 166
local Hamiltonian, 77
vector space
Kähler-, 26
positive Lagrangian, 30
symplectic, 10
Hamiltonian, 6
volume form, 12
Wirtinger calculus, 49

This page intentionally left blank

Symbols

Symplectic vector spaces

$(V, \omega) \quad$ symplectic vector space 14
W^{\perp} to $W \subset V \quad$ the orthogonal space relative to $\omega \quad 22$
$\operatorname{rad} W=W \cap W^{\perp} \quad$ radical of $W \quad 22$
$W^{\text {red }}=W / \operatorname{rad} W \quad$ the symplectic space associated to $W \quad 23$
$L=L^{\perp} \subset V \quad$ Lagrangian subspace $\quad 23$
$\mathcal{L}(V) \quad$ collection of Lagrangian spaces $L \subset V \quad 26$
$\mathcal{T}(L) \quad=\left\{L^{\prime} \in \mathcal{L}(V), L \oplus L^{\prime}=V\right\} \quad 27$
$\mathcal{J}=\mathcal{J}(V, \omega) \quad$ space of ω-compatible positive complex
structures $J \quad 36$
$\mathfrak{H}_{n}=S p_{n}(\mathbb{R}) / U(n)$ Siegel upper half-space $\simeq \mathcal{J}\left(\mathbb{R}^{n}, \omega_{o}\right)$
$h(v, w) \quad=g(v, w)+i \omega(v, w)$
hermitian, Riemannian and outer form 32,55
$J \in \operatorname{Aut} V \quad$ complex structure $\left(J^{2}=-i d\right) \quad 29$

Symplectic manifolds

$$
\begin{array}{lll}
m \in M & \text { point of a differentiable real } & \\
& \text { manifold of dimension } 2 n & \\
\varphi: U \rightarrow \mathbb{R}^{2 n} & \text { chart of a neighborhood } U \subset M & 144 \\
\varphi(m)=(q, p) & \text { symplectic standard coordinates } & 40
\end{array}
$$

$f \in \mathcal{F}(M)$	differentiable function on M	147
$X \in V(M)$	differentiable vector field on $M(=\Gamma(T M))$	155
$\alpha \in \Omega^{q}(M)$	differentiable exterior q-form on M	161
$\omega \in \Omega^{2}(M)$	symplectic form on M, in particular	39
$\omega_{0}=\sum d q_{i} \wedge d p_{i}$	the standard form	40
$\vartheta=\sum p_{i} d q_{i}$	the Liouville form	49
$\omega^{\#}$	fundamental duality $\Omega^{1}(M) \xrightarrow{\sim} V(M)$	78
$\omega^{\text {b }}$	inverse mapping to $\omega^{\#}$	78
$F: M \rightarrow M^{\prime}$	diffeomorphism $m \mapsto F(m)=m^{\prime}$	146
$F_{* m}$	mapping of the tangent vectors $F_{* m}\left(X_{m}\right)=X_{m^{\prime}}^{\prime}$	151
$F_{m^{\prime}}^{*}$	mapping of the 1-forms $F_{m}^{*}\left(\alpha_{m^{\prime}}^{\prime}\right)=\alpha_{m}$	151
$i(X) \alpha$	inner product of $X \in V(M)$ with $\alpha \in \Omega^{q}(M)$	17, 78
$L_{X} f$	Lie derivative of $f \in \mathcal{F}(M)$ by $X \in V(M)$	77
$L_{X} \alpha$	Lie derivative of $\alpha \in \Omega^{q}(M)$	
	by $X \in V(M)$	56, 164
$L_{X} Y=[X, Y]$	Lie derivative of $Y \in V(M)$ by $X \in V(M)$	78, 173
∇	connection	166
$\nabla_{X} \alpha, \nabla_{X} Y$	covariant derivative	166
F_{t}	flow of $X \in V(M)$	45, 165
$\{f, h\}$	Poisson bracket of $f, h \in \mathcal{F}(M)$	85, 86
$X_{f} \in \operatorname{Ham}(M)$	Hamiltonian vector field to $f \in \mathcal{F}(M)$	80
X_{M}	infinitesimal generator of $X \in \mathfrak{g}=$ Lie G	
	and the group operation ϕ	99, 103
$\phi: G \times M \rightarrow M$	with $\phi(g, m)=g m=\phi_{g}(m)=\psi_{m}(g)$	99
$\rho_{g_{0}}=g g_{0}$	right translation of g with g_{0}	174
$\lambda_{g_{0}}=g_{0} g$	left translation of g with g_{0}	174
$\kappa_{g_{0}}=g_{0} g g_{0}^{-1}$	conjugation with g_{0}	57
Φ	moment map	100
Representations		
G	Lie group	173
$\mathfrak{g}=\operatorname{Lie} G$	associated Lie algebra	174
π	continuous representation of a Lie group G	187
π^{*}	associated contragredient representation	186

$d \pi$	associated infinitesimal representation $($ of $\mathfrak{g}=\operatorname{Lie} G)$	120,190
$\hat{\pi}$	representation of a Lie algebra \mathfrak{g} adjoint representation $\operatorname{Ad}(g)=\left(\kappa_{g}\right)_{*}$ Ad Ad *	(thus $\left.=: \operatorname{Ad}_{g}\right)$ coadjoint representation $\operatorname{Ad}^{*}(g)=\left(\operatorname{Ad}\left(g^{-1}\right)\right)^{*}$ $\left(\right.$ (thus $\left.=\operatorname{Ad}_{g-1}^{*}\right)$
π_{S}	Schrödinger representation of the Heisenberg group $H(\mathbb{R})$	57,191
π_{W}	Weil representation (projective representation) of $S L_{2}(\mathbb{R})$	126
$\pi_{S W}$	Schrödinger--Weil representation (projective	130
$\sigma: \mathcal{F}^{0} \rightarrow \mathfrak{g}$	representation) of the Jacobi group $G^{J}(\mathbb{R})$	130
	part of the quantization mapping, A, assigning to each $f \in \mathcal{F}^{0}$ a self-adjoint operator \hat{f}	120

Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups.
This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds.
Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group.
Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations.
Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.

[^0]: ${ }^{1}$ I want to thank P. Slodowy for pointing out to me that the name symplectic group, which eventually gave rise to the term symplectic geometry, was proposed by H. Weyl, [W], 1938, in his book, The Classical Groups (see footnote on p. 165). The symplectic group was also called the complex group or an Abelian linear group, this last to honor Abel, who was the first to study them.

