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Preface 

This book provides an introduction to differential geometry, with principal 
emphasis on Riemannian geometry. It can be used as a course for second-
year graduate students. The main theorems are presented in complete detail, 
but the student is expected to provide the details of certain arguments. We 
assume that the reader has a good working knowledge of multidimensional 
calculus and point-set topology. 

Many readers have been exposed to the elementary theory of curves and 
surfaces in three-space, including tangent lines and tangent planes. But 
these techniques are not necessary prerequisites for this book. 

In this book we work abstractly, so that the notion of tangent space does 
not necessarily have a concrete realization. Nevertheless we will eventually 
prove Whitney's theorem asserting that any abstract n-dimensional manifold 
may be imbedded in the Euclidean space MP if p is sufficiently large. 

In order to develop the abstract theory, one must work hard at the be
ginning, to develop the notion of local charts, change of charts, and atlases. 
Once these notions are understood, the subsequent proofs are much easier, 
allowing one to obtain great generality with maximum efficiency. For exam
ple, the proof of Stokes' theorem—which is difficult in a concrete context— 
becomes transparent in the abstract context, reducing to the computation 
of the integral of a derivative of a function on a closed interval of the real 
line. 

In Chapter I we find the first definitions and two important theorems, 
those of Whitney and Sard. 

Chapter II deals with vector fields and differential forms. 

IX 



X Preface 

Chapter III concerns integration of vector fields, then extends to p-plane 
fields. We cite in particular the interesting proof of the Frobenius theorem, 
which proceeds by mathematical induction on the dimension. 

Chapter IV deals with connections, the most difficult notion in differen
tial geometry. In Euclidean space the notion of parallel transport is intuitive, 
but on a manifold it needs to be developed, since tangent vectors at distinct 
points are not obviously related. Loosely speaking, a connection defines an 
infinitesimal direction of motion in the tangent bundle, or, equivalently, a 
connection defines a sort of directional derivative of a vector field with re
spect to another vector. This concrete notion of connection is rarely taught 
in books on connections. In our work we devote ten pages to developing these 
ideas, together with the related notions of torsion, curvature and a working 
knowledge of the covariant derivative. All of these notions are essential to 
the study of real or complex manifolds. 

In Chapter V we specialize to Riemannian manifolds. The viewpoint 
here is to deduce global properties of the manifold from local properties of 
curvature, the final goal being to determine the manifold completely. 

In Chapter VI we explore some problems in partial differential equations 
which are suggested by the geometry of manifolds. 

The last three chapters are devoted to global notation, specifically to us
ing the covariant derivative instead of computing in local coordinates with 
partial derivatives. In some cases we are able to reduce a page of computa
tion in local coordinates to just a few lines of global computation. We hope 
to further encourage the use of global notation among differential geometers. 

The aim of this book is to facilitate the teaching of differential geometry. 
This material is useful in other fields of mathematics, such as partial differ
ential equations, to name one. We feel that workers in PDE would be more 
comfortable with the covariant derivative if they had studied it in a course 
such as the present one. Given that this material is rarely taught, one may 
ask why? We feel that it requires a substantial amount of effort, and there 
is a shortage of good references. Of course there are reference books such as 
Kobayashi and Nomizu [5], which can be consulted for specific information, 
but that book is not written as a text for students of the subject. 

The present book is made to be teachable on a chapter-by-chapter basis, 
including the solution of the exercises. The exercises are of varying difficulty, 
some being straightforward or solved in existing literature; others are more 
challenging and more directly related to our approach. 

This book is an outgrowth of a course which I presented at the Universite 
Paris VI. I have included many problems and a number of solutions. Some 
of these originated from examinations in the course. I am very grateful to 
my friend Mark Pinsky, who agreed to read the manuscript from beginning 
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to end. His comments allowed me to make many improvements, especially in 
the English. I would like to thank also one of my students, Sophie Bismuth, 
who helped me to prepare the final draft of this book. 
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Notation 

Basic Notation 

We use the Einstein summation convention. 
Positive means strictly positive. 
Nonnegative means positive or zero. 
Compact manifold means compact manifold without boundary unless we say otherwise. 
N is the set of positive integers, n G N. 
R n is the Euclidean n-space, n > 2, with points x = (x1 ,x2, ...,xn), x1 € R, the set of real 
numbers. 
When it is not otherwise stated, a coordinate system {x*}i<i<n

 m ^ n ( o r (x,y,z,t) in R4) is 
chosen to be orthonormal. 
We often write d% for d/dxi and d%j for didj. 
Sometimes we write Vij for V i V j . 
]a, b[ or (a, b) means an open interval in R. (a, b) may also be the point of R2 whose coordinates 
are a and b. 

Notation Index 

Ck , C°°, Cw differentiate 
function. 0.23, 0.26 
manifold. 1.6 

CZ=n\/(n-p)\p\ 
d exterior differential. 2.24, 2.25 
df differential of / . 0.26 
dV Riemannian volume element. 5.23 
DXY or D(X,Y) 4.2 
dx* 0.21, 2.25 
d(P, Q) distance from P to Q. 5.4 
E = {x e R n | x1 < 0} 2.34 
S is the Euclidean metric 5.2 
expp(X) 5.11 
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f(x) differential of / at x. 0.23 
g Riemannian metric. 5.1 
gij,gli the components of g 5.5 
Cx Lie derivative with respect to X. 3.4 
Mn or M manifold of dimension n. 1.1 
(M n , p ) Riemannian manifold. 5.1 
0{n) 2.45 
Fn(R) real projective space. 1.9 
R{X,Y) 4.7 

4ki 4-7, 5.8 
Rijkl 5.8 
Rij, R 5.9 
Sn the sphere of dimension n 
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TP(M) 2.3 
T(M) 2.5 
T*(M) 2.5 
T(X,Y) 4.6 
T(n,p) 1.20 
T(n,p,k) 1.21 
T r

s(M) 2.14 
r ( M ) space of vector fields on M. 2.14 
rjj- Christoffel symbols. 4.3, 4.5, 5.5 
A Laplacian operator. 5.18 
dM boundary of M. 2.35, 2.36 
S codifferential. 5.17 
6^ Kronecker's symbol. 0.14, 5.5 
77 5.15 

AP(M) 2.14 
A(Af) 2.22 
/i Lebesgue measure. 0.28 
cr(X, Y) sectional curvature. 5.9 
$* 2.6 
$* 2.7, 2.23 
X the Euler-Poincare characteristic. 5.22 
ujn the volume of the unit sphere Sn 

Vu 4.13 
V y = V 4 F W <g> d/dx* 4.4 
(d/dxl)p tangent vector at P. 2.3 
[X,Y] bracket. 2.15 
• adjoint operator. 5.1 
® tensor product. 0.13 
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