Fourier Analysis

Javier Duoandikoetxea

Translated and revised by
David Cruz-Uribe, SFO

Graduate Studies in Mathematics
Volume 29

American Mathematical Society
Selected Titles in This Series

29 Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001
25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000
24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000
23 Alberto Candel and Lawrence Conlon, Foliations I, 2000
21 John B. Conway, A course in operator theory, 2000
20 Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
19 Lawrence C. Evans, Partial differential equations, 1998
18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997
17 Henryk Iwaniec, Topics in classical automorphic forms, 1997
14 Elliott H. Lieb and Michael Loss, Analysis, 1997
12 N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996
11 Jacques Dixmier, Enveloping algebras, 1996 Printing
10 Barry Simon, Representations of finite and compact groups, 1996
9 Dino Lorenzini, An invitation to arithmetic geometry, 1996
8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
7 Gerald J. Janusz, Algebraic number fields, second edition, 1996
6 Jens Carsten Jantzen, Lectures on quantum groups, 1996
5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995
4 Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993
1 Ethan Akin, The general topology of dynamical systems, 1993
This page intentionally left blank
Fourier Analysis
This page intentionally left blank
Fourier Analysis

Javier Duoandikoetxea

Translated and revised by
David Cruz-Uribe, SFO

Graduate Studies
in Mathematics
Volume 29

American Mathematical Society
Providence, Rhode Island
ANÁLISIS DE FOURIER
by Javier Duoandikoetxea Zuazo

2000 Mathematics Subject Classification. Primary 42B15, 42B20, 42B25.

ABSTRACT. The purpose of this book is to develop Fourier analysis using the real variable methods introduced by A. P. Calderón and A. Zygmund. It begins by reviewing the theory of Fourier series and integrals, and introduces the Hardy-Littlewood maximal function. It then treats the Hilbert transform and its higher dimensional analogues, singular integrals. In subsequent chapters it discusses some more recent topics: H^1 and BMO, weighted norm inequalities, Littlewood-Paley theory, and the $T1$ theorem. At the end of each chapter are extensive references and notes on additional results.

Library of Congress Cataloging-in-Publication Data
Duoandikoetxea, Zuazo, Javier.
 [Análisis de Fourier. English]
Fourier analysis / Javier Duoandikoetxea ; translated and revised by David Cruz-Uribe.
p. cm. — (Graduate studies in mathematics ; v. 29)
Includes bibliographical references and index.
1. Fourier analysis. I. Title. II. Series.
QA403.5.D8313 2000 515’.2433—dc21 00-064301

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2001 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/
10 9 8 7 6 5 4 3 2 14 13 12 11 10 09
Dedicated to the memory of
José Luis Rubio de Francia, my teacher and friend,
who would have written a much better book than I have
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Preliminaries</td>
<td>xvii</td>
</tr>
<tr>
<td>Chapter 1. Fourier Series and Integrals</td>
<td>1</td>
</tr>
<tr>
<td>§1. Fourier coefficients and series</td>
<td>1</td>
</tr>
<tr>
<td>§2. Criteria for pointwise convergence</td>
<td>2</td>
</tr>
<tr>
<td>§3. Fourier series of continuous functions</td>
<td>6</td>
</tr>
<tr>
<td>§4. Convergence in norm</td>
<td>8</td>
</tr>
<tr>
<td>§5. Summability methods</td>
<td>9</td>
</tr>
<tr>
<td>§6. The Fourier transform of L^1 functions</td>
<td>11</td>
</tr>
<tr>
<td>§7. The Schwartz class and tempered distributions</td>
<td>12</td>
</tr>
<tr>
<td>§8. The Fourier transform on L^p, $1 < p \leq 2$</td>
<td>15</td>
</tr>
<tr>
<td>§9. The convergence and summability of Fourier integrals</td>
<td>17</td>
</tr>
<tr>
<td>§10. Notes and further results</td>
<td>19</td>
</tr>
<tr>
<td>Chapter 2. The Hardy-Littlewood Maximal Function</td>
<td>25</td>
</tr>
<tr>
<td>§1. Approximations of the identity</td>
<td>25</td>
</tr>
<tr>
<td>§2. Weak-type inequalities and almost everywhere convergence</td>
<td>26</td>
</tr>
<tr>
<td>§3. The Marcinkiewicz interpolation theorem</td>
<td>28</td>
</tr>
<tr>
<td>§4. The Hardy-Littlewood maximal function</td>
<td>30</td>
</tr>
</tbody>
</table>
§5. The dyadic maximal function 32
§6. The weak (1, 1) inequality for the maximal function 35
§7. A weighted norm inequality 37
§8. Notes and further results 38

Chapter 3. The Hilbert Transform 49
§1. The conjugate Poisson kernel 49
§2. The principal value of \(1/x \) 50
§3. The theorems of M. Riesz and Kolmogorov 51
§4. Truncated integrals and pointwise convergence 55
§5. Multipliers 58
§6. Notes and further results 61

Chapter 4. Singular Integrals (I) 69
§1. Definition and examples 69
§2. The Fourier transform of the kernel 70
§3. The method of rotations 73
§4. Singular integrals with even kernel 77
§5. An operator algebra 80
§6. Singular integrals with variable kernel 83
§7. Notes and further results 85

Chapter 5. Singular Integrals (II) 91
§1. The Calderón-Zygmund theorem 91
§2. Truncated integrals and the principal value 94
§3. Generalized Calderón-Zygmund operators 98
§4. Calderón-Zygmund singular integrals 101
§5. A vector-valued extension 105
§6. Notes and further results 107

Chapter 6. \(H^1 \) and \(BMO \) 115
§1. The space atomic \(H^1 \) 115
§2. The space \(BMO \) 117
Contents xi

§3. An interpolation result 121
§4. The John-Nirenberg inequality 123
§5. Notes and further results 126

Chapter 7. Weighted Inequalities 133
§1. The A_p condition 133
§2. Strong-type inequalities with weights 137
§3. A_1 weights and an extrapolation theorem 140
§4. Weighted inequalities for singular integrals 143
§5. Notes and further results 147

Chapter 8. Littlewood-Paley Theory and Multipliers 157
§1. Some vector-valued inequalities 157
§2. Littlewood-Paley theory 159
§3. The Hörmander multiplier theorem 163
§4. The Marcinkiewicz multiplier theorem 166
§5. Bochner-Riesz multipliers 168
§6. Return to singular integrals 172
§7. The maximal function and the Hilbert transform along a parabola 178
§8. Notes and further results 184

Chapter 9. The T1 Theorem 195
§1. Cotlar’s lemma 195
§2. Carleson measures 197
§3. Statement and applications of the T1 theorem 201
§4. Proof of the T1 theorem 205
§5. Notes and further results 212

Bibliography 217

Index 219
Preface

Fourier Analysis is a large branch of mathematics whose point of departure is the study of Fourier series and integrals. However, it encompasses a variety of perspectives and techniques, and so many different introductions with that title are possible. The goal of this book is to study the real variable methods introduced into Fourier analysis by A. P. Calderón and A. Zygmund in the 1950’s.

We begin in Chapter 1 with a review of Fourier series and integrals, and then in Chapters 2 and 3 we introduce two operators which are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform. Even though they appeared before the techniques of Calderón and Zygmund, we treat these operators from their point of view. The goal of these techniques is to enable the study of analogs of the Hilbert transform in higher dimensions; these are of great interest in applications. Such operators are known as singular integrals and are discussed in Chapters 4 and 5 along with their modern generalizations. We next consider two of the many contributions to the field which appeared in the 1970’s. In Chapter 6 we study the relationship between H^1, BMO and singular integrals, and in Chapter 7 we present the elementary theory of weighted norm inequalities. In Chapter 8 we discuss Littlewood-Paley theory; its origins date back to the 1930’s, but it has had extensive later development which includes a number of applications. Those presented in this chapter are useful in the study of Fourier multipliers, which also uses the theory of weighted inequalities. We end the book with an important result of the 80’s, the so-called $T1$ theorem, which has been of crucial importance to the field.

At the end of each chapter there is a section in which we try to give some idea of further results which are not discussed in the text, and give
references for the interested reader. A number of books and all the articles cited appear only in these notes; the bibliography at the end of the text is reserved for books which treat in depth the ideas we have presented.

The material in this book comes from a graduate course taught at the Universidad Autónoma de Madrid during the academic year 1988-89. Part of it is based on notes I took as a student in a course taught by José Luis Rubio de Francia at the same university in the fall of 1985. It seemed to have been his intention to write up his course, but he was prevented from doing so by his untimely death. Therefore, I have taken the liberty of using his ideas, which I learned both in his class and in many pleasant conversations in the hallway and at the blackboard, to write this book. Although it is dedicated to his memory, I almost regard it as a joint work. Also, I would like to thank my friends at the Universidad Autónoma de Madrid who encouraged me to teach this course and to write this book.

The book was first published in Spanish in the Colección de Estudios of the Universidad Autónoma de Madrid (1991), and then was republished with only some minor typographical corrections in a joint edition of Addison-Wesley/Universidad Autónoma de Madrid (1995). From the very beginning some colleagues suggested that there would be interest in an English translation which I never did. But when Professor David Cruz-Uribe offered to translate the book I immediately accepted. I realized at once that the text could not remain the same because some of the many developments of the last decade had to be included in the informative sections closing each chapter together with a few topics omitted from the first edition. As a consequence, although only minor changes have been introduced to the core of the book, the sections named “Notes and further results” have been considerably expanded to incorporate new topics, results and references.

The task of updating the book would have not been accomplished as it has been without the invaluable contribution of Professor Cruz-Uribe. Apart from reading the text, suggesting changes and clarifying obscure points, he did a great work on expanding the above mentioned notes, finding references and proposing new results to be included. The improvements of this book with respect to the original have certainly been the fruit of our joint work, and I am very grateful to him for sharing with me his knowledge of the subject much beyond the duties of a mere translator.

Javier Duoandikoetxea

Bilbao, June 2000
Acknowledgment: The translator would like to thank the Ford Foundation and the Dean of Faculty at Trinity College for their generous support during the academic year 1998–99. It was during this year-long sabbatical that this project was conceived and the first draft of the translation produced.
This page intentionally left blank
Preliminaries

Here we review some notation and basic results, but we assume that they are mostly well known to the reader. For more information, see, for example, Rudin [14].

In general we will work in \(\mathbb{R}^n \). The Euclidean norm will be denoted by \(| \cdot |\). If \(x \in \mathbb{R}^n \) and \(r > 0 \),

\[
B(x, r) = \{ y \in \mathbb{R}^n : |x - y| < r \}
\]

is the ball with center \(x \) and radius \(r \). Lebesgue measure in \(\mathbb{R}^n \) is denoted by \(dx \) and on the unit sphere \(S^{n-1} \) in \(\mathbb{R}^n \) by \(d\sigma \). If \(E \) is a subset of \(\mathbb{R}^n \), \(|E| \) denotes its Lebesgue measure and \(\chi_E \) its characteristic function: \(\chi_E(x) = 1 \) if \(x \in E \) and 0 if \(x \notin E \). The expressions \textit{almost everywhere} or \textit{for almost every} \(x \) refer to properties which hold except on a set of measure 0; they are abbreviated by “a.e.” and “a.e. \(x \).”

If \(a = (a_1, \ldots, a_n) \in \mathbb{N}^n \) is a multi-index and \(f : \mathbb{R}^n \to \mathbb{C} \), then

\[
D^a f = \frac{\partial^{|a|} f}{\partial x_1^{a_1} \cdots \partial x_n^{a_n}},
\]

where \(|a| = a_1 + \cdots + a_n \) and \(x^a = x_1^{a_1} \cdots x_n^{a_n} \).

Let \((X, \mu) \) be a measure space. \(L^p(X, \mu) \), \(1 \leq p < \infty \), denotes the Banach space of functions from \(X \) to \(\mathbb{C} \) whose \(p \)-th powers are integrable; the norm of \(f \in L^p(X, \mu) \) is

\[
\|f\|_p = \left(\int_X |f|^p \, d\mu \right)^{1/p}
\]
$L^\infty(X, \mu)$ denotes the Banach space of essentially bounded functions from X to \mathbb{C}; more precisely, functions f such that for some $C > 0$,

$$\mu(\{x \in X : |f(x)| > C\}) = 0.$$

The norm of f, $\|f\|_{\infty}$, is the infimum of the constants with this property. In general X will be \mathbb{R}^n (or a subset of \mathbb{R}^n) and $d\mu = dx$; in this case we often do not give the measure or the space but instead simply write L^p. For general measure spaces we will frequently write $L^p(X)$ instead of $L^p(X, \mu)$; if μ is absolutely continuous and $d\mu = w \, dx$ we will write $L^p(w)$. The conjugate exponent of p is always denoted by p':

$$\frac{1}{p} + \frac{1}{p'} = 1.$$

The triangle inequality on L^p has an integral version which we refer to as Minkowski’s integral inequality and which we will use repeatedly. Given measure spaces (X, μ) and (Y, ν) with σ-finite measures, the inequality is

$$\left(\int_X \left(\int_Y |f(x, y)|^p \, d\nu(y) \right)^{\frac{1}{p}} \, d\mu(x) \right)^{\frac{1}{p}} \leq \int_Y \left(\int_X |f(x, y)|^p \, d\mu(x) \right)^{\frac{1}{p}} \, d\nu(y).$$

The convolution of two functions f and g defined on \mathbb{R}^n is given by

$$f \ast g(x) = \int_{\mathbb{R}^n} f(y) g(x - y) \, dy = \int_{\mathbb{R}^n} f(x - y) g(y) \, dy$$

whenever this expression makes sense.

The spaces of test functions are $C^\infty_c(\mathbb{R}^n)$, the space of infinitely differentiable functions of compact support, and $\mathcal{S}(\mathbb{R}^n)$, the so-called Schwartz functions. A Schwartz function is an infinitely differentiable function which decreases rapidly at infinity (more precisely, the function and all its derivatives decrease more rapidly than any polynomial increases). Given the appropriate topologies, their duals are the spaces of distributions and tempered distributions. It makes sense to define the convolution of a distribution and a test function as follows: if $T \in C^\infty_c(\mathbb{R}^n)'$ and $f \in C^\infty_c(\mathbb{R}^n)$, then

$$T \ast f(x) = \langle T, \tau_x \hat{f} \rangle,$$

where $\hat{f}(y) = f(-y)$ and $\tau_x f(y) = f(x + y)$. Note that this definition coincides with the previous one if T is a locally integrable function. Similarly, we can take $T \in \mathcal{S}(\mathbb{R}^n)'$ and $f \in \mathcal{S}(\mathbb{R}^n)$. We denote the duality by either $\langle T, f \rangle$ or $T(f)$ without distinction.

References in square brackets are to items in the bibliography at the end of the book.

Finally, we remark that C will denote a positive constant which may be different even in a single chain of inequalities.
Bibliography

Index

A_1 weights, 38, 134, 140
A_p weights, 133, 135
and BMO, 151
factorization of, 136, 150
reverse Hölder inequality, 137, 151
two weight condition, 154
A_{∞} weights, 139, 149, 152
and doubling measures, 149
Abel-Poisson summability, 10, 18, 25, 32
Ahlfors-David curves, 213
A_p^* (strong A_p weights), 152
and strong maximal function, 153
factorization of, 153
approximation of the identity, 25, 31
atoms, 115

Banach-Steinhaus theorem, 6
Besicovitch-Morse covering lemma, 44
Besov spaces, 185
Bessel functions, 171
bilinear Hilbert transform, 214
BMO (bounded mean oscillation), 117
and A_p weights, 151
and Carleson measures, 199
and commutators, 131
and interpolation, 121
dual of H^1, 129
logarithmic growth, 123, 125
Bochner’s theorem, 23
Bochner-Hecke formula, 85
Bochner-Riesz multipliers, 47, 169, 187
and restriction theorems, 189
critical index of, 169

C_0, 14, 131
C^∞_c, xviii

C^∞_c, 201
C^p, 215
Calderón
commutators, 100, 203, 213
conjecture, 214
Calderón-Zygmund
decomposition, 34
weighted, 150
operators, 98, 100
maximal, 102
norm inequalities, 99
singular integrals, 102
theorem, 91
Carleson measures, 197
and BMO, 199
and Poisson integrals, 198
Carleson-Hunt theorem, 9, 18
Cauchy integral, 99, 109, 205, 213
Cesàro summability, 9, 18, 25, 32, 168
and Gibbs phenomenon, 21
Chebyshev inequality, 27
Coifman-Fefferman inequality, 152
commutators, 131
conjugate function, 61, 155
conjugate Poisson kernel, 50, 62
convolution, xviii
Fourier transform of, 11
Cotlar’s
inequality, 56, 102, 147
lemma, 114, 195
covering lemmas, 31, 44
Besicovitch-Morse, 44
Vitali-type, 44
Index

decomposing rearrangement, 40
weighted, 152
differential operators, 80, 83, 88, 113
Dini's criterion, 3
Dini-type condition, 93, 107
Dirichlet
criterion, 2
kernel, 3, 18
problem, 11, 19
distribution function, 28
distributions, xviii
homogeneous, 71
tempered, xviii, 13
doubling measures, 44, 109
and A_∞ weights, 149
du Bois-Reymond theorem, 6
dyadic cubes, 33
dyadic spherical maximal function, 178
eelliptic operator, 82, 114
extrapolation theorem, 141
Fejér kernel, 9, 18
Fourier series, 2, 61
almost everywhere convergence, 9
coefficients, 2
uniqueness of, 10
conjugate, 62
convergence in norm, 8, 62, 68
divergence, 6, 9
Gibbs phenomenon, 21
multiple, 20, 67, 112
multipliers of, 67
of L^1 functions, 9
of L^2 functions, 9
of continuous functions, 6
partial sum, 2, 67
pointwise convergence, 2
summability methods, 9, 25, 32
Fourier transform, 11
almost everywhere convergence, 18
eigenfunctions, 22, 85
inversion formula, 13
of L^2 functions, 15
of L^p functions, 16
of finite measures, 14, 23
of tempered distributions, 14
partial sum operator, 17, 59, 67
properties, 11
restriction theorems, 188
and Bochner-Riesz multipliers, 189
summability methods, 17, 188
fractional integral operators, 88
and BMO, 130
and H^1, 130
and fractional maximal function, 90, 130
Gauss-Weierstrass
kernel, 19
summability, 18, 25, 32
Gibbs phenomenon, 21
good-λ inequality, 121
weighted, 144, 152
gradient condition, 91

H^1, 116, 127
and interpolation, 129
H^1_M, atomic H^1, 116
H^p (Hardy spaces), 126
and grand maximal function, 127
and Lusin area integral, 128
atomic decomposition, 128
dual spaces, 129
non-tangential maximal function, 127
on spaces of homogeneous type, 128
Hardy operator, 39
Hausdorff-Young inequality, 16, 21, 41
heat equation, 19
Hedberg's inequality, 89
Helson-Szegő condition, 148
Hermite functions, 22
Hilbert transform, 49, 51
along a parabola, 179
and BMO, 120
and H^1, 116
and multipliers, 58
bilinear, 214
directional, 74, 86
$L \log L$ estimates, 66
maximal, 56, 76
norm inequalities, 52, 197
of L^1 functions, 55, 65
of characteristic functions, 54, 68
pointwise convergence, 55
size of constants, 54, 64
truncated, 55, 64, 197
weighted inequalities, 155
Hörmander
condition, 91
for Calderón-Zygmund operators, 99
for vector-valued singular integrals, 106
on spaces of homogeneous type, 109
multiplier theorem, 164, 190

interpolation
analytic families of operators, 22
and BMO, 121
and H^1, 129
Marcinkiewicz, 29
and L^p,q (Lorentz spaces), 41
size of constants, 30
Riesz-Thorin, 16
Index

John-Nirenberg inequality, 123
 converse, 125
Jordan’s criterion, 3
Kakeya maximal function, 46
Kakeya set, 47
 kernel
 conjugate Poisson, 50, 62
 Dirichlet, 3, 18
 Fejér, 9, 18
 Gauss-Weierstrass, 19
 Poisson, 11, 19, 49, 61
 standard, 99
Kolmogorov
 and divergent Fourier series, 9
 lemma, 102
 theorem, 52, 62
L^p, xvii
L^∞, xviii
$L^p(B)$, 105
$L^p(w)$ (weighted L^p), 133
L^p_1, 90, 163
$L^{p,q}$ (Lorentz spaces), 41, 112
L^q, Δ, 163
Laplacian (Δ), 80, 88
Lebesgue
 differentiation theorem, 36, 46
 number, 7
 point, 36
Lipschitz spaces, 114, 129
Littlewood-Paley theory, 159, 185
 weighted, 186
localization principle, 4
Lusin area integral, 128
Marcinkiewicz
 interpolation
 and $L^{p,q}$ (Lorentz spaces), 41
 interpolation theorem, 29
 multiplier theorem, 166, 186, 190
maximal functions
 along a parabola, 179
 directional, 74, 87
 dyadic, 33
 and sharp maximal function, 121, 144
 dyadic spherical, 178
 fractional, 89, 130
 grand, and H^p spaces, 127
Hardy-Littlewood, 30, 133
 $L \log L$ estimates, 37, 42
 and approximations of the identity, 31
 and dyadic maximal function, 35
 as vector-valued singular integrals, 111
 non-centered, 30, 133
 norm inequalities, 31, 35
 on BMO, 129
 reverse (1, 1) inequality, 42
 size of constants, 43, 75
 weighted norm inequalities, 37, 135,
 137, 152, 154
 weights involving, 37, 134, 140, 156
Kakeya, 46
 non-tangential, 45
 and H^p spaces, 127
 one-sided, 40
 rough, 74, 87
 sharp, 117, 121, 130, 144
 and singular integrals, 143, 152
 spherical, 191
 weighted norm inequalities, 192
 strong, 45
 $L \log L$ estimates, 46
 weighted norm inequalities, 152
 weights involving, 153
 with different measures, 44, 153
maximal operator of a family of linear
 operators, 27, 56, 75, 147, 152
 method of rotations, 74, 84, 86, 179, 214
Minkowski’s integral inequality, xviii
multiplier theorems
 Hörmander, 164, 190
 Marcinkiewicz, 166, 186, 190
 multipliers, 58, 66, 163
 Bochner-Riesz, 47, 169, 187
 and restriction theorems, 189
 critical index of, 169
 of Fourier series, 67
 weighted norm inequalities, 164, 190
 non-isotropic dilations, 108
 non-tangential approach regions, 45
 nonhomogeneous spaces, 109
operator algebras, 80, 86
Orlicz spaces, 42, 66
orthogonality relations, 2
para-acc cretive functions, 215
parabolic operators, 108, 178
paraproducts, 210
Plancherel theorem, 15
Poisson
 integrals, 19, 49, 70
 and H^p functions, 126
 and Carleson measures, 198
 non-tangential maximal function, 45,
 127
 kernel, 11, 19, 49, 61
 conjugate, 50, 62
 summation formula, 20
potential
 logarithmic, 70
 Newtonian, 70
principal value
of $1/x$, 50
of $|x|^{-n-\delta}$, 97
pseudo-differential operators, 85, 113
pseudo-metric, 109
Rademacher functions, 177
restriction theorems, 188
and Bochner-Riesz multipliers, 189
reverse Hölder inequality, 137, 151
reverse Jensen inequality, 150
Riemann localization principle, 4
Riemann-Lebesgue lemma, 4, 11
Riesz
potential, see also fractional integral operators
theorem, 52, 62
transforms, 76, 110, 150
and H^1, 116, 127
and differential operators, 81
Riesz-Thorin interpolation theorem, 16
rising sun lemma, 40

S, xviii, 12
S', 13
Schwartz class, xviii, 12
singular integrals, 69, 91
and BMO, 118
and H^1, 116
and VMO, 131
and Littlewood-Paley theory, 172, 192
and pseudo-differential operators, 113
and the Hilbert transform, 70
as convolution with tempered distributions, 69
maximal, 75, 147, 152
norm inequalities, 75, 79, 84, 87, 91, 93,
97, 106, 172, 176, 192, 203
on curves, 193
size of constants, 110
strongly singular, 112
truncated, 55, 94, 110
vector-valued, 106, 157
and maximal functions, 111
weighted norm inequalities, 144, 145,
147, 150, 152, 155, 159, 192
with even kernel, 77
with odd kernel, 75
with variable kernel, 84
Sobolev
embedding theorem, 90
space, 90, 114, 163
\textit{BMO} and exponential integrability, 130
spaces of homogeneous type, 109
and H^p spaces, 128
spherical harmonics, 85
square functions, 176
standard kernel, 99
sublinear operator, 28
summability methods
Abel-Poisson, 10, 18, 25, 32
Cesàro, 9, 18, 25, 32, 168
and Gibbs phenomenon, 21
from Bochner-Riesz multipliers, 188
Gauss-Weierstrass, 18, 25, 32

T_1 theorem, 203
T_b theorem, 215
tangential approach regions, 45
Tomas-Stein theorem, 189
translation invariant operators, 66
Triebel-Lizorkin spaces, 185
uniform boundedness principle, 6
Van der Corput’s lemma, 183
Vitali-type covering lemma, 44
VMO (vanishing mean oscillation), 131
and commutators, 132
and singular integrals, 131

WBP (weak boundedness property), 202
weak (p, q) inequalities, 26
almost everywhere convergence, 27
weights
and A_1, 38, 134, 140
and A_{∞}, 139, 149, 152
and A_p, 133, 135
and A_p^*, 152
Young’s inequality, 17, 22
Fourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderón and Zygmund. The text was born from a graduate course taught at the Universidad Autónoma de Madrid and incorporates lecture notes from a course taught by José Luis Rubio de Francia at the same university.

Motivated by the study of Fourier series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, H^1, BMO spaces, and the T_1 theorem, are discussed.

Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between H^1, BMO, and singular integrals; Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the T_1 theorem, which has been of crucial importance in the field.

This volume has been updated and translated from the Spanish edition that was published in 1995. Minor changes have been made to the core of the book; however, the sections, “Notes and Further Results” have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.