A Modern Theory of Integration

Robert G. Bartle

Graduate Studies in Mathematics
 Volume 32

To Carolyn with love and thanks

This page intentionally left blank

Selected Titles in This Series

32 Robert G. Bartle, A modern theory of integration, 2001
31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001

30 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001
29 Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
Rolf Berndt, An introduction to symplectic geometry, 2001
Thomas Friedrich, Dirac operators in Riemannian geometry, 2000
Helmut Koch, Number theory: Algebraic numbers and functions, 2000
Alberto Candel and Lawrence Conlon, Foliations I, 2000
Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 2000

John B. Conway, A course in operator theory, 2000
Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
Lawrence C. Evans, Partial differential equations, 1998
Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997
Henryk Iwaniec, Topics in classical automorphic forms, 1997
Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997
15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997
Elliott H. Lieb and Michael Loss, Analysis, 1997
Paul C. Shields, The ergodic theory of discrete sample paths, 1996
N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996

Jacques Dixmier, Enveloping algebras, 1996 Printing
Barry Simon, Representations of finite and compact groups, 1996
Dino Lorenzini, An invitation to arithmetic geometry, 1996
Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
Gerald J. Janusz, Algebraic number fields, second edition, 1996
Jens Carsten Jantzen, Lectures on quantum groups, 1996
Rick Miranda, Algebraic curves and Riemann surfaces, 1995
Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, 1994
2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993

Ethan Akin, The general topology of dynamical systems, 1993

This page intentionally left blank

A Modern Theory of Integration

Robert G. Bartle
University of Illinois, Urbana-Champaign
Eastern Michigan University, Ypsilanti

Graduate Studies
in Mathematics

Volume 32

American Mathematical Society
Providence, Rhode Island

Editorial Board

James Humphreys (Chair)
David Saltman
David Sattinger
Ronald Stern

2000 Mathematics Subject Classification. Primary 26-01;
Secondary 26A39, 26A42, 28-01.

Abstract

This book gives an introduction to integration theory via the "generalized Riemann integral" due to Henstock and Kurzweil. The class of integrable functions coincides with those of Denjoy and Perron and includes all conditionally convergent improper integrals as well as the Lebesgue integrable functions. Using this general integral the author gives a full treatment of the Lebesgue integral on the line.

The book is designed for students of mathematics and of the natural sciences and economics. An understanding of elementary real analysis is assumed, but no familiarity with topology or measure theory is needed. The author provides many examples and a large collection of exercises-many with solutions.

Library of Congress Cataloging-in-Publication Data
Bartle, Robert Gardner, 1927-
A modern theory of integration / Robert G. Bartle. p. cm. - (Graduate studies in mathematics ; v. 32)
Includes bibliographical references and indexes.
ISBN 0-8218-0845-1 (alk. paper)
1. Integrals. I. Title. II. Series.

QA312 .B32 2001
$515^{\prime} .42-\mathrm{dc} 21$
00-065063

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.
© 2001 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.
(®) The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/

Contents

Preface ix
Part 1. Integration on compact intervals 1

1. Gauges and integrals 3
2. Some examples 23
3. Basic properties of the integral 41
4. The Fundamental Theorems of Calculus 55
5. The Saks-Henstock lemma 75
6. Measurable functions 89
7. Absolute integrability 101
8. Convergence theorems 115
9. Integrability and mean convergence 135
10. Measure, measurability and multipliers 151
11. Modes of convergence 171
12. Applications to calculus 187
13. Substitution theorems 209
14. Absolute continuity 229
Part 2. Integration on infinite intervals 247
15. Introduction to Part 2 249
16. Infinite intervals 255
17. Further re-examination 275
18. Measurable sets 299
19. Measurable functions 323
20. Sequences of functions 347
Appendixes
A Limits superior and inferior 365
B Unbounded sets and sequences 371
C The arctangent lemma 373
D Outer measure 375
E Lebesgue's differentiation theorem 379
F Vector spaces 383
G Semimetric spaces 387
H The Riemann-Stieltjes integral 391
I Normed linear spaces 401
Some partial solutions 413
References 443
Index 449
Symbol Index 457

Preface

It is hardly possible to overemphasize the importance of the theory of integration to mathematical analysis; indeed, it is one of the twin pillars on which analysis is built. Granting that, it is surprising that new developments continue to arise in this theory, which was originated by the great Newton and Leibniz over three centuries ago, made rigorous by Riemann in the middle of the nineteenth century, and extended by Lebesgue at the beginning of the twentieth century.

The purpose of this monograph is to present an exposition of a relatively new theory of the integral (variously called the "generalized Riemann integral", the "gauge integral", the "Henstock-Kurzweil integral", etc.) that corrects the defects in the classical Riemann theory and both simplifies and extends the Lebesgue theory of integration. Not wishing to tell only the easy part of the story, we give here a complete exposition of a theory of integration, initiated around 1960 by Jaroslav Kurzweil and Ralph Henstock. Although much of this theory is at the level of an undergraduate course in real analysis, we are aware that some of the more subtle aspects go slightly beyond that level. Hence this monograph is probably most suitable as a text in a first-year graduate course, although much of it can be readily mastered by less advanced students, or a teacher may simply skip over certain proofs.

The principal defects in the Riemann integral are several. The most serious one is that the class of Riemann integrable functions is too small. Even in calculus courses, one needs to extend the integral by defining "improper integrals", either because the integrand has a singularity, or because the interval of integration is infinite. In addition, by taking pointwise limits of Riemann integrable functions, one quickly encounters functions that are no
longer Riemann integrable. Even when one requires uniform convergence, there are problems on infinite intervals.

Other difficulties center around the Fundamental Theorem(s) of Calculus. The Newton-Leibniz formula that we learn in calculus is that

$$
\int_{a}^{x} f(t) d t=F(x)-F(a) \quad \text { for all } \quad x \in[a, b]
$$

when f and F are related by the formula $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$; that is, when F is a primitive (or antiderivative) of f on $[a, b]$. Unfortunately, this "theorem" is not always valid; or at least, it requires further hypotheses to be satisfied. The first disappointment a student encounters is that not every Riemann integrable function has a primitive - not only that he or she can't find one, but that such a primitive may not exist. The second potential disappointment (often not learned), is that even when a function has a primitive on $[a, b]$, the function may not be Riemann integrable. Thus, not only is the derivative of the integral not always the function in the integrand (which is perhaps not such a surprise if integration is to be a "smoothing process"), but the integral of the derivative does not always exist.

Towards the end of the nineteenth century, many mathematicians attempted to remedy some of these defects. The most successful was Henri Lebesgue, whose theory enabled one to remove the restriction that the integrand be bounded and the interval be compact. In addition his theory enlarged the class of integrable functions, and gave more satisfactory conditions under which one could take limits, or differentiate under the integral sign.

Unfortunately, Lebesgue's theory did little to simplify the Fundamental Theorem. Spurred by the desire to get an integral in which every derivative was integrable, in the early part of the twentieth century Arnaud Denjoy and Oskar Perron developed integrals that solved this problem - in two very different ways. Surprisingly, their integrals turned out to be equivalent! Moreover, the Denjoy-Perron integrable functions also include conditionally convergent integrals, such as the important Dirichlet integral

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x
$$

that are not included in the Lebesgue theory.
However, there is a price that had to be paid even for the Lebesgue integral: one must first construct a rather considerable theory of measure of sets in \mathbb{R}. Consequently, it has long been thought that an adequate theory of
integration is necessarily based on notions that are beyond the undergraduate level of real analysis. (The demands imposed by the Denjoy or Perron theories are considerably greater!) However, Kurzweil and Henstock's integral, which is equivalent to the Denjoy-Perron integral, has a definition that is a slight modification of the definition of the classical Riemann integral. This new integral, which is still not well known, often comes as a surprise to mathematicians whose work is based on the Lebesgue theory.

One of the virtues of the presentation here is that no measure theory and virtually no topology is required. While some familiarity with the Riemann theory is anticipated as a background, we do not require a mastery of that theory. The only prerequisites are that the reader have good understanding of $\varepsilon-\delta$ arguments common in a first serious course in real analysis - at the level of the book by the author and D. R. Sherbert [B-S], for example. It will be seen that, by modifying very slightly the definition of the Riemann integral, one obtains an integral that (1) integrates all functions that have primitives, (2) integrates all Riemann integrable functions, (3) integrates all Lebesgue integrable functions, (4) integrates (without further limiting processes) all functions that can be obtained as "improper integrals", and (5) integrates all Denjoy-Perron integrable functions. In addition, this integral has theorems that generalize the Monotone Convergence Theorem and the Dominated Convergence Theorems associated with the Lebesgue integral; thus, it possesses satisfactory convergence theorems.

Although the author has long been familiar with the Riemann and Lebesgue integrals, he has become acquainted only recently with the theory presented here by reading the (relatively) few expositions of it. Most notable of these are: the monograph of McLeod [McL], the relevant chapters in the book of DePree and Swartz [DP-S], the booklets of Henstock [H-5] and P.-Y. Lee [Le-1] and the treatise of Mawhin [M]. In addition, some research articles have been found to be useful to the author. Since work on this monograph was started, the books of Gordon [G], Pfeffer [P], Schechter [Sch] and Lee and Výborný [L-V] have been published; we strongly recommend these books. The author makes few claims for originality, and will be satisfied if this monograph is successful in helping to make this theory better known to the mathematical world.

In answer to questions about the title of the book, we chose the word "modern" to suggest that we think the theory given here is appropriate for present-day students who will need to combine important concepts from the past with their new ideas. It is not likely that these students will be able to make significant progress in analysis by successive abstraction or further
axiomatization. It is our opinion that a student who thinks of the integral only as a linear functional on a class of functions, but who doesn't know what AC and BV mean has been deprived of fundamental tools from the past. We also think that those whose integration theory does not include the Dirichlet integral are doomed to miss some of the most interesting parts of analysis.

A few words about the structure of this book are in order. We have chosen to develop rather fully the theory of the integral of functions defined on a compact interval in Part 1, since we think that is the case of greatest interest to the student. In addition, this case does not exhibit some of the technical problems that, in our opinion, only distract and impede the understanding of the reader. In Part 2, we show that this theory can be extended to functions defined on all of the real line. We then develop the theory of Lebesgue measure from the integral, and we make a connection with some of the traditional approaches to the Lebesgue integral.

We believe that the generalized Riemann integral provides a good background for integration theory, since the class of integrable functions is so inclusive. However, there is no doubt that the collection of Lebesgue integrable (i.e., absolutely integrable) functions remains of central importance for many applications. Therefore, we have taken pains to ensure that this class of functions is thoroughly discussed. We have developed the theory sufficiently far that, after reading this book, a reader should be able to continue a study of some of the more specialized (or more general) aspects of the theory of integration, or the applications of the integral to other parts of mathematical analysis.

Since we believe that one learns best by doing, we have included a large collection of exercises; some are very easy and some are rather demanding. Partial solutions of almost one-third of these exercises are given in the back of the book. A pamphlet, designed for instructors, with partial solutions of all of the exercises can be obtained from the publisher.

In preparing this manuscript, we have obtained useful suggestions from a number of people; we wish to thank Professors Nicolae Dinculeanu, Ivan Dobrakov, Donald R. Sherbert and, especially, Eric Schechter. Two groups of students at Eastern Michigan University worked through the early stages of the initial material and made useful suggestions.

We also wish to thank the staff of the American Mathematical Society for their admirable patience in awaiting the completion of the manuscript and for expeditiously turning it into a published book.

A number of people helped us to obtain photographs and permissions for use here. We wish to thank Dr. Patrick Muldowney of the University of Ulster for permission to use his photograph (taken in August 1988) of Professors Henstock and Kurzweil, Professor Bernd Wegner and Herr H. J. Becker of the University Library in Göttingen for the portrait of Riemann, Dr. D. J. H. Garling and Ms. Susan M. Oakes of the London Mathematical Society for the photograph of Lebesgue, Professor Jean-Pierre Kahane and M. Cl. Pouret of the Academy of Sciences in Paris for the photograph of Denjoy, and Professor Jürgen Batt and Frau Irmgard Hellerbrand for her photograph of her grandfather, Otto Perron.

September 14, 2000
Robert G. Bartle
Urbana and Ypsilanti

THE GREEK ALPHABET

A	α	Alpha	N	ν	Nu
B	β	Beta	Ξ	ξ	Xi
Γ	γ	Gamma	O	o	Omicron
Δ	δ	Delta	Π	π	Pi
E	ε	Epsilon	P	ρ	Rho
Z	ζ	Zeta	Σ	σ	Sigma
H	η	Eta	T	τ	Tau
Θ	θ, ϑ	Theta	Υ	v	Upsilon
I	ι	Iota	Φ	φ	Phi
K	κ	Kappa	X	χ	Chi
Λ	λ	Lambda	Ψ	ψ	Psi
M	μ	Mu	Ω	ω	Omega

References

[A-B] Asplund, Edgar, and Lutz Bungart, A first course in integration, Holt, Rinehart and Winston, New York, 1966.
[B-1] Bartle, Robert G., The elements of integration and Lebesgue measure, Wiley Classics Library, John Wiley \& Sons Inc., New York, 1995.
[B-2] , The elements of real analysis, Second Edition, John Wiley \& Sons Inc., New York, 1974.
[B-3] , An extension of Egorov's theorem, Amer. Math. Monthly 87 (1980), no. 8, 628-633.
[B-4] _ , A convergence theorem for generalized Riemann integrals, Real Analysis Exchange 20 (1994-95), no. 1, 119-124.
[B-5] _-, Return to the Riemann integral, Amer. Math. Monthly 103 (1996), no. 8, 625-632.
[B-6] ——, The concept of 'negligible variation', Real Analysis Exchange 23 (1997-98), no. 1, 47-48.
[B-J] -_ and James T. Joichi, The preservation of convergence of measurable functions under composition, Proc. Amer. Math. Soc. 12 (1961), 122-126.
[B-S] _ and Donald R. Sherbert, Introduction to real analysis, Third edition, John Wiley \& Sons Inc., New York, 2000.
[Br-1] Bruckner, Andrew M., Differentiation of integrals, Slaught Memorial Paper, no. 12, Math. Assn. America, Washington, 1971. Supplement to Amer. Math. Monthly 78 (1971), no. 9.
[Br-2] _ , Differentiation of real functions, CRM Monograph Series, no. 4, American Mathematical Society, Providence, 1994.
[BBT] Bruckner, Andrew M., Judith B. Bruckner and Brian M. Thomson, Real analysis, Prentice-Hall, Upper Saddle River, NJ, 1997.
[C-D] Čelidze, V. G. and A. G. Džvaršeıšvili, The theory of the Denjoy integral and some applications, English translation by P. S. Bullen, World Scientific Pub. Co., Singapore, 1989.
[D-1] Denjoy, Arnaud, Une extension de l'intégrale de M. Lebesgue, C. R. Acad. Sci. Paris 154 (1912), 859-862.
[DP-S] DePree, John D., and Charles W. Swartz, Introduction to analysis, John Wiley \& Sons Inc., New York, 1988.
[Dd] Dudley, Richard M., Real analysis and probability, Wadsworth \& Brooks/Cole, Pacific Grove, CA, 1989.
[D-S] Dunford, Nelson, and Jacob T. Schwartz, Linear operators, Part I, Interscience Pub., Inc., New York, 1958.
[Fo-1] Foran, James, Fundamentals of real analysis, Marcel Dekker, New York, 1991.
[G-1] Gordon, Russell A., Another look at a convergence theorem for the Henstock integral, Real Analysis Exchange 15 (1989-1990), no. 2, 724-728.
[G-2] - , A general convergence theorem for non-absolute integrals, J. London Math. Soc. (2) 44 (1991), 301-309.
[G-3] _ , The integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Math., vol. 4, American Math. Soc., Providence, 1994.
[G-3] _ , An iterated limits theorem applied to the Henstock integral, Real Analysis Exchange 21 (1995-96), no. 2, 774-781.
[G-4] _, The use of tagged partitions in elementary analysis, Amer. Math. Monthly 105 (1998), no.2, 107-117 and 886.
[Ha] Hake, Heinrich, Über de la Vallée Poussins Ober- und Unterfunktionen einfacher Integrale und die Integraldefinitionen von Perron, Math. Annalen 83 (1921), 119-142.
[Hl] Halmos, Paul R., Measure theory, D. Van Nostrand, New York, 1950; Second edition, Springer-Verlag, New York, 1988.
[Hw-1] Hawkins, Thomas, Lebesgue's theory of integration, its origins and development, University of Wisconsin Press, Madison, 1970. Reprinted by Amer. Math. Soc., Chelsea Series, 1998.
[H-1] Henstock, Ralph, The efficiency of convergence factors for functions of a continuous real variable, J. London Math. Soc. 30 (1955), 273286.
[H-2] ——, Definitions of Riemann type of the variational integrals, Proc. London Math. Soc. (3)11 (1961), 402-418.
[H-3] - Theory of integration, Butterworths, London, 1963.
[H-4] ——, A Riemann-type integral of Lebesgue power, Canadian J. Math. 20 (1968), 79-87.
[H-5] ——, Lectures on the theory of integration, World Scientific Pub. Co., Singapore, 1988.
[H-6] _, The general theory of integration, Clarendon Press, Oxford University Press, New York, 1991.
[He-St] Hewitt, Edwin, and Karl Stromberg, Real and abstract analysis, Springer-Verlag, New York, 1965.
[Hb-1] Hobson, E. W., The theory of functions of a real variable, Volume 1, Third edition, Cambridge University Press, 1927. Reprint, Dover Pub. Inc., New York, 1957.
[Hb-2] Hobson, E. W., The theory of functions of a real variable, Volume 2, Second edition, Cambridge University Press, 1926. Reprint, Dover Pub. Inc., New York, 1957.
[K-1] Kurzweil, Jaroslav, Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J. 7(82) (1957), 418-446.
[K-2] —_, Nichtabsolut konvergente Integrale, Teubner-Texte, Band 26, Teubner Verlag, Leipzig, 1980.
[K-3] ——, Appendix, in Konrad Jacob's book Measure and integral, Academic Press, New York, 1978.
[K-4] -_, On multiplication of Perron-integrable functions, Czechoslovak Math. J. 23(98) (1973), 542-566.
[K-5] -, Henstock-Kurzweil integration: Its relation to topological vector spaces, World Scientific Pub. Co., Singapore, 2000.
[K-*] (By J. Jarník, Š. Schwabik, M. Tvrdý and I. Vrkoč) Sixty years of Jaroslav Kurzweil, Czech. Math. J. 36 (111) (1986), 147-166.
[L-1] Lebesgue, Henri, Intégrale, longueur, aire, Annali Mat. Pura Appl. 7 (3) (1902), 231-359. Reprint, Chelsea Pub. Co., New York, 1973.
[L-2] - Leçons sur l'intégration et la recherche des fonctions primitives, Gauthiers-Villars, Paris, 1904; 2nd ed., 1928. Reprinted by Amer. Math. Soc., Chelsea Series, no. 267.
[Le-1] Lee Peng-Yee, Lanzhou lectures on Henstock integration, World Scientific Pub. Co., Singapore, 1989.
[Le-2] - , On ACG* functions, Real Analysis Exchange 15 (1989-90), no. 2, 754-759.
[L-V] Lee Peng-Yee and Rudolf Výborný, The integral. An easy approach after Kurzweil and Henstock, Cambridge University Press, Cambridge, 2000.
[M-1] Mawhin, Jean, Analyse. Fondements, techniques, évolution, De Boeck Université, Brussels, 1992. Second edition, 1997.
[McL] McLeod, Robert M., The generalized Riemann integral, Carus Monograph, No. 20, Mathematical Association of America, Washington, 1980.
[McS-1] McShane, Edward J., A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals, Memoirs Amer. Math. Soc., Number 88 (1969).
[McS-2] -, A unified theory of integration, Amer. Math. Monthly 80 (1973), no. 4, 349-359.
[McS-3] —— Unified integration, Academic Press, Inc., Orlando, FL, 1983.
[N-1] Natanson, I. P., Theory of functions of a real variable, English translation (by Leo F. Boron), Volume 1, F. Ungar Pub. Co., New York, 1955. Fourth printing, 1974.
[Ni] Nielsen, Ole A., An introduction to integration and measure theory, Canadian Math. Soc., John Wiley \& Sons, New York, 1997.
[Pe-1] Perron, Oskar, Über den Integralbegriff, Sitzber. Heidelberg Akad. Wiss., Math.-Naturw. Klasse Abt. A 16 (1914), 1-16.
[Ps-1] Pesin, Ivan N., Classical and modern integration theories, English transl., Academic Press, New York, 1970.
[P-1] Pfeffer, Washek F., The Riemann approach to integration: Local geometric theory, Cambridge Univ. Press, Cambridge, 1993.
[Ph-1] Phillips, Esther R., An introduction to analysis and integration theory, Revised edition, Dover Pub. Inc., New York, 1984.
[R] Riemann, Bernhard, Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe, Read in 1854, published in 1867. Republished in Riemann's Gesammelte Math. Werke, 1892, pp. 227271. Reprint, Dover Pub. Inc., New York, 1953.
[S-1] Saks, Stanisław, Sur les fonctions d'intervalle, Fundamenta Math. 10 (1927), 211-224.
[S-2] —, Theory of the integral, 2nd English edition, Warsaw, 1937. Reprint, Dover Pub. Co., New York, 1964.
[Sr] Sargent, W. L. C., On the integrability of a product, J. London Math. Soc. 23 (1948), 28-34.
[Sch] Schechter, Eric, Handbook of analysis and its foundations, Academic Press, San Diego, 1997. (See also CD-ROM Version 1.)
[Schw] Schwabik, Štefan, Generalized ordinary differential equations, World Scientific Pub. Co., Singapore, 1992.
[S-V] Serrin, James B., and Dale E. Varberg, A general chain rule for derivatives and the change of variables formula for the Lebesgue integral, Amer. Math. Monthly 76 (1969), 514-520.
[St] Stromberg, Karl R., An introduction to classical real analysis, Wadsworth Inc., Belmont, CA, 1981.
[T-1] Talvila, Erik, Limits and Henstock integrals of products, Real Analysis Exchange 25 (1999-2000), no. 2, 907-918.
[T-2] , The Riemann-Lebesgue lemma and some divergent integrals, (to appear).
[V] Výborný, Rudolf, Some applications of Kurzweil-Henstock integration, Math. Bohemica 118 (1993), no. 4, 425-441.
[Wa] Wang Pujie, Equi-integrability and controlled convergence for the Henstock integral, Real Analysis Exchange 19 (1993-94), no. 1, 236241.
[W-Z] Wheeden, Richard L., and Antoni Zygmund, Measure and integral, Marcel Dekker, Inc., New York, 1977.
[X-L] Xu Dongfu, and Lu Shipan, Henstock integrals and Lusin's condition (N), Real Analysis Exchange 15 (1987-88), no. 2, 451-453.
[Z] Zygmund, Antoni, Trigonometrical series, Monografje Matematyczne, Warsaw, 1935. Reprint, Dover Pub. Inc., New York, 1955.

Index

a-primitive, of a function, 56, 276
a.e., almost everywhere, 30

Abel, Niels H., 269
summation formula, 168
Test, for integrals, 269
Test, for series, 168
Absolute continuity, of indefinite integrals, 161, 336, 356
of a charge or measure, 340
for a function, 231, 295, 402, 409
uniform, 178, 246, 356
Absolute integrability, characterization of, 104, 281
comparison test for, 107
of a function, 37, Section 7 (esp. 101), 258

Absolutely convergent series, space of, 147, 166
$A C_{\delta}, A C G_{\delta}$ function, 243
Additivity, of the integral over intervals, 44
of the measure function, 302
Algebra, of sets, 318
Almost everywhere, definition, 30
Almost uniform,
Cauchy sequence, 172, 347
convergence, 171, 347
Antiderivative, of a function, 56
Approximation Theorem, for sets, 312-315

Arcsine function, 71
Arctangent function, 71
Lemma, 373
Arzelà, Cesare, 116
Arzelà-Young Theorem, 165
Ascoli, Giulio, 7
Baire, René, 320
Category Theorem, 320
Ball, closed, 4
open, 4
Banach, Stefan, 239, 407
Banach-Zarecki Theorem, 239
Base point, of an indefinite integral, 56, 276
Beta function, 95, 222
Bielawski, Marie, 217
Bonnet Mean Value Theorem, 194, 204
Borel sets, 311
Borel-Cantelli Lemma, 156, 306, 362
Botsko, Michael W., 163
Bounded interval, 4
sequences, space of, 146
variation, function, 103, 294, 402, 408
sequences, 166
c-primitive, of a function, 56, 63 ff ., 276
c.e., countably many exceptions, 30

Cantelli Lemma, 156, 306, 362
Cantor set, 64 ff .
Cantor-Lebesgue function, 65 ff ., 86, 230
Category Theorem, of Baire, 320
Cauchy Criterion, 43, 267, 389, 392
dominating function, 350
in mean, 139, 353
in measure, 174, 352
tail, 359
Cauchy-Bunyakovskiǐ-Schwarz Inequality, 148
Change of variable theorems, Section 13 (241-242), 291 ff .
Characteristic function of a set, 97 , 299
Characterization, of absolute integrability, 104, 233
for indefinite integrals, 83 ff .
of measurability of functions, 156 , 324
of null functions, $82,279,313$
Charge, on a measure space, 338
Chartier-Dirichlet Test, 269
Chebyshev Inequality, 166
Closed ball, 4
interval, 4
neighborhood, 3
Compact sets, approximation by, 315
properties, 308
Compactification of $\mathbb{R}, 255$
Comparison Test, for absolute integrability, 107, 282
Complement, relative, 3, 303
Completeness, in $\mathcal{L}(I), 142,287$
of $\mathcal{M}(I)$ under semimetric, 183, 184
in certain seminormed spaces, 407 ff .
Complex-valued functions, $21,39,54$, $73,87,113,134$
Condition (N), of Luzin, 238
Conditional integrability, of a function, 101
Congugate pairs, 405
Consistency Theorem, 14
Continuity, at infinity, 276
of the indefinite integral, 78
with a parameter, 199
Continuous functions, integrability of, 50
Controlled convergence, 129
Convergence in mean, 124, 139, 177 ff ., 284, 353 ff .
in measure, 174,352
in probability, 174
Convergent series, space of, 168
Countable additivity of the measure, 154, 303 ff .
subadditivity of the measure, 154 , 303 ff .
Counting measure, 337
Cousin, Pierre, 11, 257
Theorem of, 11, 19
Covering, dyadic, 311
Vitali, 79, 377
Darboux, Gaston, 7
Decreasing sequence of functions, 119
Degenerate interval, 4
(δ, E)-fine subpartition, 76,83
δ-fine partition, 9
partition, existence of, 11
subpartition, 76
δ-ring, of sets, 317
Denjoy, Arnaud, 15, 58, 74, 242, 243
Density, of continuous functions in $\mathcal{L}(I), 144,287$
of step functions in $\mathcal{L}(I), 143,287$
Derived number, 379
Descriptive characterization, 233
Devil's staircase, 65
Diagrams for convergence, 177, 354, 355
Difference set, 321
Differentiation, of indefinite integrals, 61 ff .
Lebesgue's Theorem, 229, 381
Theorem for $\mathcal{R}^{*}(I), 80,278$
with a parameter, 199
Dirac measure, 337
Direct image, 325
Dirichlet, Peter G. L., 29
function, 15, 29, 68, 71
Test for integrals, 269
Test for series, 168

Disjoint intervals, 3
Distance, between numbers, 3
between a point and a set, 3
Division (= partition), of an interval, 4
Dominated Convergence Theorems, 123, 133, 148, 177, 284, 354
Dominating function, 350
Du Bois-Reymond, Paul, 270
Dyadic Covering Lemma, 311
Egorov (= Egoroff), Dmitriĭ Fedorovich, 172, 347 ff .
Theorem, 172, 289, 354
Empty tail, property, 349, 359
Endpoint, of an interval, 4
Equi-integrability Theorem, 125, 284
Equicontinuity, of a family of functions, 133-134
Equifinite family of functions, 356
Equivalence Theorem, 13
classes, 140
Essentially bounded function, 167, 406
Exceptional set, 30, 56, 276
Extended real number system, 255
f-primitive, of a function, 56, 276
F_{σ}-set, 310
f.e., finitely many exceptions, 30

Fatou, Pierre, 121
Lemma, 122, 132, 147, 183, 284
Fineness Theorem, 11, 19, 257
Finite measure space, 337
tail property, 349, 360
Fischer, Ernst, 142
Fleissner, Richard J., 163
Full subpartition, 250
Function, \mathcal{A}-measurable, 328 ff .
\mathcal{A}-simple, 328
absolutely continuous, 231, 344-345, 402, 409
absolutely integrable, 37, 101, 403
antiderivative of, 56
arcsine, 71
arctangent, 71
beta, 95
Borel measurable, 328
bounded variation, 103, 281, 294, 402, 408
Cantor-Lebesgue, 65 ff., 86
characteristic, 97, 299
complex-valued, 21, 39, 54, 73, 87, 113, 134
conditionally integrable, 101
Dirichlet, $15,29,68,71$
essentially bounded, 167, 406, 411
generated by a series, 33
greatest integer, 73
indefinite integral, 334 ff .
indicator, 299
maximum, 91
measurable, Section 6, 280, Section 19
middle, 91
minimum, 91
negative part, 91
nonabsolutely integrable, 33 ff., 101
null, 30
oscillation of, 244, 246, 340
positive part, 91
primitive of, 56, 276
regulated, 48
semicontinuous, 343
signum, 57, 70
simple, 158, 328
singular, 65,235
square integrable, 148
step, 26 ff., 48, 279, 323
Thomae, 29, 71
translate of, 51
Fundamental Theorems, for integrals, Section 4 (esp. 58-63), 272, 277
G_{δ}-set, 310
Gauge, on an interval, $8,250 \mathrm{ff}$., 256
Generalized Riemann Integral, 12 ff ., Section 15, 258
Gordon, Russell A., 125, 127, 161, 236, 243, 284

Hake, Heinrich, 195, 265
Theorem, 128, 195 ff ., 264 ff .
Harnack, Axel, 231

Henstock, Ralph, 2, 7
Lemma (see Saks-Henstock), Section 5
Hilbert, David, 406
space, 406
Hölder, Otto, 404
Inequality, 404
Identification of equivalent functions, 140
Image, direct, 325
inverse, 325
Improper integrals, 195 ff ., 259, 264
Increasing sequences of functions, 119
Sequence Theorem, 137, 286
Indefinite integral, as a set function, 334 ff .
base point of, 56, 276
characterization of, 84 ff .
of a function, $56,159,276$
Inequality,
Cauchy-Bunyakovskiǐ-Schwarz, 148
Chebyshev, 166
Minkowski, 405
Schwarz, 148
Inner measure, 375
Integrability, of continuous functions, 50
of measurable functions, 94
of monotone functions, 50
of regulated functions, 48
of step functions, 48
Theorem, 135, 286
uniform, 178
Integrable function, measurability of, 94
set, 97, 300
Integral, generalized Riemann, 12 ff ., Section 15, 258 ff.
improper, 195 ff., 259, 264
Lebesgue, 16, 258
Lebesgue-Stieltjes, 398
McShane, 17
on a measure space, 339
properties of, Section 3, 41 ff .
refinement Riemann-Stieltjes, 398
Riemann, definition of, 12

Riemann-Stieltjes, 161, Appendix H
upper and lower, 7
Integration, with a parameter, 198 ff ., 291
of derivatives, 58 ff .
by parts, $67,187-192,240,290,394$
with a parameter, 198 ff .
Integrator function, 392
Interior point, of a set, 319
Interval, bounded, 4
closed, 4, 256
compact, 4
infinite, 256
length of, 5
nonoverlapping, 4
open, 4, 256
unbounded, 249, 256
Interval gauge, 20, 217
Invariance Theorem, 51, 315
Inverse image, 325
Jordan, Camille, 104
Theorem for BV, 104, 111
Kurzweil, Jaroslav, 2, 7, 124, 410
Lebesgue, Henri, 16, 40
Decomposition Theorem for BV, 237, 297
Differentiation Theorem, 229, 294, 381
Dominated Convergence Theorem, 123, 133, 177, 284, 354
measure, Sections 10 and 18
Lebesgue-Stieltjes measure, 338
integral, 398
Leibniz, Theorem of, 201
Length, of an interval, 5
Levi, Beppo, 118
Theorem, 118, 138, 287
Lieb, Elliott, 147
Limit, of a sequence of sets, 155
Theorem, with a parameter, 198
Limit inferior,
of a sequence of reals, 366,372
of a sequence of sets, 154
Limit superior,
of a function at a point, 343
of a sequence of reals, 366,372
of a sequence of sets, 154
Linearity, of the integral, 41, 53
Local absolute continuity, 295
bounded variation, 294
Lu Shipan, 240
Luzin (= Lusin), Nikolaĭ Nikolaevich, 173, 238, 289, 333
M-convergent sequence, 361
Maximum, of functions, 91
McLeod, Robert M., 127, 217
McShane, Edward J., 16
Mean Cauchy sequence, 142, 353
convergence, 124, 139, 177 ff ., 284, 353 ff .
Mean Value Theorem, for integrals, 54, 193-195, 204, 290
Bonnet, 194, 204, 291
for Riemann-Stieltjes integral, 395
Measurable function, Sections 6 and 19, 280
function, integrability of, 94
space, 327
Limit Theorem, 136, 286
Measurable-Closed Set Theorem, 314
Measurable-Open Set Theorem, 313
Measurability, general notion of, 327
of integrable functions, 94
Measure, convergence in, 174 ff ., 352 ff .
counting, 337
Dirac, 337
inner, 375
Lebesgue, Sections 10 and 18
Lebesgue-Stieltjes, 338
of a set, $97,151 \mathrm{ff}$., 300 ff .
on a σ-algebra, $337,358 \mathrm{ff}$.
outer, 375
properties of, 152 ff ., 358 ff .
space, 337
zero, 30
Metric, function, 387
space, 387
Minkowski, Hermann, 405
Inequality, 405
Minimum, of functions, 91

Monotone Convergence Theorem, $119,282 \mathrm{ff}$.
functions, integrability of, 50
property of a measure, 152-154, 302
Monotonicity, of the integral, 43
Multiplier Theorem, 95, 161, 288
Munroe, M. Evans, 176
Nearly uniformly bounded, 183
Negative part, 91
Negligible variation, 83
Newton-Leibniz formula, 55
Nikodým, Otton M., 340
Nonabsolutely integrable function, 33 ff .
Non-Borel set, 311, 342
Nondegenerate interval, 4
Nonoverlapping intervals, 4
Nonmeasurable set, 316, 321
Norm, 139, 401 ff.
Nowhere dense set, 320
Null set, 30, 306, 313
function, 30, 32-33, 82, 278
Open ball, 4
interval, 4
neighborhood, 4
set, 307
Oscillation of a function, at a point, 245, 340
on a set, 243
Osgood, William Fogg, 320
Outer, measure, 375
Parameters in integrands, 198-203
Partial integration, 67, 185 ff., 240
Partition, δ-fine, 9
of an interval, 4
subordinate to a gauge, 9
subpartition, 7
tagged, 5
Perron, Oskar, 15, 58, 88, 195, 242, 243, 265
Positive part, 91
Positivity of the integral, 42
Primitive of a function, 56, 276
Probability, convergence in, 174
Procedure, right-left, 6
Radius, of a ball, 4
of a neighborhood, 4
Radon, Johann, 340
Radon-Nikodým Theorem, 340
Regulated function, 48, 63
integrability of, 48
characterization of, 49
Relativization Theorem, 159
Restriction, of the integral to intervals, 46
Riemann, Bernhard, 15, 22
integral, definition of, 12
sum, 6
Riemann-Lebesgue Lemma, 144, 192, 287
Riemann-Stieltjes integral, 161, 193, Appendix H
Riesz, Frigyes (= Frédéric), 142
Representation Theorem, 340, 391
spaces, 403 ff .
Subsequence Theorem, 143, 175, 352
Riesz-Fischer Theorem, 142
Right-left procedure, 6
Ring, of sets, 317
Saks-Henstock Lemma, Section 5 (esp. 76-78)
Sargent, W. L. C., 163
Schwarz Inequality, 148
Semicontinuous function, 343
Semimetric space, 387 ff .
on $\mathcal{M}, 183,184$
Seminorm, 139, 353, 401 ff .
Series, generating a function, 33
Serrin, James B., 240
Set(s), algebra of, 318
Borel, 311
Cantor, 64 ff ., 309 ff .
closed, 308
compact, 308
difference, 321
exceptional, 30, 276
$F_{\sigma}, 310$
$G_{\delta}, 310$
integrable, in $I, 97$
measure of, in $I, 97$
measure zero, 30, 313
non-Borel, 342
nonmeasurable, 316, 321
null, 30, 313
open, 307
ring of, 317
σ-algebra, of sets, 310,318
σ-finite measure, 337
Signum function, 57, 70
Simple function, on $I, 158$
Singular function, 235
Smith, Henry J. S., 7, 64
Spaces of functions, Appendix I
Square integrable function, 148
Squeeze Theorem, 47
Staircase, Devil's, 65
Steinhaus Theorem, 321
Step function, 26, 48, 279, 323
Stieltjes, Thomas J., 391
integrals, Appendix H
Straddle Lemma, 57, 219
Subadditivity, of a measure, 154, 302 ff .
Subpartition, of an interval, 7, 76 full, 250
Substitution theorems, Section 13, 240-242, 291-294
Subtractive property of a measure, 302, 337
Sum, Riemann, 6
Supremum, essential, 167
Symmetric difference of two sets, 165, 315

Tag, of an interval, 5
Tagged partition, 5
subpartition, 7, 76
Tail, of a sequence of functions, 348
Tchebycheff (see Chebyshev)
Thomae, Karl J., 7, 29
function, 29, 71
Tietze Extension Theorem, 344
Total variation, of a charge, 336, 339
of an indefinite integral, 337
Translate of a function, 51
Translation invariance, 315
Truncate of a function, 113, 143, 287
Uniform absolute continuity, of indefinite integrals, $178,246,356$

Convergence Theorem, for integrals, 117, 282
differentiability, for a family of functions, 129
equicontinuity, for a family of functions, 134
integrability, for a family of functions, 178
Uniqueness Theorem, 13
Unit measure, 337
Varberg, Dale E., 240
Vanishing tail property, 349, 360
Variation, of a charge, 339
negligible, 83
of a function, 103
Vector space, 383 ff .
Vitali, Giuseppe, 231
Convergence Theorems, 178-180, 355-358
Covering Theorem, 79, 242, 377378
nonmeasurable set, 316
Výborný, Rudolf, 83
Weight function, 392
Xu Dongfu, 242
Zero measure (see Null set)

This page intentionally left blank

Symbol Index

$A \cup B, A \cap B, 3$
$A-B, A^{c}, 3$
$\operatorname{dist}(x, y), \operatorname{dist}(x, A), 3$
$B[x ; r], B(x ; r), 3,4$
$l(I), 5$
$\mathcal{P}, 5$
$S(f ; \dot{\mathcal{P}}), 6$
$\dot{\mathcal{P}} \ll \delta, 9$
$\mathcal{R}(I), \mathcal{R}^{*}(I), 12,13$
$\int_{I} f, \int_{a}^{b} f, 14$
$Q(x)$ holds a.e., 30
a.e. $=[$ a.e.], 30
-, $\diamond, 41$
$I_{r}, f_{r}, 51$
$I_{(r)}, f_{(r)}, 51$
$\operatorname{sgn}(x), 57$
$\Gamma, 64$
$\Lambda, 65$
$\lfloor x\rfloor, 73$
$(\delta, E), 76$
$N V_{I}(E), 83$
$\mathcal{M}(I), 89$
$f \vee g, \quad f \wedge g, 91$
$f^{+}, f^{-}, 91$
$\operatorname{mid}\{f, g, h\}, 91$
$B(p, q), 95$
$\mathbf{1}_{E}(x), 97$
$\mathbb{M}(I), \mathbb{I}(I), 97$
$|E|, 97$
$\mathcal{R}^{*}(E), 97$
$\int_{E} f, 97$
$\mathcal{L}(I), 101$
$\operatorname{Var}(\varphi ; I), 103$
$B V(I), 103$
$f^{[n]}, 113$
$\|f\|=\|f\|_{1}, \quad 139$
$l^{\infty}, 146$
$l^{1}, 147$
$\mathcal{L}^{2}(I), 148$
$\|f\|_{2}, 148$
$\liminf _{n \rightarrow \infty} E_{n}, 154$
$\limsup _{n \rightarrow \infty} E_{n}, 154$
$\lim _{n \rightarrow \infty} E_{n}, 155$
$\{f<r\}$, etc., 156
$\nu_{f}, 159$
$E \triangle F, 165$
$N_{1}, N_{\infty}, 166$
$\|f\|_{\infty}, 167$
$c s, b v, 168$
$N_{c s}, N_{b v}, 169$
[a.u.], 172
[meas], [mean], 174
$\left.H\right|_{\alpha} ^{\beta}=H(\beta)-H(\alpha), 187$
(H), 198

向, $\mathcal{P}, 218$
$\grave{\Delta}, \grave{\mathcal{P}}, 218$
$A C(I), 231$
(N), 238
$A C_{\delta}(E), A C G_{\delta}(E), 243$
$\omega_{F}(A), 243$
$\omega_{F}(c), 245$
$\left(\delta, d^{*}\right), 250$
$\left(d_{*}, \delta\right), 251$
$\overline{\mathbb{R}}, 255$
$U[a ; r], 257$
$I_{0}, 275$
$F(\infty), 276$
$L B V(I), 294$
$L A C(I), 295$
$\mathbb{I}(\mathbb{R}), 300$
$\mathbb{M}(\mathbb{R}), 303$
$\lambda(E), 304$
$F_{\sigma}, G_{\delta}, 310$
$\Delta(A), 321$
$f(E), f^{-1}(H), 325$
\#(E), 337
$|\gamma|, 339$
$\limsup _{x \rightarrow c} f, \operatorname{Limsup}_{x \rightarrow c} f, 343$
$T_{n}(r), 348$
$\psi_{n}(x), 350$
$\tilde{T}_{n}(r), 359$
$\tilde{\psi}_{n}(x), 360$
$\limsup _{n \rightarrow \infty} x_{n}$, 366, 372
$\liminf _{n \rightarrow \infty} x_{n}$, 366, 372
$\vartheta(I), 374$
$|A|_{e},|A|_{i}, 375$
$\Sigma(f, \varphi ; \dot{\mathcal{P}}), 391$
$\int_{I} f d \varphi, \int_{a}^{b} f d \varphi, 392$
$C^{1}(I), 402$
$\|\varphi\|_{B V}, 402$
$\|f\|_{*}, 403$
$\mathcal{L}^{p}(I), 403-404$
$\|f\|_{p}, 404$
$\langle f, g\rangle, 406$

