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Preface 

It is hardly possible to overemphasize the importance of the theory of 
integration to mathematical analysis; indeed, it is one of the twin pillars on 
which analysis is built. Granting that, it is surprising that new developments 
continue to arise in this theory, which was originated by the great Newton 
and Leibniz over three centuries ago, made rigorous by Riemann in the 
middle of the nineteenth century, and extended by Lebesgue at the beginning 
of the twentieth century. 

The purpose of this monograph is to present an exposition of a rela­
tively new theory of the integral (variously called the "generalized Riemann 
integral", the "gauge integral", the "Henstock-Kurzweil integral", etc.) that 
corrects the defects in the classical Riemann theory and both simplifies and 
extends the Lebesgue theory of integration. Not wishing to tell only the 
easy part of the story, we give here a complete exposition of a theory of in­
tegration, initiated around 1960 by Jaroslav Kurzweil and Ralph Henstock. 
Although much of this theory is at the level of an undergraduate course in 
real analysis, we are aware that some of the more subtle aspects go slightly 
beyond that level. Hence this monograph is probably most suitable as a text 
in a first-year graduate course, although much of it can be readily mastered 
by less advanced students, or a teacher may simply skip over certain proofs. 

The principal defects in the Riemann integral are several. The most seri­
ous one is that the class of Riemann integrable functions is too small. Even 
in calculus courses, one needs to extend the integral by defining "improper 
integrals", either because the integrand has a singularity, or because the 
interval of integration is infinite. In addition, by taking pointwise limits of 
Riemann integrable functions, one quickly encounters functions that are no 
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longer Riemann integrable. Even when one requires uniform convergence, 
there are problems on infinite intervals. 

Other difficulties center around the Fundamental Theorem(s) of Calcu­
lus. The Newton-Leibniz formula that we learn in calculus is that 

X 

f(t) dt = F{x) - F(a) for all x G [a, 6], 

when / and F are related by the formula F'{x) = f(x) for all x G [a, 6]; that 
is, when F is a primitive (or antiderivative) of / on [a, b]. Unfortunately, 
this "theorem" is not always valid; or at least, it requires further hypotheses 
to be satisfied. The first disappointment a student encounters is that not 
every Riemann integrable function has a primitive — not only that he or 
she can't find one, but that such a primitive may not exist. The second 
potential disappointment (often not learned), is that even when a function 
has a primitive on [a, 6], the function may not be Riemann integrable. Thus, 
not only is the derivative of the integral not always the function in the 
integrand (which is perhaps not such a surprise if integration is to be a 
"smoothing process"), but the integral of the derivative does not always 
exist. 

Towards the end of the nineteenth century, many mathematicians at­
tempted to remedy some of these defects. The most successful was Henri 
Lebesgue, whose theory enabled one to remove the restriction that the in­
tegrand be bounded and the interval be compact. In addition his theory 
enlarged the class of integrable functions, and gave more satisfactory condi­
tions under which one could take limits, or differentiate under the integral 
sign. 

Unfortunately, Lebesgue's theory did little to simplify the Fundamental 
Theorem. Spurred by the desire to get an integral in which every derivative 
was integrable, in the early part of the twentieth century Arnaud Denjoy and 
Oskar Perron developed integrals that solved this problem — in two very 
different ways. Surprisingly, their integrals turned out to be equivalent! 
Moreover, the Denjoy-Perron integrable functions also include conditionally 
convergent integrals, such as the important Dirichlet integral 

sinx , 
ax, 

x 

that are not included in the Lebesgue theory. 

However, there is a price that had to be paid even for the Lebesgue in­
tegral: one must first construct a rather considerable theory of measure of 
sets in R. Consequently, it has long been thought that an adequate theory of 

/ 
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integration is necessarily based on notions that are beyond the undergrad­
uate level of real analysis. (The demands imposed by the Denjoy or Perron 
theories are considerably greater!) However, Kurzweil and Henstock's inte­
gral, which is equivalent to the Denjoy-Perron integral, has a definition that 
is a slight modification of the definition of the classical Riemann integral. 
This new integral, which is still not well known, often comes as a surprise 
to mathematicians whose work is based on the Lebesgue theory. 

One of the virtues of the presentation here is that no measure theory and 
virtually no topology is required. While some familiarity with the Riemann 
theory is anticipated as a background, we do not require a mastery of that 
theory. The only prerequisites are that the reader have good understanding 
of e-8 arguments common in a first serious course in real analysis — at the 
level of the book by the author and D. R. Sherbert [B-S], for example. It 
will be seen that, by modifying very slightly the definition of the Riemann 
integral, one obtains an integral that (1) integrates all functions that have 
primitives, (2) integrates all Riemann integrable functions, (3) integrates 
all Lebesgue integrable functions, (4) integrates (without further limiting 
processes) all functions that can be obtained as "improper integrals", and (5) 
integrates all Denjoy-Perron integrable functions. In addition, this integral 
has theorems that generalize the Monotone Convergence Theorem and the 
Dominated Convergence Theorems associated with the Lebesgue integral; 
thus, it possesses satisfactory convergence theorems. 

Although the author has long been familiar with the Riemann and 
Lebesgue integrals, he has become acquainted only recently with the theory 
presented here by reading the (relatively) few expositions of it. Most no­
table of these are: the monograph of McLeod [McL], the relevant chapters 
in the book of DePree and Swartz [DP-S], the booklets of Henstock [H-5] 
and P.-Y. Lee [Le-1] and the treatise of Mawhin [M]. In addition, some re­
search articles have been found to be useful to the author. Since work on 
this monograph was started, the books of Gordon [G], Pfeffer [P], Schechter 
[Sch] and Lee and Vyborny [L-V] have been published; we strongly recom­
mend these books. The author makes few claims for originality, and will 
be satisfied if this monograph is successful in helping to make this theory 
better known to the mathematical world. 

* * * 

In answer to questions about the title of the book, we chose the word 
"modern" to suggest that we think the theory given here is appropriate for 
present-day students who will need to combine important concepts from the 
past with their new ideas. It is not likely that these students will be able 
to make significant progress in analysis by successive abstraction or further 
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axiomatization. It is our opinion that a student who thinks of the integral 
only as a linear functional on a class of functions, but who doesn't know 
what AC and BV mean has been deprived of fundamental tools from the 
past. We also think that those whose integration theory does not include 
the Dirichlet integral are doomed to miss some of the most interesting parts 
of analysis. 

* * * 

A few words about the structure of this book are in order. We have 
chosen to develop rather fully the theory of the integral of functions defined 
on a compact interval in Part 1, since we think that is the case of greatest 
interest to the student. In addition, this case does not exhibit some of 
the technical problems that, in our opinion, only distract and impede the 
understanding of the reader. In Part 2, we show that this theory can be 
extended to functions defined on all of the real line. We then develop the 
theory of Lebesgue measure from the integral, and we make a connection 
with some of the traditional approaches to the Lebesgue integral. 

We believe that the generalized Riemann integral provides a good back­
ground for integration theory, since the class of integrable functions is so 
inclusive. However, there is no doubt that the collection of Lebesgue inte­
grable (i.e., absolutely integrable) functions remains of central importance 
for many applications. Therefore, we have taken pains to ensure that this 
class of functions is thoroughly discussed. We have developed the theory 
sufficiently far that, after reading this book, a reader should be able to con­
tinue a study of some of the more specialized (or more general) aspects of 
the theory of integration, or the applications of the integral to other parts 
of mathematical analysis. 

* * * 

Since we believe that one learns best by doing, we have included a large 
collection of exercises; some are very easy and some are rather demanding. 
Partial solutions of almost one-third of these exercises are given in the back 
of the book. A pamphlet, designed for instructors, with partial solutions of 
all of the exercises can be obtained from the publisher. 

In preparing this manuscript, we have obtained useful suggestions from 
a number of people; we wish to thank Professors Nicolae Dinculeanu, Ivan 
Dobrakov, Donald R. Sherbert and, especially, Eric Schechter. Two groups 
of students at Eastern Michigan University worked through the early stages 
of the initial material and made useful suggestions. 
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We also wish to thank the staff of the American Mathematical Society 
for their admirable patience in awaiting the completion of the manuscript 
and for expeditiously turning it into a published book. 

* * * 

A number of people helped us to obtain photographs and permissions 
for use here. We wish to thank Dr. Patrick Muldowney of the Univer­
sity of Ulster for permission to use his photograph (taken in August 1988) 
of Professors Henstock and Kurzweil, Professor Bernd Wegner and Herr 
H. J. Becker of the University Library in Gottingen for the portrait of 
Riemann, Dr. D. J. H. Garling and Ms. Susan M. Oakes of the London 
Mathematical Society for the photograph of Lebesgue, Professor Jean-Pierre 
Kahane and M. CI. Pouret of the Academy of Sciences in Paris for the pho­
tograph of Denjoy, and Professor Jiirgen Batt and Frau Irmgard Hellerbrand 
for her photograph of her grandfather, Otto Perron. 

September 14, 2000 Robert G. Bartle 

Urbana and Ypsilanti 
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c.e., countably many exceptions, 30 

449 



450 Index 

Cantelli Lemma, 156, 306, 362 
Cantor set, 64 ff. 
Cantor-Lebesgue function, 65 ff., 86, 

230 
Category Theorem, of Baire, 320 
Cauchy Criterion, 43, 267, 389, 392 

dominating function, 350 
in mean, 139, 353 
in measure, 174, 352 
tail, 359 

Cauchy-Bunyakovskil-Schwarz 
Inequality, 148 

Change of variable theorems, 
Section 13 (241-242), 291 ff. 

Characteristic function of a set, 97, 
299 

Characterization, of absolute integra-
bility, 104, 233 

for indefinite integrals, 83 ff. 
of measurability of functions, 156, 

324 
of null functions, 82, 279, 313 

Charge, on a measure space, 338 
Chartier-Dirichlet Test, 269 
Chebyshev Inequality, 166 
Closed ball, 4 

interval, 4 
neighborhood, 3 

Compact sets, approximation by, 315 
properties, 308 

Compactification of E, 255 
Comparison Test, for absolute inte-

grability, 107, 282 
Complement, relative, 3, 303 
Completeness, in £ ( / ) , 142, 287 

ofAi(I) under semimetric, 183, 184 
in certain seminormed spaces, 

407 ff. 
Complex-valued functions, 21, 39, 54, 

73, 87, 113, 134 
Condition (N), of Luzin, 238 
Conditional integr ability, of a func­

tion, 101 
Congugate pairs, 405 
Consistency Theorem, 14 
Continuity, at infinity, 276 

of the indefinite integral, 78 

with a parameter, 199 
Continuous functions, integr ability of, 

50 
Controlled convergence, 129 
Convergence in mean, 124, 139, 

177 ff., 284, 353 ff. 
in measure, 174, 352 
in probability, 174 

Convergent series, space of, 168 
Countable additivity of the measure, 

154, 303 ff. 
subadditivity of the measure, 154, 

303 ff. 
Counting measure, 337 
Cousin, Pierre, 11, 257 

Theorem of, 11, 19 
Covering, dyadic, 311 

Vitali, 79, 377 

Darboux, Gaston, 7 
Decreasing sequence of functions, 119 
Degenerate interval, 4 
(£, i^-fine subpartition, 76, 83 
5-Rne partition, 9 

partition, existence of, 11 
subpartition, 76 

(5-ring, of sets, 317 
Denjoy, Arnaud, 15, 58, 74, 242, 243 
Density, of continuous functions in 

£ ( / ) , 144, 287 
of step functions in £ ( / ) , 143, 287 

Derived number, 379 
Descriptive characterization, 233 
Devil's staircase, 65 
Diagrams for convergence, 177, 354, 

355 
Difference set, 321 
Differentiation, of indefinite integrals, 

61 ff. 
Lebesgue's Theorem, 229, 381 
Theorem for ft*(J), 80, 278 
with a parameter, 199 

Dirac measure, 337 
Direct image, 325 
Dirichlet, Peter G. L., 29 

function, 15, 29, 68, 71 
Test for integrals, 269 
Test for series, 168 
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Disjoint intervals, 3 
Distance, between numbers, 3 

between a point and a set, 3 
Division (= partition), of an interval, 

4 
Dominated Convergence Theorems, 

123, 133, 148, 177, 284, 354 
Dominating function, 350 
Du Bois-Reymond, Paul, 270 
Dyadic Covering Lemma, 311 

Egorov (= Egoroff), Dmitrii Fedoro-
vich, 172, 347 ff. 

Theorem, 172, 289, 354 
Empty tail, property, 349, 359 
Endpoint, of an interval, 4 
Equi-integrability Theorem, 125, 284 
Equicontinuity, of a family of func­

tions, 133-134 
Equifinite family of functions, 356 
Equivalence Theorem, 13 

classes, 140 
Essentially bounded function, 

167, 406 
Exceptional set, 30, 56, 276 
Extended real number system, 255 

f-primitive, of a function, 56, 276 
Fa-set, 310 
f.e., finitely many exceptions, 30 
Fatou, Pierre, 121 

Lemma, 122, 132, 147, 183, 284 
Fineness Theorem, 11, 19, 257 
Finite measure space, 337 

tail property, 349, 360 
Fischer, Ernst, 142 
Fleissner, Richard J., 163 
Full subpartition, 250 
Function, *4-measurable, 328 ff. 

A-simple, 328 
absolutely continuous, 231, 

344-345, 402, 409 
absolutely integrable, 37, 101, 403 
antiderivative of, 56 
arcsine, 71 
arctangent, 71 
beta, 95 
Borel measurable, 328 

bounded variation, 103, 281, 294, 
402, 408 

Cantor-Lebesgue, 65 ff., 86 
characteristic, 97, 299 
complex-valued, 21, 39, 54, 73, 87, 

113, 134 
conditionally integrable, 101 
Dirichlet, 15, 29, 68, 71 
essentially bounded, 167, 406, 411 
generated by a series, 33 
greatest integer, 73 
indefinite integral, 334 ff. 
indicator, 299 
maximum, 91 
measurable, Section 6, 280, 

Section 19 
middle, 91 
minimum, 91 
negative part, 91 
nonabsolutely integrable, 33 ff., 101 
null, 30 
oscillation of, 244, 246, 340 
positive part, 91 
primitive of, 56, 276 
regulated, 48 
semicontinuous, 343 
signum, 57, 70 
simple, 158, 328 
singular, 65, 235 
square integrable, 148 
step, 26 ff., 48, 279, 323 
Thomae, 29, 71 
translate of, 51 

Fundamental Theorems, for integrals, 

Section 4 (esp. 58-63), 272, 277 

GVset, 310 
Gauge, on an interval, 8, 250 ff., 256 
Generalized Riemann Integral, 12 ff., 

Section 15, 258 
Gordon, Russell A., 125, 127, 161, 

236, 243, 284 

Hake, Heinrich, 195, 265 
Theorem, 128, 195 ff., 264 ff. 

Harnack, Axel, 231 
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Henstock, Ralph, 2, 7 
Lemma (see Saks-Henstock), Sec­

tion 5 
Hilbert, David, 406 

space, 406 
Holder, Otto, 404 

Inequality, 404 

Identification of equivalent functions, 
140 

Image, direct, 325 
inverse, 325 

Improper integrals, 195 ff., 259, 264 
Increasing sequences of functions, 119 

Sequence Theorem, 137, 286 
Indefinite integral, as a set function, 

334 ff. 
base point of, 56, 276 
characterization of, 84 ff. 
of a function, 56, 159, 276 

Inequality, 
Cauchy-Bunyakovskh-Schwarz, 148 
Chebyshev, 166 
Minkowski, 405 
Schwarz, 148 

Inner measure, 375 
Integrability, of continuous functions, 

50 
of measurable functions, 94 
of monotone functions, 50 
of regulated functions, 48 
of step functions, 48 
Theorem, 135, 286 
uniform, 178 

Integrable function, measurability of, 
94 

set, 97, 300 
Integral, generalized Riemann, 12 ff., 

Section 15, 258 ff. 
improper, 195 ff., 259, 264 
Lebesgue, 16, 258 
Lebesgue-Stieltjes, 398 
McShane, 17 
on a measure space, 339 
properties of, Section 3, 41 ff. 
refinement Riemann-Stieltjes, 398 
Riemann, definition of, 12 

Riemann-Stieltjes, 161, Appen­
dix H 

upper and lower, 7 
Integration, with a parameter, 198 ff., 

291 
of derivatives, 58 ff. 
by parts, 67, 187-192, 240, 290, 394 
with a parameter, 198 ff. 

Integrator function, 392 
Interior point, of a set, 319 
Interval, bounded, 4 

closed, 4, 256 
compact, 4 
infinite, 256 
length of, 5 
nonoverlapping, 4 
open, 4, 256 
unbounded, 249, 256 

Interval gauge, 20, 217 
Invariance Theorem, 51, 315 
Inverse image, 325 

Jordan, Camille, 104 
Theorem for BV, 104, 111 

Kurzweil, Jaroslav, 2, 7, 124, 410 

Lebesgue, Henri, 16, 40 
Decomposition Theorem for BV, 

237, 297 
Differentiation Theorem, 229, 294, 

381 
Dominated Convergence Theorem, 

123, 133, 177, 284, 354 
measure, Sections 10 and 18 

Lebesgue-Stieltjes measure, 338 
integral, 398 

Leibniz, Theorem of, 201 
Length, of an interval, 5 
Levi, Beppo, 118 

Theorem, 118, 138, 287 
Lieb, Elliott, 147 
Limit, of a sequence of sets, 155 

Theorem, with a parameter, 198 
Limit inferior, 

of a sequence of reals, 366, 372 
of a sequence of sets, 154 

Limit superior, 
of a function at a point, 343 
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of a sequence of reals, 366, 372 
of a sequence of sets, 154 

Linearity, of the integral, 41, 53 
Local absolute continuity, 295 

bounded variation, 294 
Lu Shipan, 240 
Luzin (= Lusin), Nikolai Nikolaevich, 

173, 238, 289, 333 

M-convergent sequence, 361 
Maximum, of functions, 91 
McLeod, Robert M., 127, 217 
McShane, Edward J., 16 
Mean Cauchy sequence, 142, 353 

convergence, 124, 139, 177 ff., 284, 
353 ff. 

Mean Value Theorem, for integrals, 
54, 193-195, 204, 290 

Bonnet, 194, 204, 291 
for Riemann-Stieltjes integral, 395 

Measurable function, Sections 6 and 
19, 280 

function, integrability of, 94 
space, 327 
Limit Theorem, 136, 286 

Measurable-Closed Set Theorem, 314 
Measurable-Open Set Theorem, 313 
Measurability, general notion of, 327 

of integrable functions, 94 
Measure, convergence in, 174 ff., 

352 ff. 
counting, 337 
Dirac, 337 
inner, 375 
Lebesgue, Sections 10 and 18 
Lebesgue-Stieltjes, 338 
of a set, 97, 151 ff., 300 ff. 
on a cr-algebra, 337, 358 ff. 
outer, 375 
properties of, 152 ff., 358 ff. 
space, 337 
zero, 30 

Metric, function, 387 
space, 387 

Minkowski, Hermann, 405 
Inequality, 405 

Minimum, of functions, 91 

Monotone Convergence Theorem, 
119, 282 ff. 

functions, integrability of, 50 
property of a measure, 152-154, 302 

Monotonicity, of the integral, 43 
Multiplier Theorem, 95, 161, 288 
Munroe, M. Evans, 176 

Nearly uniformly bounded, 183 
Negative part, 91 
Negligible variation, 83 
Newton-Leibniz formula, 55 
Nikodym, Otton M., 340 
Nonabsolutely integrable function, 

33 ff. 
Non-Borel set, 311, 342 
Nondegenerate interval, 4 
Nonoverlapping intervals, 4 
Nonmeasurable set, 316, 321 
Norm, 139, 401 ff. 
Nowhere dense set, 320 
Null set, 30, 306, 313 

function, 30, 32-33, 82, 278 

Open ball, 4 
interval, 4 
neighborhood, 4 
set, 307 

Oscillation of a function, at a point, 
245, 340 

on a set, 243 
Osgood, William Fogg, 320 
Outer, measure, 375 

Parameters in integrands, 198-203 
Partial integration, 67, 185 ff., 240 
Partition, (5-fine, 9 

of an interval, 4 
subordinate to a gauge, 9 
subpartition, 7 
tagged, 5 

Perron, Oskar, 15, 58, 88, 195, 242, 
243, 265 

Positive part, 91 
Positivity of the integral, 42 
Primitive of a function, 56, 276 
Probability, convergence in, 174 
Procedure, right-left, 6 

Radius, of a ball, 4 
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of a neighborhood, 4 
Radon, Johann, 340 
Radon-Nikodym Theorem, 340 
Regulated function, 48, 63 

integrability of, 48 
characterization of, 49 

Relativization Theorem, 159 
Restriction, of the integral to inter­

vals, 46 
Riemann, Bernhard, 15, 22 

integral, definition of, 12 
sum, 6 

Riemann-Lebesgue Lemma, 144, 192, 
287 

Riemann-Stieltjes integral, 161, 193, 
Appendix H 

Riesz, Frigyes (= Frederic), 142 
Representation Theorem, 340, 391 
spaces, 403 ff. 
Subsequence Theorem, 143, 175, 

352 
Riesz-Fischer Theorem, 142 
Right-left procedure, 6 
Ring, of sets, 317 

Saks-Henstock Lemma, Section 5 
(esp. 76-78) 

Sargent, W. L. C , 163 
Schwarz Inequality, 148 
Semicontinuous function, 343 
Semimetric space, 387 ff. 

on M, 183, 184 
Seminorm, 139, 353, 401 ff. 
Series, generating a function, 33 
Serrin, James B., 240 
Set(s), algebra of, 318 

Borel, 311 
Cantor, 64 ff., 309 ff. 
closed, 308 
compact, 308 
difference, 321 
exceptional, 30, 276 
Fa, 310 
Gs, 310 
integrable, in / , 97 
measure of, in / , 97 
measure zero, 30, 313 
non-Borel, 342 

nonmeasurable, 316, 321 
null, 30, 313 
open, 307 
ring of, 317 

a-algebra, of sets, 310, 318 
cr-finite measure, 337 
Signum function, 57, 70 
Simple function, on / , 158 
Singular function, 235 
Smith, Henry J. S., 7, 64 
Spaces of functions, Appendix I 
Square integrable function, 148 
Squeeze Theorem, 47 
Staircase, Devil's, 65 
Steinhaus Theorem, 321 
Step function, 26, 48, 279, 323 
St ieltjes, Thomas J., 391 

integrals, Appendix H 
Straddle Lemma, 57, 219 
Subadditivity, of a measure, 154, 

302 ff. 
Subpartition, of an interval, 7, 76 

full, 250 
Substitution theorems, Section 13, 

240-242, 291-294 
Subtractive property of a measure, 

302, 337 
Sum, Riemann, 6 
Supremum, essential, 167 
Symmetric difference of two sets, 165, 

315 

Tag, of an interval, 5 
Tagged partition, 5 

subpartition, 7, 76 
Tail, of a sequence of functions, 348 
Tchebycheff (see Chebyshev) 
Thomae, Karl J., 7, 29 

function, 29, 71 
Tietze Extension Theorem, 344 
Total variation, of a charge, 336, 339 

of an indefinite integral, 337 
Translate of a function, 51 
Translation invariance, 315 
Truncate of a function, 113, 143, 287 

Uniform absolute continuity, of indef­
inite integrals, 178, 246, 356 
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Convergence Theorem, for inte­
grals, 117, 282 

differentiability, for a 
family of functions, 129 

equicontinuity, for a family of func­
tions, 134 

integrability, for a family of func­
tions, 178 

Uniqueness Theorem, 13 
Unit measure, 337 

Varberg, Dale E., 240 
Vanishing tail property, 349, 360 
Variation, of a charge, 339 

negligible, 83 

of a function, 103 
Vector space, 383 ff. 
Vitali, Giuseppe, 231 

Convergence Theorems, 178-180, 
355-358 

Covering Theorem, 79, 242, 377-
378 

nonmeasurable set, 316 
Vyborny, Rudolf, 83 

Weight function, 392 

Xu Dongfu, 242 

Zero measure (see Null set) 
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AuB, AnB, 3 

A-B, Ac, 3 

dist(x,y), dist(cc, A), 3 

B[x;r], B(x;r), 3,4 

/ ( / ) , 5 

V, 5 

S(f;V), 6 

P < < 5 , 9 

K(I), TV (I), 12, 13 

/ / /> / a / , 14 

Q(ar) holds a.e., 30 

a.e. = [a.e.], 30 

•, o, 41 

-»r> Jri " 1 

-f(r)> /(r)> 5 1 

sgn(x), 57 

r , 64 

A, 65 

[x\, 73 

(<$,£), 76 

NVi(E), 83 

A^(J), 89 

fVg, fAg, 91 

/ + , r , 91 

mid{f,g,h}, 91 

5(p,g), 95 

1E(X), 97 

M(7), 1(7), 97 

\E\, 97 

ft*(£), 97 

/ * / . 97 

£ ( / ) , 101 

Var(y>;J), 103 

BV(I), 103 

ll/ll = ll/lli, 139 
P°, 146 

I1, 147 

C2(I), 148 

II/II2, 1 4 8 

liminf„_^00£'n, 154 

l imsup r w o o .En , 154 

457 
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liiru, ,En, 155 

{/ < r} , etc., 156 

uf, 159 

^ EAF, 165 

Ni, iVoo, 166 

ll/lloo, 167 

cs, bv, 168 

NcNh,, 169 

[a.u.], 172 

[meas], [mean], 174 

Hfa = H((3)-H(a), 187 

(H), 198 

A, V, 218 

A, £ , 218 

AC (I), 231 

(N), 238 

ACS(E), ACGs(E), 243 

wF(A), 243 

uF(c), 245 

(<5,<f), 250 

(4,(5), 251 

1 , 255 

U[a;r], 257 

Io, 275 

F(oo), 276 

L W ( / ) , 294 

LAC (I), 295 

), 300 

), 303 

X(E), 304 

i^, Gs, 310 

A(A), 321 

f(E)J~\H), 325 

#(£), 337 

|7|, 339 

limsup^/, Limsup^/, 343 

T„(r), 348 

Mx), 350 

T„(r), 359 

V-n(^), 360 

limsupn^00xn, 366, 372 

lim infyj—xx, xn, 366, 372 

#(/), 374 

|A|e, |A|i, 375 

£(/,¥>;£), 391 

///<*¥>, /„*/<*¥>, 392 

C 1 ^ ) . 402 

\BV, 402 

U, 403 

Z7(I), 403-404 

II/IIP. 404 

</,</>, 406 
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