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Introduction 

The theory of compact Riemann surfaces brings together diverse areas of 
mathematics. Its building blocks include vast areas of analysis (including 
Lie theory), geometry/topology and algebra. This was our point of view 
in our book on Riemann surfaces [6] and it dictated the material to be 
included in that volume. In particular, we presented a modern approach 
to the theory of compact Riemann surfaces based on classical methods that 
prepared the reader to study the modern theories of moduli of surfaces. 
In this book we head in a different direction and develop another classical 
connection: to combinatorial number theory. We do not neglect, however, 
the connections to the problem of uniformizing surfaces represented by very 
special Fuchsian groups. Problems in number theory can be reformulated as 
questions about Riemann surfaces, and many of the answers to some of these 
questions are obtained using function theory. Even though it is an old idea to 
use function theory (compact Riemann surfaces and automorphic forms) to 
study analytic and combinatorial number theory and there are many results 
in these fields, we found it hard to dig out the underlying function theory 
in the publications of number theorists. No doubt, this is our failing. But 
since others may also have a deficiency in this area, we decided to organize 
the material from this point of view. There is new material in this book 
that has not previously appeared in print, and part of our aim is to present 
this material to as wide an audience as possible. Our more important aim, 
however, is to expose the reader to a beautiful chapter in function theory 
and its applications. 

xv 



XVI Introduction 

The main actors in our presentation are genus one theta functions and 
theta constants1 (including the classical rj-function), the modular group V — 
PSL(2, Z), and some of the Riemann surfaces that arise as quotients of the 
action of finite index subgroups of T on H2. We are particularly interested 
in the principal congruence subgroups T(k) and the related subgroups T0(k) 
for (usually small) primes k. Some very interesting combinatorial identities 
follow from the function theory on these surfaces.2 

Theta functions and theta constants with integral characteristics are 
classical objects intimately connected with the principal congruence sub
group of level 2, T(2). This theory is well understood and has as one of its 
consequences the theorem of Picard: every entire function which omits two 
values is constant. As is well known, the basic ingredients in the proof of 
Picard's theorem are that the holomorphic universal covering of the sphere 
punctured at three points is the upper half plane and that its fundamental 
group is T(2). We use theta constants with even integral characteristics 
to construct the universal covering map, and in this way obtain, without 
using the general uniformization theorem, the hyperbolicity of the three 
times punctured sphere. The universal covering map is constructed here as 
a quotient of fourth powers of any two of the three theta constants. We 
noticed that in this construction the three even characteristics correspond 
in a natural way to the three punctures on H 2 / r (2) , and we began to won
der about natural generalizations. In this book, we present the answer to 
these inquiries. We uniformize the Riemann surfaces H2/r(fc) using theta 
constants with special rational characteristics, and establish a one-to-one 
(almost canonical) correspondence between the punctures on M2/T(k) and 
certain equivalence classes of characteristics. For example, the four punc
tures on H 2 / r (3) correspond to the characteristics 

' ' ' 

Furthermore, the Riemann surface is uniformized by a quotient of cubes 
of any two of the four corresponding theta constants. Similar, but obvi
ously more complicated, expressions uniformize the surfaces represented by 
the higher level congruence groups. Multiple uniformizations of the same 

1 Thus the #-functions we study, #[x](C r)> depend on three variables: a characteristic x G l 2 ; 
a variable ( G C ; and a parameter T E H 2 , the upper half plane. Fixing the variable £ = 0 yields 
the family of theta constants, an abuse of notation since these are holomorphic functions on H2; 
as functions of the local coordinates q — e2lx%T these are classically known as g-series. We will 
use the symbol x for the local variable, since tradition in (parts of complex analysis) reserves the 
letter q for the weight of an automorphic form. 

2 What is interesting is clearly in the eyes of the beholder. The identities we discuss are 
obviously interesting to us. The reader must decide whether or not to share our enthusiasm. 
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Riemann surface lead to theta identities. It is an open problem to deter
mine uniformizations of all four punctured spheres by the methods described 
above. 

The theta constants which appear in our constructions of the uniformiz-
ing functions for H 2 / r (3) are closely related with the formulae used by Euler 
and Ramanujan in the theory of partitions. Specifically, we note that3 

oo 

(o,T) = exp(^)*£ £ (-irx3-^ = e^Qx^ii(i-xn, 
n=—oo n = l 

where x = exp (^z)- Continuing in this direction, we discover that uni
formizations of the Riemann surfaces H2/r(£;) involve functions which ap
pear in the Jacobi triple product. We give a function theoretic proof of this 
famous formula and then generalize it to the quintuple and septuple product 
identities, explaining along the way why the formulae obtained are natural 
from the point of view of the theory of N-ih order theta functions. The 
highlights of the book are systematic studies of theta constant identities, 
uniformizations of surfaces represented by subgroups of the modular group, 
partition identities and Fourier series coefficients of automorphic functions, 
and identities involving the a-function and Fourier series coefficients of au
tomorphic forms. More detailed information on the contents of each of the 
chapters follows. 

In Chapter 1 we explain the genesis of the modular group in our theory. 
This group appears naturally when one classifies compact Riemann surfaces 
of genus one (elliptic curves) up to conformal equivalence. We discuss the 
generators of this group, find all the fixed points of elements of this group 
and describe some of the subgroups we shall need in the sequel. Almost 
everything we do in this chapter is well known and covered in a standard 
course on complex variables. We describe the structure of the Riemann 
surfaces M2/G for subgroups G of PSL(2, Z). In order to show that this well 
known and elementary material has nontrivial consequences, we use this 
theory to show that factors of integers of the form iV2 + 1 are always the 
sums of two squares, and we give a geometric criterion for N2 + 1 to be a 
prime number. The result is that iV2 + 1 is prime if and only if the portion in 
the upper half plane of the straight line joining the origin to the point N +1 
in the complex plane intersects the orbit of i under PSL(2, Z) in exactly two 
points, namely N + i and ^ t \ - We have included some of the function 
theoretic prerequisites in this chapter. However, most of the prerequisites 
will be described when needed. In general, we provide full definitions of 
all concepts. We do not repeat proofs or arguments readily available in 

3 The reader may at this point conclude that the 77-function is a disguised theta constant with 
a rational characteristic. It will also become obvious that the prime 3 plays a special role in our 
drama. 
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other books, but do reproduce, usually in modified form, proofs from many 
research papers. The bibliography of relevant books (after the last chapter) 
is followed by a set of bibliographical notes containing an (incomplete) list 
of research and expository notes on the material covered by this volume. 

In Chapter 2 we define the theta functions and theta constants with 
r — i 

characteristics and specialize to rational characteristics of the form fy 
L T J 

with rrij mf and k integers4 of the same parity in order to construct a cor
respondence between equivalence classes of sets of characteristics and the 
punctures on the surface H2/r(A:). In this chapter we derive a most impor
tant property of the theta functions and theta constants, the transformation 
formula (a significant generalization of known transformation rules) for the 
action of PSL(2,Z) on the upper half plane, and we give a function theo
retic proof of the Jacobi triple product formula and some generalizations. 
The transformation formula allows us to use theta functions to construct 
modular and cusp forms for subgroups of PSL(2, Z). The function theoretic 
proof of the Jacobi triple product formula yields new proofs of important 
identities of Jacobi and Euler that are needed for our presentation of par
tition theory in Chapter 5. We construct theta constant identities which 
turn out to agree with discoveries of Ramanujan. Our derivations of these 
identities are on the one hand quite natural, and on the other hand lead to 
simpler expressions of the equivalent identities discovered by Ramanujan in 
the sense that they do not involve irrationalities (extracting roots of single 
valued functions) until they are artificially introduced. It appears that the 
theta constants which we use are a lot richer than the ones that Ramanujan 
had at his disposal. 

Chapter 3, in a sense, contains the most important material of the book. 
In it we construct automorphic forms and functions for the principal con
gruence subgroups and some related groups. The theory we describe is 
particularly well suited for the study of H2/r(/c), and we obtain holomor-
phic mappings of these Riemann surfaces into projective spaces of rather 
low dimensions. Some interesting geometry and topology emerges as we ob
serve connections of the principal congruence subgroups with the Platonic 
solids. This phenomenon first occurs for k = 3, 4 and 5. In these cases, 
r/r(fc) = PSL(2,Z/C) are the symmetry groups of the regular tetrahedron, 
octahedron and icosahedron, respectively. This suggests a relation between 
the images of these curves in the projective space and the regular solids and 
leads to a generalization of the regular solids based on curves of (some) pos
itive genera. While our development is most suited for the groups r(fc), for 
many of the most important applications we need to construct automorphic 

4Assume, unless otherwise stated, for these introductory remarks that k is a (positive) prime. 
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forms for T0(k). Part of the extra difficulties involves the presence of tor
sion in these groups. We need more detailed analysis, in this and subsequent 
chapters, to handle these richer groups. 

Chapter 4 is a systematic study of theta identities. Theta constant 
identities are interesting for several reasons. One reason is their inherent 
elegance and symmetry. There is something tantalizingly beautiful about 
the identities of Jacobi, for example, 

" 0 ' 
0 (O,r)02 " 0 " 

0 

" 0 ' 
1 

(O,r)02 " 0 " 
1 (z,r)+92 ' 1 " 

0 _ (O,r)02 " 1 " 
0 

or its restriction to z = 0 (known as the Jacobi quartic identity) 

" 0 " 
0 (o,r) = e4 ' o" 

I (0,r)+64 ' 1 " 
0 

Aside from the inherent beauty of the form there is a combinatorial content 
to the identity. It relates the number of representations of an integer as a 
sum of four squares to its representation as a sum of four triangular numbers. 
This is of course just the beginning of a chapter. As one delves deeper into 
the theory, one finds more and more beautiful identities with more and more 
combinatorial content. 

We present four distinct ways of constructing such identities. In two 
of theses methods, we use the classical technique of constructing finite di
mensional linear spaces of theta functions or modular forms or functions on 
certain Riemann surfaces and use linear algebra and the simple notions of 
independence and dependence. We present another newer technique which 
makes use of the fact that we can use theta functions to construct elliptic 
functions and the fact that the sum of the residues of an elliptic function 
in a period parallelogram vanishes. This technique is very powerful and 
succeeds in giving a rather large set of identities. The main idea here is to 
construct the correct elliptic function, which turns out to be more an art 
than a science, that leads to an interesting identity. The fourth method for 
constructing identities uses uniformizations of Riemann surfaces. In a very 
nontrivial sense the next two chapters are also studies of theta identities, 
this time of a very special sort with a very special purpose. 

In Chapter 5 we turn to the congruences discovered by Ramanujan for 
the partition function and show how they follow in a rather simple way from 
function theory on the appropriate Riemann surfaces. The main ingredient 
is the construction of the same function in more than one way. Some of 
the constructions involve averaging operators. It turns out that the aver
aging processes produce in some cases constant functions. We study the 
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many implications of these constructions, especially of the appearance of 
constant functions. This material may not be new to the literature. We 
present it in a unified way based on function theoretic foundations that 
most of the time remove and in general isolate the mysteries in many of the 
research monographs on the subject. This chapter is based almost entirely 
on the properties of the classical 77-function, a very special case of the theory 
described in the previous chapters. We need to know rather detailed infor
mation on its multiplier system. The needed number theoretic arguments 
are found in [16], for example. We would like to avoid dependence on these. 
We have only partially succeeded in doing so and have hence not included 
in this volume most of the results of this effort. 

In Chapter 6 we begin by reviewing some concepts from covering space 
theory and show how these ideas lead to beautiful identities among theta 
constants and their interpretation as identities among infinite products. 
Here the main tools are the uniformizations of the Riemann surfaces in 
question. We then continue by showing how many of the ideas used in the 
congruences related with the partition function and its generalizations carry 
over to other modular forms. We treat in particular the j-function and the 
congruences satisfied by the coefficients of its Laurent series expansion. 

In Chapter 7 we show how statements about partitions are related to 
other combinatorial quantities such as representations of positive integers 
as sums of squares or of triangular numbers, and most importantly to the 
divisors of an integer. In particular, we describe relations to the question of 
primality of integers depending on statements about partitions. This sug
gests that while primality is usually thought of as a subject in multiplicative 
number theory, it can also be viewed as a part of additive number theory. 

We give some examples to show what type of results can be expected in 
this chapter in the expectation that these applications are the main interests 
of some readers of this text. We emphasize that these results were not the 
reason for writing this book. The list of examples is by no means exhaustive. 
Let c(n) denote the classical a-function; that is, cr(n) is the sum of the 
divisors of the positive integer n. We show that 

whenever n is not of the form 3 m
2

+ m with m G Z. A companion related 
result is 

3=0 X 7 j=0 X 7 

whenever n is not of the form m
 2

hm with m G Z. We obtain a variant 
of Jacobi's result on the number of ways a positive integer can be written 
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as a sum of four squares by replacing squares with triangular numbers, 
obtaining, in our view, a cleaner result. A last example of the type of result 
we will discuss in this chapter is the following. Let S be a set consisting 
of the positive integers with an additional copy of those positive integers 
congruent to zero modulo 7. Decompose S into its even and odd parts, E 
and O respectively. Denote by PE{^) and Po(k) the number of partitions 
of k with parts taken from the sets E and O respectively. We prove that for 
all nonnegative integers fc, 

PE(2k) = P0(2k + l). 

The prerequisites for this book are a thorough understanding of material 
traditionally covered in first year graduate courses - especially the contents 
of the complex analysis course. We review, however, the most salient points 
about elliptic function theory portions of this course. Although a knowledge 
of Riemann surfaces and Fuchsian groups is helpful, it is not needed by the 
reader who is willing to accept the summaries of the required material (with 
references to the literature). Although we do not, in general, reproduce 
material available in other textbooks, we make an exception for material 
on theta functions and theta constants despite the availability of excellent 
sources (for example, [23]). We do so, not only for the convenience of the 
reader, but also to emphasize our point of view. We have also ignored, to a 
great extent, the combinatorial and special functions connection. These are 
discussed in [2], [7] and [10], for example. 

A road map 
While we did not intend to write an encyclopedic text, the result has been 
quite a large book. We take the liberty of offering the readers our suggestions 
for possible ways of going through this text, which was written with several 
different types of readers in mind. These range from the beginning grad
uate mathematics student through the professional mathematician whose 
interests are either in combinatorial mathematics (partition theory, repre
sentation as sums of squares, counting points on conic sections) or function 
theory (Riemann surfaces, modular forms). Theoretical physicists might be 
interested in portions of the material we cover. 

The reader is expected to have a reasonable knowledge of the theory of 
functions of a complex variable, through the Riemann mapping theorem, 
and enough mathematical maturity to follow an argument even though un
familiar with the proofs of all the tools used. Thus, the book can be used as 
a text for a topics course in either analysis or analytic number theory, and as 
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such a reasonable approach would be to go through Chapter 1 sections 1-4.5 
and sections 6 and 7. The above material is essentially background material 
to acquaint the reader with the domains on which we will be doing anal
ysis to obtain the combinatorial results. This reader should then continue 
with Chapter 2, where the theory of the one dimensional theta function is 
presented. This chapter should be read in its entirety. In Chapter 3 the 
reader or instructor pressed for time could read quickly the first section for 
the definitions and then go on to a careful study of sections 2 through 8.4. 
Chapter 4 should be read in its entirety. The above could constitute a one 
semester topics course for beginning graduate students. 

The above suggestion leaves out Chapters 5, 6 and 7, which occupy much 
of this book and are an important part of it, since they deal with the theory 
of congruences for the Ramanujan partition function, the congruences for the 
j-function, and the combinatorial interpretations of many of the identities 
derived in Chapter 4. In a one-year course the material studied could include 
Chapter 5 through section 10.8 and section 12,5 all of Chapters 6 and 7. 

The professional mathematician who is interested in Riemann surface 
theory should study Chapter 1, including sections 4.6 through 5.7, in order 
to get a picture of where the theory can possibly go. If conversant with 
the theory of the Riemann theta function, the reader can skip section 1 of 
Chapter 2 and read the remainder of that chapter. The reader should then 
proceed to the beginning of Chapter 3. Some of the introductory material 
of this chapter can be skipped or read quickly to get acquainted with the 
notation used; the choice of which of the remaining sections to read should 
be guided by interests; we suggest that this include section 10. Chapter 4 
should be read in its entirety and then Chapter 5 and Chapter 6, once again 
guided by the interests of the reader. Chapter 7 should also be read in its 
entirety. 

The professional mathematician whose interests are in combinatorial 
mathematics may wish to begin by looking at Chapter 7 and then proceed 
backwards through the theory. Needless to say, Chapters 2, 3 and 4 will 
have to be read at some point, and if interested in Ramanujan congruences, 
Chapter 5 is a must. In any event section 12 of Chapter 5 should be reviewed. 

There is lots of flexibility in the way the text can be studied and/or 
approached. We trust the various readers will find their way through the 
maze and enjoy the material they stop to study or, as we and others have 
said, will enjoy this tour of Ramanujan's garden and the flowers they pick 
there. 

5In a course where all nonstandard material is included, the instructor might want to spend 
some time on the multiplicative properties of the 77-function. These could be taken from Knopp's 
book [16]. 
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We have included descriptions of many special cases and summarized 
the results of many calculations. Most of the nontrivial calculations used 
the symbolic manipulation programs MATHEMATICA and/or MAPLE. In 
order to excite the reader about the flowers in the beautiful garden we are 
cultivating here, we start each chapter with (what we regard as) a handsome 
example of what will follow. We have included a number of accessible exer
cises and research level problems. The latter may be quite challenging and 
are at times only conjectures. The reader should also approach the many 
special cases we have included as challenges to obtain independent solutions. 
They are presented in the spirit of exercises, with solutions supplied by the 
authors. 

Numbering systems. The book consists of seven chapters and a set of bib
liographical notes that will be maintained and updated on the web. Chapters 
are subdivided into sections; these into subsections. Definitions, lemmas, 
propositions, theorems, exercises, problems and remarks are labeled consec
utively as a single group within each section. A typical item is Theorem 
sect ion. number; number starts with 1 for the first item in the section. Thus, 
for example, in Chapter 2, Definition 2.32 (in section 2) in our numbering 
scheme is followed by Lemma 4.1 (in section 4). Equations that will be ref
erenced subsequently in the text are labeled by a decimal: chapter.number; 
number starts with 1 for the first numbered equation in the chapter. Tables 
and figures are numbered consecutively in the book. 
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Bibliographical Notes 

The bibliographical entries in the main body of the text contained only 
references to books that filled in gaps in our presentation or described pre
requisites. The main purpose of these notes is to give the reader an idea 
of the many relevant books and scientific manuscripts in the literature on 
one variable theta functions as related to to the topics of the book. It is 
incomplete and will be maintained and updated periodically on the web at 

http://www.math.sunysb.edu/~irwin/bkbiblio.dvi 

We (our respective e-mail addresses are 

farkasQsunset.huj i . a c . i l 

and 

irwinOmath.sunysb.edu) 

would appreciate receiving corrections and additions from readers, especially 
from experts. The authors of the current volume are not experts in the field 
of combinatorial number theory and have attempted in their work to open 
this area to a wider audience. We have emphasized the function theoretic 
aspects and may have missed many points known to number theorists and 
combinatorialists. Edited communications to us will be posted on the web 
and acknowledged appropriately. 

1. Books — background material 

1.1. Analytic and other prerequisites. The basic facts on complex 
analysis come from [1]. We have assumed the reader is familiar with the 
material of a first year graduate course on the subject. 

513 
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We refer the reader to [1, Ch. 7] for elementary facts concerning elliptic 
functions and curves. Many more complete treatments of function theory 
on tori are available in the literature including, for example, [60]. 

The necessary preliminaries about Riemann surfaces were taken from 
[35]. There are of course many other excellent books on this subject; among 
them we list only three: [100] (an English translation of an earlier classic), 
[76] and [45]. 

The prerequisites on automorphic forms and Fuchsian groups may be 
found in portions of [17], [74], [52] and [65]. The computations of the 
topological invariants associated to a subgroup of the modular group are 
based on [96]. 

In Chapter 3, we discussed automorphic forms. Although not extremely 
relevant for our work, we refer to two papers on the subject (in part because 
they deal with averaging processes, a topic central to this book): the first 
by one of the coauthors of this volume [66]; the second by McMullen [75]. 
The reader interested in number theory should consult [58]. 

1.2. Other approaches. There is some overlap between our treatment of 
theta functions and resulting identities (especially involving the partition 
function) and that of the number theoretic work [61]. 

[7] is a thorough treatment of the theory of partitions, particularly the 
interplay between combinatorial and analytic methods. 

The book [48] on hypergeometric functions has many points of contact 
with Ramanujan identities and partition theory. 

The encyclopedic book [9] contains chapters on g-series, partitions and 
the Rogers-Ramanujan identities. 

Each of the books mentioned in this subsection contains an extensive 
bibliography. 

1.3. Recent developments. Although it is not our purpose to record re
cent progress in Teichmiiller theory or other fields encountered in our presen
tation but not directly related to the main topics under study, we mention 
that the problem of describing quasi-Fuchsian space for once punctured tori 
as a subset of C2 is treated in [95] in the smooth, not complex analytic, 
setting. 

2. Papers by other authors 

2.1. Curves represented by subgroups of T. In §8.7 of Chapter 3, we 
described the curve H2/T(9). A refinement of the description can be found 
in [64]. 
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2.2. The j-function. Divisibility properties of the Fourier coefficients of 
the j-function for the primes 5, 7 and 11 (the level 1 and 2 only for the prime 
11) are found in [70]. The complete picture for the prime 11 is established 
in [11]. Multiplicative properties (see §2.4) of these Fourier coefficients are 
studied in [68]. 

2.3. The par t i t ion functions Pjy. For N = 1, Ramanujan [86], [87] 
conjectured partition congruences for the primes 5, 7 and 11 and established 
the level 1 and 2 results. Watson [99] proved the conjecture for all levels 
n for the prime 5 and a suitably modified level n conjecture for the prime 
7. More work is required for the prime 11 since the surface involved is no 
longer of genus 0. The level 1 congruence was proven by Winquist [101]; 
Atkin [11] established the general conjecture (see also the earlier manuscript 
[69]). The level 1 congruence for the prime 5 has probably received more 
attention than any other case; among the shortest proofs are [28] and [55]. 
Partition congruences (as well as properties of the Fourier coefficients of the 
j-function) are studied in [14]. 

Among the papers studying the function F/v for arbitrary N are [13], 
[50] and [56]; the computer connection is explored in [12]. 

For negative A", one obtains recursion identities rather than only con
gruences for the partition coefficients P/v(n). This case has been thoroughly 
investigated by M. Newman, whose papers on this and related topics include 
[78], [79], [80], [82], [81], [83], [84] and [85]. 

2.4. The Hecke connection. A series X^^Lo an%n that converges on the 
unit disc is multiplicative if anm — anam whenever (n, ra) = 1. The mul-
tiplicativity of Ramanujan's r-function (r?24), a theorem first proved by 
Mordell [77], was established in Chapter 4. In [29], the authors determine 
all the multiplicative products of ^-functions. Two further papers should be 
mentioned here which connect the ^-function to the representation theory 
of Lie algebras. One is the 1972 paper of Macdonald [71]; the second is the 
1978 paper of V. Kac [59]. See also [72]. Hecke operators are discussed in 
portions of [60, Chs. VIII,IX and X].' 

One of the motivations of the authors in writing this volume was to 
show that r] is in fact just one example of a theta function with rational 
characteristics and that introduction of these more general functions can be 
extremely useful in the theory of uniformizations of the Riemann surfaces 
which arise from congruence subgroups of the modular group and in the 
study of theta constant identities. While this was presumably known to 
Klein, it is only with the development of the theory of theta characteristics 
that it becomes an efficient procedure. 



516 Bibliographical Notes 

2.5. The rj-function. Papers dealing principally or exclusively with the 
eta-function and having at least tangential connection to our work include 
[51], [29], [73] and [72]. 

2.6. T h e t a identit ies. This rich subject is studied in many papers. Among 
the papers dealing with short and elementary proofs of the Jacobi triple 
product formula and the quintuple product identity are [3] and [27]. Proofs 
of the latter also appear in [98], [94] and [49]. [47] is a follow up of some 
of the work in our book. 

2.7. Combinator ial proofs and in terpre ta t ions of some identities. 
Among the many papers on the subject are [4] and [46]. 

3 . P a p e r s by t h e a u t h o r s 

Our interest in this subject may be traced to an early paper by one of the 
authors [31]. His interest in the subject reemerged as a consequence of the 
doctoral studies of one of his students resulting in [32] and [33]. 

The collaboration that led to this book started with [36] and [37], where 
the use of theta constants with rational characteristics was applied to the 
study of uniformization of surfaces represented by subgroups of the modular 
group. In [34] modified theta constants were introduced as a tool in the 
study of uniformization of surfaces represented by the prime level principal 
congruence subgroups; related topics are investigated in part of [43]. Our 
papers on partitions and the Ramanujan r-function include [38], [67], [41], 
[39] and [42]. Our work that relates to Hecke operators includes [44]. The 
quintuple product identity is reproven in [40]. 

4. Or ig ina l sources , conference p r o c e e d i n g s 

The primary sources for the mathematics of S. Ramanujan, the main sub
ject of much of this book, are [54] and [89]; the Hardy lectures [53] are 
extremely useful in any attempt to evaluate Ramanujan's genius. So are his 
notebooks [88], [90] and [18]. The last of these contains extensive scholarly 
and bibliographic information. Among the many conference proceedings de
voted to Ramanujan's legacy is [10]; [57] is among the latest. At least two 
journals, The Ramanujan Journal and The Hardy-Ramanuj an Journal are 
named in his honor. Among the many books and papers that include the 
name Ramanujan in their title are [19], [20], [21], [22], [23], [24], [5], [6], 
[8], [25] and [26]. 



5. Related questions 517 

5. R e l a t e d ques t i ons 

Among the many issues related but not treated in the book are the higher 
level congruences for j and Ppj and the Rogers-Ramanujan identities. These 
identities and their generalizations appear in many books and in the follow
ing papers: [91], [92], [98], [15], [16], [97] and [30], among others. 

The Rogers-Ramanujan identities quoted in Chapter 7 read 

IELoU - *5"+1>(i - *5"+4) * ' ^ IE,i(i - *') = > + E 
X" 

and 
1 = »+E- X n

z+n 

n^ 0 ( i -^ + 2 ) ( i -^ 5 n + 3 ) "' ^ n r = i ( i - ^ ) " 
These identities are related via the Jacobi triple product formula to the 
theta constants which appeared in Chapter 3, namely 

(0,5r). (0,5r) and 9 

The Jacobi triple product yields 
oo oo 

fj(i-x5n+i)(i-x5n+4)(i-x5n+5)= Yl (-1)r 

and 
oo oo 

J](l-x5 n + 2)(l-x5 n + 3)(l-x5 n + 5) = J^ (-1)7 

5n^+3n 

5 n -j-n 
X 2 

n=0 

while straightforward calculation from the definitions shows that in terms 
of the local coordinate x = exp(2?T2T), 

(0>5T) = e x p ( ^ ) s & £ ( - 1 ) B n ( 5 n + l ) 
X 2 

and 

Since 

( 0 , 5 r ) = e x p ( ^ ) ^ £ ( - 1 ) " 
n(5n+3) 

X 2 

TI(5T) = X& JJ( l-x5 n) , 
n=l 

the left hand side (the infinite products) of the Rogers-Ramanujan identities 
can be interpreted as multiplicative automorphic forms for F(5). Part of the 
fascination with these identities is that the right hand side (the infinite sum) 
does not seem to have such an interpretation. 
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The fact that the Rogers-Ramanuj an identities are connected to the 
above theta constants was known to Schur. In [93], this connection is made 
and Schur derives the identities in two different ways. One way uses the theta 
constants but he also gives a second proof using combinatorial methods. The 
second proof uses an identity between the binomial coefficients extended to 
the q-binomial coefficients and some cosine identities. 

There is also a generalization of the Rogers-Ramanuj an identities known 
as the Gollnitz-Gordon identities where the modulus 8 replaces 5. While this 
topic is also not treated in the text, it seems interesting to point out that 
some of the techniques used to study these identities seem to be related to 
material in this text. It is pointed out in a paper by K. Alladi [2] that 
proofs of these identities can be based on splitting the respective functions 
(defined as infinite sums) into their even and odd parts and that these parts 
have interesting product representations. The variable x (in most of the 
literature q) is related to the parameter r by x = exp(27rzr). Our proof of 
the quintuple product identity also used a decomposition of a function into 
even and odd parts in the variable z = exp(27n£). These ideas arise from 
certain continued fraction identities which were also considered by us in the 
last chapter of the book. The reader is encouraged to look at Alladi's paper 
and the references given there to the work of Andrews, Gordon and others. 

Theta functions with characteristics enrich the set of tools available to 
investigate diverse questions. We believe that the material in the text opens 
areas for further investigations (in particular for doctoral work) and can be 
used to derive many identities not considered in the book. We illustrate 
both points by providing two different proofs of the Kohler-Macdonald (the 
name comes from [73]) identity quoted in Chapter 5. It reads 

oo oo 

(i) x H(i - x^f{i - x^y2 = E(-!)n_1 Q) ™n2-
71=1 n=l 

The right hand side is easily seen to be the same as 
oo oo 

x Y, (-l)m(3m + i)x
9m2+6™ + x Y (-l)m(3m + 2)x

9m2+Um+3. 
m=0 m=0 

It now makes sense to replace x by xs and rewrite the identity as 
oo oo 

\\{l-x2nf{l-xny2= ^ ( - i r (3m+l)a ; m ( 3 m + 2 ) . 
n=l m=—oo 

To translate this identity to the language of theta functions, we use the 
change of variable x = exp(27rzr). The left hand side of the Kohler-Macdonald 
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identity is thus 

We have shown that 

exp 
2mr 

7?(2r)57?(r) 

(0 , r) = ^ exp {m\)x& V > n + l)(-l)nx^3n+2\ 

Thus the right hand side of the Kohler-Macdonald identity is 

3 

2m exp -7Ti- > exp < —2mr-
3J M 3 

(0,6r) . 

We conclude that the function theoretic version of Kohler-Macdonald is 
2 

-2 
(2) 2TTir](2T)bri(T)-z = 3 exp K}' (0,6r). 

Our first proof of the above identity follows from the following product 
formula established by Y. Godin, which will appear as part of his doctoral 
thesis at the Hebrew University of Jerusalem. Godin proves 

2 

- E < 
It thus follows that 

2fj,+e+5 

2e' + 5' 

1 
0 

6' 

( 3 C , 6 T ) 0 

(C,2r) 

2n+e-2S 
3 

5' 
(0,3r) . 

(C,r)e (C,r) 

= 9 (0,3r) f 9 ( 3 C , 6 r ) - e (-3C,6r) . 

Differentiation (with respect to £) and then evaluation at ( = 0 yields 

r 2 i 
3 
1 

(0,6r) = 

1 
0 

(0,T)9> (0,2r) 

(0,3r) 

An application of the Jacobi triple product formula completes the proof of 
(2). 

It is appropriate to illustrate the combinatorial content of the Kohler-
Macdonald identity. The identity may be rewritten as 

j r (-ir(3n+iK 3n 2 +2n _ n < » - An\3( 

n=—oo n=l 

In this form the combinatorial content is as follows: Let S be the set con
taining 3 copies of the positive integers congruent to 0 modulo 4, 1 copy 
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of the positive integers congruent to 2 modulo 4, and 2 copies of the odd 
positive integers. Call such a partition even if it has an even number of even 
parts and call it odd otherwise. Denote by E(N) and O(N) the number 
of even and odd partitions of N G Z + using parts from the set S. The 
Kohler-Macdonald identity says that for all A^GZ+ , 

for N i- 3m2 + 2m with m G Z 
for N — 3m2 + 2m with m G Z 

£(A 0 - O(JV ) = 0 
l(3m + l) 

The second proof of the identity, more in the spirit of the book, is based 
on the connection of ^-constants to automorphic forms. It starts by "rewrit
ing" (2) as 

(3) (27r)247/(2r) i2U77(r -48 _ o24 / /)/ = 3 Z 4 9 
, 2 4 

(0,6r)J . 

The equivalence class of the characteristic 

Using this observation one shows that 

is fixed by the group r°(6). 

f(r)= K (0,6r) 
24 

is a multiplicative 6-form for T0(6) (perhaps with a nontrivial multiplier 
system); that is, 

24 

(0,67(r)) ( 7 ' ( T ) ) 6 = C7 iff 
24 

(0,6r) , r e r o ( 6 ) , 

where c7 is a constant of absolute value 1. The four punctures on H 2 / r o(6) 
are Poo,'Pi, Po and P i . The divisor (/) is computed to be P*P2P18PI . 

2 3 2 3 

The function ^IAS is a multiplicative 6-form for ro(2), hence certainly for 
ro(6). It has the same divisor as the automorphic form / . The formulae for 
the divisors show that these are ordinary cusp forms. Hence, except for the 
constants, (3) follows. If we extract a 24-th root and evaluate the one (so 
far undetermined) constant, we obtain (2). 

The above two proofs are based on recognizing that both sides of (1) can 
be reinterpreted in terms of ^-constants. A proof of Kohler-Macdonald based 
on theta functions (in particular on [62]) can be found in [63]. It is different 
in flavor from the second of our proofs because it relies more directly and 
more exclusively on the properties of the 77-function. Our second proof has 

- 2 ~ 

an unexpected dividend. While it is more or less obvious that 9' (0,6r ) 

is a multiplicative form for ro(6), we have shown that it is a form for the 
bigger group T0(2). 
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As a special case of a more general formula Godin also proves 

n = 0 

e 

2fj,+e+S 

4e' + 5' 

(0,T)9 
6 
6' 

(0,2Or)0 

(0,r) 

-2/x-e+4£ 
5 

-e' + 8' 

Choosing 

manipulation 

e 
= 

1 
0 

and 
6 
6' = 

0 
1 

(0,5r). 

we obtain after some algebraic 

n(i+^2n"1)2 

i 
7 1 = 1 

n^Lot1 - ^5 n + i)(i - *5n+4)(i - x4(^+i))(i - x4(^+4)) 
X 

+ nrT=o(1 " ^ 5 n + 2 ) ( l - z5 n+3)(l - a ^ + 2 ) ) ( l - x4(5^+3))' 
a formula, related to the Rogers-Ramanujan identities, which also has a clear 
combinatorial interpretation which we now give. 

Let S be the set consisting of two copies of the odd positive integers. 
Denote the number of partitions of N from S by S(N). Let T be the set 
consisting of the positive integers congruent to ±1 modulo 5 with an extra 
copy of those which are also congruent to 0 modulo 4. Denote the number 
of partitions of N from T by T(N). Finally, let U be the set of the positive 
integers congruent to ±2 modulo 5 with an extra copy of those which are 
also congruent to 0 modulo 4. Denote the number of partitions of N from 
U by U(N). The above identity says that for all N G Z, N > 2, 

S(N) = T{n) + U(N-l). 
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