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Preface 

A large part of modern analysis is centered around the Laplace operator 
and its generalizations in various settings. On the other hand, under certain 
technical conditions one can show that the generator of a continuous strong 
Markov process must be a second order elliptic operator. These are the 
two facts that make the connection between probability and analysis seem 
natural. If we adopt the view that Brownian paths are the "characteristic 
lines" for the Laplace operator, then it is no longer surprising that solutions 
of many problems associated with the Laplace operator can be explicitly 
represented by Brownian motion, for it is a well known fact in the theory 
of partial differential equations that explicit solutions are possible if one 
knows characteristic lines. While analysts are interested in what happens 
in average, to a probabilist things usually happen at the path level. For 
these reasons probability theory, and Brownian motion in particular, has 
become a convenient language and useful tool in many areas of analysis. 
The purpose of this book is to explore this connection between Brownian 
motion and analysis in the area of differential geometry. 

Unlike many time-honored areas of mathematics, stochastic analysis has 
neither a well developed core nor a clearly defined boundary. For this reason 
the choice of the topics in this book reflects heavily my own interest in the 
subject; its scope is therefore much narrower than the title indicates. My 
purpose is to show how stochastic analysis and differential geometry can 
work together towards their mutual benefit. The book is written mainly 
from a probabilist's point of view and requires for its understanding a solid 
background in basic euclidean stochastic analysis. Although necessary geo­
metric facts are reviewed throughout the book, a good knowledge of differen­
tial geometry is assumed on the part of the reader. Because of its somewhat 

xm 



XIV Preface 

unusual dual prerequisites, the book is best suited for highly motivated ad­
vanced graduate students in either stochastic analysis or differential geom­
etry and for researchers in these and related areas of mathematics. Notably 
absent from the book are a collection of exercises commonly associated with 
books of this kind, but throughout the book there are many proofs which 
are nothing but an invitation to test the reader's understanding of the topics 
under discussion. 

During the writing of this book, I have greatly benefited from several 
existant monographs on the subject; these include: 

• N. Ikeda and S. Watanabe: Stochastic Differential Equations and 
Diffusion Processes, 2nd edition, North-Holland/Kodansha (1989); 

• K. D. Elworthy: Stochastic Differential Equations on Manifolds, 
Cambridge University Press (1982); 

• M. Emery: Stochastic Calculus in Manifolds, Springer (1989); 

• P. Malliavin: Stochastic Analysis, Springer (1997). 

Overlaps with these works are not significant, and they and the more re­
cent An Introduction to the Analysis of Paths on a Riemannian Manifold, 
American Mathematical Society (2000), by D. W. Stroock, are warmly rec­
ommended to the reader. 

This book could not have been written without constant support from 
my wife, who has taken more than her fair share of family duties during 
its long gestation period. I would like to take this opportunity to thank 
Elena Kosygina, Tianhong Li, Banghe Li, and Mark A. Pinsky for reading 
early drafts of various parts of the book and for their valuable suggestions. 
I would also like to acknowledge many years of financial support through 
research grants from the National Science Foundation. Most of the book is 
based on the lectures I have delivered at various places during the late 1990s, 
notably at Academica Sinica in Beijing (1995), IAS/Park City Mathematics 
Institute in Princeton (1996), Institut Henri Poincare in Paris (1998), and 
Northwestern University in Evanston (1999), and I would like to thank my 
audiences for their comments and suggestions. 

Elton P. Hsu 

Hinsdale, IL 

October, 2001. 
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General Notations 

Notation Definition 

3%(X) Borel cr-field of a metr ic space X 
3§* Borel filtration of W(M) = {3St} 
B(x; R) (geodesic) ball of radius R centered at x 
DM Hodge-de Rham Laplacian on M 
(X, Y) co-variation of semimartingales X and Y 
(X) quadratic variation of X — (X, X) 
C°°(M) smooth functions on M 
Cx cutlocus of x 
o Stratonovich stochastic integral, X o dY = XdY + \d{X, Y) 
c(X) Clifford multiplication by X (in CHAPTER 7) 
d exterior differentiation 
^M(^J y) distance between x and y on M 
D gradient operator on PQ(M) 
D Dirac operator (in CHAPTER 7) 
Dh Cameron-Martin vector field on P0{M) 
S dual of exterior differentiation 
A M Laplace-Beltrami operator on M = — (dS + 5d) 
A&(M) Bochner's horizontal Laplacian on &{M) — X^=i Hf 
A* dual operator of A 
e(uj) lifetime (explosion time) of a path u 
End(y) space of linear transforms on V 
exp0 exponential map based at o 
£P* filtration of cr-fields = {^t} 
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272 General Notations 

Notation Definition 

&(M) frame bundle of M 
^^ filtration generated by process X = {^^} 
r(E) space of sections of vector bundle E 
rjfj Christoffel symbols 
r(f, g) r of / and g = L(fg) - fLg - gLf 
GL(d,M) set of real nonsingular (d x d) matrices 
Hi fundamental horizontal vector field on &{M) 
3tf Cameron-Martin space 
i(X) interior product with X 
ix injectivity radius at x 
%K injectivity radius on K — min {ix : x G K} 
I (J, J) index form of a vector field J 
KM(X) set of sectional curvatures at a point x £ M 
L Orstein-Uhlenbeck operator (in CHAPTER 8) 
^ ( d , /) space of (d x I) matrices 
M"!" transpose of a matrix M 
M one-point compactification of a manifold M —M U {<9M} 
\-\^ Cameron-Martin norm 
V connection and covariant differentiation 
V 2 / Hessian of / 
VHG horizontal gradient of G = {HiG,..., HdG} 
0(d) (d x d) orthogonal group 
o(d) (d x d) anti-symmetric matrices 
0{M) orthonormal frame bundle of M 
ft curvature form 
Pf(A) Pfaffian of an anti-symmetric matrix A 
P0{M) space of paths on M starting from o with time length 1 
Fx law of Brownian motion starting from x 
^x,y-,t l a w °f Brownian bridge from x to y with time length t 
PM(t, %, y) heat kernel on a Riemannian manifold M 
{Pt} heat semigroups etAjVf/2 

{^t} Ornstein-Uhlenbeck semigroups etL'2 

II second fundamental form 
euclidean space of dimension N 
set of nonnegative real numbers = [0, oo), 

i?(X, Y)Z curvature tensor evaluated at X, Y, Z 
RICM(^) set of Ricci curvatures at a point x £ M 
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Notation Definition 

Ricw 

y+(d) 

sn 

Spin(d) 

y{M) 
y&(M) 
X* 
TD 

9t 
TK 

6 
Trace 
TM 
TXM 
T*M 
A?M 
W(M) 

Ricci transform at a frame u G &(M) 
(d x d) symmetric positive definite matrices 
n-sphere 
Spin group 
spin bundle over a spin manifold M 
Spin(d)-principal bundle over M 
horizontal lift of X e TM to the frame bundle &{M) 
first exit time of D — inf {t : Xt 0 D} 
shift operator in a path space: (6toj)s = ^t+s 
first hitting time of K = inf {t : Xt G K} 
scalarization of a tensor 6 
supertrace (in CHAPTER 7) 
tangent bundle of a manifold M 
tangent space of M at x 
cotangent space of M at x 
space of p-forms at a point x G M 
space of paths on M with lifetimes 
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cotangent space, 41 
coupling time, 179 
covariant differentiation, 36 
covariant Laplacian, 192 
curvature 

Ricci, 89 
scalar, 219 
sectional, 89 

curvature form, 149, 197 
curvature tensor, 89 
cut locus, 88 
cylinder function, 235 

development, 40 
differential form, 193 
diffusion coefficient, 6 
diffusion measure, 24 
diffusion procress, 24 
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Dirac operator, 215 
Dirichlet form, 245 
Dirichlet heat kernel, 102 
Dirichlet problem, 118 
Dirichlet problem at infinity, 159 
divergence, 74 
Doob's inequality, 8, 240 
dual operator, 239 

Eells-Elworthy-Malliavin construction, 2, 35 
embedding theorem 

Nash, 76 
Whitney, 21 

Euler form, 208 
exhaustion, 11, 104 
explosion time, 5, 11 
exponential map, 58 
exponential martingale, 17, 145 
exterior differentiation, 193 
exterior product, 193 

Feller property, 113 
Feynman-Kac formula, 198 
filtered probability space, 6 
first Bianchi identity, 217 
first exit time, 104 
first variation formula, 183 
frame, 37 
frame bundle, 37 

orthonormal, 40 
fundamental horizontal vector field, 39 
fundamental solution, 105 
fundamental vertical vector field, 149 

geodesic, 37 
geodesically complete, 88 
Girsanov's theorem, 146, 230 
gradient, 236 
Green function, 121 
Gross' equivalence theorem, 261 
Gross' logarithmic Sobolev inequality, 258 

half-spin representation, 209 
harmonic forms, 201 
heat equation, 198 
heat kernel, 105 

Dirichlet, 102 
minimal, 105 
on euclidean space, 102 
on forms, 200 
on space forms, 132 

heat semigroup, 112, 113 
Hermite polynomial, 243 
hermitian vector bundle, 215 
Hessian, 43 
Hodge decomposition, 203 
Hodge-de Rham Laplacian, 193 

Hodge-de Rham theory, 201 
Hopf-Rinow theorem, 88 
horizontal Brownian motion, 82 
horizontal curve, 38 
horizontal gradient, 146 
horizontal Laplacian, 75, 192 
horizontal lift 

of curve, 38 
of semimartingale, 45 
of vector, 38 

horizontal semimartingale, 45 
horizontal vector, 38 
hyperbolic manifold, 117 
hypercontractivity, 260 

index form, 91, 183 
index lemma, 91, 187 
injectivity radius, 89 
integration by parts formula, 236, 252 
interior product, 194 
isometric embedding, 76 
Ito's formula, 7 

in Stratonovich form, 19 

Jacobi equation, 90 
Jacobi field, 91, 182 

Kendall-Cranston coupling, 186 
Kolmogorov continuity criterion, 143 
Kolomogorov's extension theorem, 143 

Laplace-Beltrami operator, 74 
Laplacian 

covariant, 192 
Hodge-de Rham, 193 

Laplacian comparison theorem, 90 
law of the iterated logarithm, 167 
Levi-Civita connection, 43, 73 
Levy's criterion, 28 
Lichnerowicz formula, 215 
Lichnerowicz theorem, 188 
Lie bracket, 43 
lifetime, 11 
Lipschitz condition, 6 
local convergence theorem, 59 
local Gauss-Bonnet-Chern theorem, 206 
logarithmic Sobolev inequality, 258 
loop space, 142 

manifold 
Cartan-Hadamard, 158 
geodesically complete, 88 
Riemannian, 40, 72 
spin, 213 
stochastically complete, 107 

martingale 
exponential, 17, 145 
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nonconfluence, 65 
on manifold, 55 
on submanifold, 60 

martingale problem, 24 
martingale representation theorem, 85, 257 
maximum principle, 119 
mean curvature, 62 
minimal heat kernel, 105 
minimal submanifold, 62 
multiplicative functional, 198 
Myer's theorem, 188 

Nash's embedding theorem, 76 
Nelson's hypercontractivity theorem, 262 
nonconfluence of martingales, 65 
normal coordinates, 58 

one-point compactification, 11 
Ornstein-Uhlenbeck operator, 241 
Ornstein-Uhlenbeck process, 17 
orthonormal frame bundle, 40 

parabolic manifold, 117 
parallel transport, 37, 38 
path space, 11 
Patodi's local index theorem, 191 
Pfaffian, 208, 210 
Picard's iteration, 9 
Poincare inequality, 263 
principal bundle, 37 
probability space, 6 

filtered, 6 
process 

Bessel, 170 
coordinate, 102 
Ornstein-Uhlenbeck, 17 
radial, 88 

product connection, 68 

quadratic variation, 53 
quasi-invariance, 230 

radial process, 71, 88, 92 
radially symmetric manifold, 172 
Rauch comparison theorem, 165 
recurrence, 117 
regular conditional probability, 31 
Ricci curvature, 89 
Riemannian manifold, 40, 72 
Riemannian metric, 72 
rolling without slipping, 40 

scalar curvature, 90, 217, 219 
scalarization, 42 
Schwartz test function, 243 
second fundamental form, 61 
second order elliptic operator, 24 
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second variation formula, 91, 184 
sectional curvature, 89 
semimartingale, 6 

horizontal, 45 
on manifold, 19 
up to a stopping time, 12 

shift operator, 33 
solder form, 53 
space 

bridge, 142 
loop, 142 
path, 11 

spectral gap, 179, 245 
sphere at infinity, 158 
spin bundle, 213 
spin group, 209 
spin manifold, 213 
spin representation, 209 
spin structure, 213 
stochastic area formula, 221 
stochastic differential equation 

on euclidean space, 6 
on manifold, 20 

stochastic differential geometry, 35 
stochastic line integral, 52 
stochastic parallel transport, 50 
stochastically complete, 107 
Stratonovich formulation, 19 
strong Markov property, 31 
structure equation, 149 
submanifold 

minimal, 62 
totally geodesic, 61 

supertrace, 201, 211 

tangent bundle, 36 
tangent space, 36 
tensor field, 41 
torsion, 43 
torsion-free connection, 43 
totally geodesic submanifold, 61 
transience, 117 

uniqueness in law, 15 

Varadhan's asmptotic relation, 133 
vertical vector, 38 
volume measure, 73 

warped product, 85 
weak uniqueness, 15 
Weitzenbock formula, 196 
Whitney's embedding theorem, 21 
Wiener chaos decomposition, 244 
Wiener measure, 78 

Yamada's theorem, 97 
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