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Introduction 

The notion of a quantum group was introduced by V. G. Drinfel'd and 
M. Jimbo, independently, in their study of the quantum Yang-Baxter equa­
tion arising from two-dimensional solvable lattice models ([10, 23]). Quan­
tum groups are certain families of Hopf algebras that are deformations of 
universal enveloping algebras of Kac-Moody algebras. Over the past 20 
years, they turned out to be the fundamental algebraic structure behind 
many branches of mathematics and mathematical physics such as: 

(1) solvable lattice models in statistical mechanics, 

(2) topological invariant theory of links and knots, 

(3) representation theory of Kac-Moody algebras, 

(4) representation theory of algebraic structures, e.g., Hecke algebra, 

(5) topological quantum field theory, 

(6) geometric representation theory, 

(7) C*-algebras. 

*-algebras) 

XI 
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In particular, the theory of crystal bases or canonical bases developed 
independently by M. Kashiwara and G. Lusztig provides a powerful combi­
natorial and geometric tool to study the representations of quantum groups 
([38, 39 , 48]). The purpose of this book is to provide an elementary intro­
duction to the theory of quantum groups and crystal bases focusing on the 
combinatorial aspects of the theory. 

In such an introductory book, the first question to be answered would be: 
What are quantum groups? In his famous lecture given at the International 
Congress of Mathematicians held at Berkeley in 1986, Drinfel'd gave a defini­
tion of quantum groups: it was defined to be the spectrum of a certain Hopf 
algebra [11]. That is, Drinfel'd noted that any suitable category of groups 
(algebraic, topological, etc.) is antiequivalent to a suitable category of com­
mutative Hopf algebras. In such a situation, one goes from the group to the 
algebra by considering a suitable algebra of functions, while the group can 
be reconstructed by taking the spectrum in the sense of Grothendieck. Thus, 
even when one has a noncommutative Hopf algebra, it becomes natural to 
think of the corresponding object in the opposite category as a quantum 
group, and this is the meaning of Drinfel'd's definition. 

In this book, we focus on the quantum groups that appear as certain 
deformations of universal enveloping algebras of Kac-Moody algebras. For 
example, let g be a finite dimensional simple Lie algebra, and let U(g) be 
its universal enveloping algebra. Choose a generic parameter q. Then, for 
each q, we can associate a Hopf algebra Uq(g), called the quantum group or 
the quantized universal enveloping algebra, whose structure tends to tha t of 
U(g) as q approaches 1. Therefore, we get a family of Hopf algebras Uq(g), 
and when q = 1, it is the same as the Hopf algebra U(g). 

The following example shows how one can understand the above state­
ment in a naive way. This example is not rigorous, not even mathematical, 
but it gives us a certain intuition. Let g = 5I2 be the complex Lie algebra of 
2 x 2 matrices of trace 0. It is generated by the elements e, / , and h with 
defining relations 

[e,f] = h, [h,e] = 2e, [h,f] = -2f. 

Thus its universal enveloping algebra [/(sfe) is a n associative algebra over 
C with 1 generated by the elements e, / , and h with defining relations 

ef-fe = h, he-eh = 2e, hf-fh = -2f. 

Now, the quantum group Uq(g) = Uq(sl2) is defined to be the associative 
algebra over C(q) with 1 generated by the elements e, / , and qh with defining 
relations 

ef-fe=qh~q~*, qheq-h = q2e, qhfq-h = q^f. 
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Let us look at the first of these defining relations. As q approaches 1, 
the left-hand side remains the same as ef — / e , but the right-hand side is 
undetermined. If we apply L'Hospital's rule (however absurd it might be), 
then the right-hand side is equal to 

,. qh-q~h ,. hqh-l + hq-h~l 2h 7 

hm — = hm ^ = — = h, 
q-^i q - q~l g->i 1 + q~2 2 

as desired. 

For the second relation, if we let q —* 1, then we get e = e, which gives 
nothing new. But if we differentiate both sides with respect to q (again, 
however absurd it might be), we get 

hqh-leq-h + qhe(-h)q-h-1 = 2qe. 

Thus, if we take the limit q —» 1, we get 

he — eh = 2e. 

Similarly, the last relation gives the desired relation as q —• 1. 

Therefore, one can say that for each generic parameter q, there is a 
quantum group Uq(sl2) which is a Hopf algebra, so we have a family of 
Hopf algebras, and the structure of quantum group Uq(sl2) tends to tha t of 
C/(5[2) as q —> 1. But of course this cannot be regarded as a mathematical 
treatment at all. So the first goal of this book is to make the above idea 
rigorous enough to convince ourselves. 

In Chapters 1 and 2, we will give a brief review of the basic theory 
of Lie algebras, Hopf algebras, and Kac-Moody algebras. The notion of 
universal enveloping algebras, highest weight modules, and the category Oint 

will be introduced. The Poincare-Birkhoff-Witt theorem and the Weyl-Kac 
character formula will be presented without proof. The readers may refer 
to [1 ,17 , 28 , 53] for more detail and complete proofs. 

Let g be a symmetrizable Kac-Moody algebra, and let U(g) be its uni­
versal enveloping algebra. In Chapter 3, we will define the quantum group 
Uq(g) as a certain deformation of U(g) with a Hopf algebra structure and 
show that the Hopf algebra structure of Uq(g) tends to tha t of U(g) as q 
approaches 1. 

Moreover, we will give a rigorous proof of the statement: The repre­
sentation theory of Kac-Moody algebra Q is the same as the representation 
theory of quantum group Uq(g). The essential part of this statement is a 
theorem proved by G. Lusztig in [47]: 

The Q-modules in the category 0[nt ( = integrable modules over Q in 
the category O) can be deformed to Uq(g)-modules in the category 0?nt in 
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such a way that the dimensions of weight spaces are invariant under the 
deformation. 

More precisely, let M be a C7(g)-module in the category Omt- Then it 
has a weight space decomposition M = © ^ G p M\, where M\ is the common 
eigenspace for the Cartan subalgebra. Now Lusztig's theorem tells that for 
each generic g, there exists a C/(?(g)-module Mq in the category 0?nt with 
a weight space decomposition Mq — © A e p M^ such that dimC(g) M^ — 
d ime M\ for all A G P and that the structure of Mq tends to tha t of M as 
q approaches 1. 

Pictorially, the results obtained in Chapter 3 can be illustrated in the 
following figure. 

q=l 

Uq(g) 

U(Q) 

Actually, this is one of the motivations for the theory of crystal bases. 
For an integrable module M over U(g) in the category (9int, consider the 
formal power series defined by 

ch M = ^2 ( d i m C Mx)e
x. 

xeP 

The formal series c h M is called the character of the Lr(g)-module M. The 
characters of f7(g)-modules in the category 0-mt characterize the represen­
tations in the sense that if M = N, then c h M = chN. The converse is 
not always true, but will hold if the two modules are both highest weight 
modules with one of them either a Verma module or an irreducible highest 
weight module. The characters often represent important and interesting 
mathematical quantities such as modular forms in number theory and one-
point functions in solvable lattice models. 

Similarly, one can define the character of a J7g(g)-module Mq in the 
category 0?+ to be 

int 

chM« = ^ ( d i m c ( g ) M A V 
AGP 

Since Mq is a quantum deformation of M , by Lusztig's theorem, ch Mq is 
the same for all generic parameter g, and it is just the character of M. So if 
one can calculate chMq for some special value of g, then it suffices to focus 
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on that special case only. The natural question is: When is the situation 
simple? The crystal basis theory tells that it is so when q — 0. 

In Chapters 4 and 5, we develop the crystal basis theory following the 
combinatorial approach given by Kashiwara [38,39]. In [48], a more geo­
metric approach was developed by Lusztig, and it is called the canonical 
basis theory. In [43—45], P. Littelmann introduced a combinatorial theory 
called the path model and obtained a colored oriented graph for irreducible 
highest weight modules over Kac-Moody algebras. It turned out that Lit-
telmann's graphs coincide with Kashiwara's crystal graphs ([25,40]). 

A crystal basis can be understood as a basis at q — 0 and is given a struc­
ture of colored oriented graph, called the crystal graph, with arrows defined 
by the Kashiwara operators. The crystal graphs have many nice combina­
torial features reflecting the internal structure of integrable modules over 
quantum groups. For instance, one of the major goals in combinatorial 
representation theory is to find an explicit expression for the characters of 
representations, and this goal can be achieved by finding an explicit com­
binatorial description of crystal bases. The following picture is the crystal 
graph for the adjoint representation of Uq(sls). 

2 

a 

Moreover, crystal bases have extremely nice behavior with respect to tak­
ing the tensor product. The action of Kashiwara operators is given by the 
simple tensor product rule and the irreducible decomposition of the tensor 
product of integrable modules is equivalent to decomposing the tensor prod­
uct of crystal graphs into a disjoint union of connected components. Thus, 
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the crystal basis theory provides us with a powerful combinatorial method 
of studying the structure of integrable modules over quantum groups. 

Our exposition is based on the combinatorial approach developed by 
Kashiwara [39], and some of our arguments overlap with those given in [21]. 
The existence theorem for crystal bases will be proved using Kashiwara's 
grand-loop argument (Section 5.3). We will simplify the original argument, 
which consists of 14 interlocking inductive statements, to proving 7 inter­
locking inductive statements. Still, the spirit of the argument is the same as 
the original one: the fundamental properties of crystal bases for U~(g) will 
play the crucial role in the proof. 

The next step is to globalize the main idea of crystal bases. More pre­
cisely, let Mq be a Uq(g)-modu\e in the category (D?nt with crystal basis 
(C,B). As we mentioned earlier, the crystal basis B can be regarded as a 
local basis of Mq at q = 0. In Chapter 6, we will show that there exists a 
unique global basis Q{B) = {G(b) \ b G B} of Mq satisfying the properties 

G(b) = b mod qC, G(b) = G(b) for all b G B, 

where denotes the automorphism on M given by (6.5). The existence 
theorem for global bases will be proved using the notion of a balanced triple 
and the triviality of vector bundles over P 1 . Our argument closely follows 
the original proof given by M. Kashiwara in [39]. 

Over the past 100 years, it has been discovered that there is a close con­
nection between representation theory and combinatorics. We can see this 
in the classical works by A. Young ([57—59]), D. E. Littlewood and A. R. 
Richardson ([46]), D. Robinson ([52]), and H. Weyl ([55]). In Chapter 7, 
we study the connection between the crystal basis theory of finite dimen­
sional C/9(g[n)-modules and combinatorics of Young diagrams and Young 
tableaux. The notion of admissible reading (e.g., Far-Eastern reading and 
Middle-Eastern reading) lies at the heart of this connection. The crystal 
graph of a finite dimensional irreducible Uq(gln)-m.odul.e will be realized as 
the set of semistandard Young tableaux of a given shape. Moreover, using 
the tensor product rule for Kashiwara operators, we will give a combinato­
rial rule {Littlewood-Richards on rule) for decomposing the tensor product 
of finite dimensional L^(g[n)-rnodules into a direct sum of irreducible com­
ponents. One may refer to [46] for the classical approach. 

In Chapter 8, we will extend the above idea to the study of crystal 
graphs for classical Lie algebras. The crystal graph of a finite dimensional 
irreducible module over a classical Lie algebra will be realized as the set 
of semistandard Young tableaux satisfying certain additional conditions de­
pending on the type of the Lie algebra. We will also give a combinatorial rule 
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(generalized Littlewood-Richardson rule) for decomposing the tensor prod­
uct of crystal graphs. Most of the results in Chapters 7 and 8 can be found 
in [41] and [50]. 

As the theory of quantum groups originated from the study of the quan­
tum Yang-Baxter equation, the theory of solvable lattice models can be best 
explained in the language of representation theory of quantum affine alge­
bras (which are the quantum groups corresponding to the affine Kac-Moody 
algebras). In Chapter 9, we will describe the very basic theory of solvable 
lattice models and discuss its connection with the representation theory of 
the quantum affine algebra Uq($l2) (see, for example, [24,36]). In particu­
lar, the one-point function for the 6-vertex model will be expressed as the 
quotient of the string function by the character of the basic representation 

ofJ7,(sI2). 
In Chapter 10, we will develop the theory of perfect crystals for quan­

tum affine algebras (see [36, 37]), which has a lot of important applications 
to the representation theory of quantum affine algebras and vertex models 
(see, for example, [7,24] and the references therein). We will first study 
the properties of vertex operators and then prove a fundamental crystal iso­
morphism theorem. Using this crystal isomorphism, the crystal graph of 
an irreducible highest weight module over a quantum affine algebra will be 
realized as the set of certain paths. 

The final chapter will be devoted to the study of crystal bases for basic 
representations of classical quantum affine algebras using some new combi­
natorial objects which we call the Young walls (see [34]). The Young walls 
consist of colored blocks with various shapes that are built on the given 
ground-state wall and can be viewed as generalizations of Young diagrams. 
The rules for building Young walls and the action of Kashiwara operators 
will be given explicitly in terms of combinatorics of Young walls. (They are 
quite similar to playing with LEGO® blocks and the Tetris® game.) The 
crystal graph of a basic representation will be characterized as the set of 
all reduced proper Young walls. We expect that there exist interesting and 
important algebraic structures whose irreducible representations (at some 
specializations) are parameterized by reduced proper Young walls. It still 
remains to extend the results in this chapter to the quantum affine algebras 
of type C ^ ( n > 3 ) . 
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