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Preface 

For about ten years between 1973 and 1986 the author was delivering a one-
year topics course "Random Processes" at the Department of Mechanics and 
Mathematics of Moscow State University. This topics course was obligatory 
for third-fourth year undergraduate students (about 20 years of age) with 
major in probability theory and its applications. With great sympathy I 
remember my first students in this course: M. Safonov, A. Veretennikov, 
S. Anulova, and L. Mikhailovskaya. During these years the contents of the 
course gradually evolved, simplifying and shortening to the shape which has 
been presented in two 83 and 73 page long rotaprint lecture notes published 
by Moscow State University in 1986 and 1987. In 1990 I emigrated to the 
USA and in 1998 got the opportunity to present parts of the same course 
as a one-quarter topics course in probability theory for graduate students at 
the University of Minnesota. I thus had the opportunity to test the course 
in the USA as well as on several generations of students in Russia. What 
the reader finds below is a somewhat extended version of my lectures and 
the recitations which went along with the lectures in Russia. 

The theory of random processes is an extremely vast branch of math
ematics which cannot be covered even in ten one-year topics courses with 
minimal intersection of contents. Therefore, the intent of this book is to 
get the reader acquainted only with some parts of the theory. The choice 
of these parts was mainly defined by the duration of the course and the au
thor's taste and interests. However, there is no doubt that the ideas, facts, 
and techniques presented here will be useful if the reader decides to move 
on and study some other parts of the theory of random processes. 

From the table of contents the reader can see that the main topics of 
the book are the Wiener process, stationary processes, infinitely divisible 

XI 



XII Preface 

processes, and Ito integral and stochastic equations. Chapters 1 and 3 are 
devoted to some techniques needed in other chapters. In Chapter 1 we 
discuss some general facts from probability theory and stochastic processes 
from the point of view of probability measures on Polish spaces. The re
sults of this chapter help construct the Wiener process by using Donsker's 
invariance principle. They also play an important role in other issues, for 
instance, in statistics of random processes. In Chapter 3 we present basics 
of discrete time martingales, which then are used in one way or another in 
all subsequent chapters. Another common feature of all chapters excluding 
Chapter 1 is that we use stochastic integration with respect to random or
thogonal measures. In particular, we use it for spectral representation of 
trajectories of stationary processes and for proving that Gaussian station
ary processes with rational spectral densities are components of solutions to 
stochastic equations. In the case of infinitely divisible processes, stochas
tic integration allows us to obtain a representation of trajectories through 
jump measures. Apart from this and from the obvious connection between 
the Wiener process and Ito's calculus, all other chapters are independent 
and can be read in any order. 

The book is designed as a textbook. Therefore it does not contain any 
new theoretical material but rather a new compilation of some known facts, 
methods and ways of presenting the material. A relative novelty in Chapter 
2 is viewing the Ito stochastic integral as a particular case of the integral of 
nonrandom functions against random orthogonal measures. In Chapter 6 we 
give two proofs of Ito's formula: one is more or less traditional and the other 
is based on using stochastic intervals. There are about 128 exercises in the 
book. About 41 of them are used in the main text and are marked with an 
asterisk. The bibliography contains some references we use in the lectures 
and which can also be recommended as a source of additional reading on 
the subjects presented here, deeper results, and further references. 

The author is sincerely grateful to Wonjae Chang, Kyeong-Hun Kim, 
and Kijung Lee, who read parts of the book and pointed out many errors, 
to Dan Stroock for his friendly critisizm of the first draft, and to Naresh 
Jain for useful suggestions. 

Nicolai Krylov 
Minneapolis, January 2001 
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Ĵ oo, 83, 89 
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