Introduction to the Theory of Random Processes

N.V. Krylov

Graduate Studies
in Mathematics
Volume 43

Selected Titles in This Series

43 N. V. Krylov, Introduction to the theory of random processes, 2002
42 Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, 2002
41 Georgi V. Smirnov, Introduction to the theory of differential inclusions, 2002
40 Robert E. Greene and Steven G. Krantz, Function theory of one complex variable, 2002
39 Larry C. Grove, Classical groups and geometric algebra, 2002
38 Elton P. Hsu, Stochastic analysis on manifolds, 2002
37 Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, 2001
Martin Schechter, Principles of functional analysis, second edition, 2002
James F. Davis and Paul Kirk, Lecture notes in algebraic topology, 2001
Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001
33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001
32 Robert G. Bartle, A modern theory of integration, 2001
31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001
30 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001
29 Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001
25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000
24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000
23 Alberto Candel and Lawrence Conlon, Foliations I, 2000
22 Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 2000
21 John B. Conway, A course in operator theory, 2000
20 Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
19 Lawrence C. Evans, Partial differential equations, 1998
18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997
17 Henryk Iwaniec, Topics in classical automorphic forms, 1997
16 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997
15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997
Elliott H. Lieb and Michael Loss, Analysis, 1997
Paul C. Shields, The ergodic theory of discrete sample paths, 1996
N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996

Jacques Dixmier, Enveloping algebras, 1996 Printing
Barry Simon, Representations of finite and compact groups, 1996
Dino Lorenzini, An invitation to arithmetic geometry, 1996
Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
Gerald J. Janusz, Algebraic number fields, second edition, 1996
Jens Carsten Jantzen, Lectures on quantum groups, 1996
Rick Miranda, Algebraic curves and Riemann surfaces, 1995
Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
(Continued in the back of this publication)

This page intentionally left blank

Introduction to the Theory of Random Processes

This page intentionally left blank

Introduction to the Theory of Random Processes

N.V. Krylov

Graduate Studies in Mathematics

Volume 43

Editorial Board

Steven G. Krantz
David Saltman (Chair)
David Sattinger
Ronald Stern

2000 Mathematics Subject Classification. Primary 60-01; Secondary 60G99.
The author was supported in part by NSF Grant DMS-9876586

Abstract

These lecture notes concentrate on some general facts and ideas of the theory of stochastic processes. The main objects of study are the Wiener processes, the stationary processes, the infinitely divisible processes, and the Itô stochastic equations.

Although it is not possible to cover even a noticeable portion of the topics listed above in a short course, the author sincerely hopes that after having followed the material presented here the reader will have acquired a good understanding of what kind of results are available and what kind of techniques are used to obtain them.

These notes are intended for graduate students and scientists in mathematics, physics and engineering interested in the theory of random processes and its applications.

Library of Congress Cataloging-in-Publication Data
Krylov, N. V. (Nikolaĭ Vladimirovich)
Introduction to the theory of random processes / N. V. Krylov p. cm. - (Graduate studies in mathematics, ISSN 1065-7339; v. 43)
Includes bibliographical references and index.
ISBN 0-8218-2985-8 (alk. paper)
1. Stochastic processes. I. Title. II. Series.
QA274.K79 2002
519.2/3-dc21

2002018241

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.
(c) 2002 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America.

(a)
Q The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/
10987654321070605040302

Contents

Preface xi
Chapter 1. Generalities 1
$\S 1$. Some selected topics from probability theory 1
§2. Some facts from measure theory on Polish spaces 5
§3. The notion of random process 14
§4. Continuous random processes 16
§5. Hints to exercises 25
Chapter 2. The Wiener Process 27
§1. Brownian motion and the Wiener process 27
§2. Some properties of the Wiener process 32
§3. Integration against random orthogonal measures 39
$\S 4$. The Wiener process on $[0, \infty)$ 50
§5. Markov and strong Markov properties of the Wiener process 52
§6. Examples of applying the strong Markov property 57
§7. Itô stochastic integral 61
§8. The structure of Itô integrable functions 65
§9. Hints to exercises 69
Chapter 3. Martingales 71
§1. Conditional expectations 71
§2. Discrete time martingales 78
§3. Properties of martingales 81
§4. Limit theorems for martingales 87
§5. Hints to exercises 92
Chapter 4. Stationary Processes 95
§1. Simplest properties of second-order stationary processes 95
§2. Spectral decomposition of trajectories 101
§3. Ornstein-Uhlenbeck process 105
§4. Gaussian stationary processes with rational spectral densities 112
§5. Remarks about predicting Gaussian stationary processes with rational spectral densities 117
§6. Stationary processes and the Birkhoff-Khinchin theorem 119
§7. Hints to exercises 127
Chapter 5. Infinitely Divisible Processes 131
§1. Stochastically continuous processes with independent increments 131
§2. Lévy-Khinchin theorem 137
§3. Jump measures and their relation to Lévy measures 144
§4. Further comments on jump measures 154
§5. Representing infinitely divisible processes through jump measures 155
§6. Constructing infinitely divisible processes 160
§7. Hints to exercises 166
Chapter 6. Itô Stochastic Integral 169
§1. The classical definition 169
§2. Properties of the stochastic integral on H 174
§3. Defining the Itô integral if $\int_{0}^{T} f_{s}^{2} d s<\infty$ 179
§4. Itô integral with respect to a multidimensional Wiener process 186
§5. Itô's formula 188
§6. An alternative proof of Itô's formula 195
§7. Examples of applying Itô's formula 200
§8. Girsanov's theorem 204
§9. Stochastic Itô equations 211
§10. An example of a stochastic equation 216
§11. The Markov property of solutions of stochastic equations 220
§12. Hints to exercises 225
Bibliography 227
Index 229

This page intentionally left blank

Preface

For about ten years between 1973 and 1986 the author was delivering a oneyear topics course "Random Processes" at the Department of Mechanics and Mathematics of Moscow State University. This topics course was obligatory for third-fourth year undergraduate students (about 20 years of age) with major in probability theory and its applications. With great sympathy I remember my first students in this course: M. Safonov, A. Veretennikov, S. Anulova, and L. Mikhailovskaya. During these years the contents of the course gradually evolved, simplifying and shortening to the shape which has been presented in two 83 and 73 page long rotaprint lecture notes published by Moscow State University in 1986 and 1987. In 1990 I emigrated to the USA and in 1998 got the opportunity to present parts of the same course as a one-quarter topics course in probability theory for graduate students at the University of Minnesota. I thus had the opportunity to test the course in the USA as well as on several generations of students in Russia. What the reader finds below is a somewhat extended version of my lectures and the recitations which went along with the lectures in Russia.

The theory of random processes is an extremely vast branch of mathematics which cannot be covered even in ten one-year topics courses with minimal intersection of contents. Therefore, the intent of this book is to get the reader acquainted only with some parts of the theory. The choice of these parts was mainly defined by the duration of the course and the author's taste and interests. However, there is no doubt that the ideas, facts, and techniques presented here will be useful if the reader decides to move on and study some other parts of the theory of random processes.

From the table of contents the reader can see that the main topics of the book are the Wiener process, stationary processes, infinitely divisible
processes, and Itô integral and stochastic equations. Chapters 1 and 3 are devoted to some techniques needed in other chapters. In Chapter 1 we discuss some general facts from probability theory and stochastic processes from the point of view of probability measures on Polish spaces. The results of this chapter help construct the Wiener process by using Donsker's invariance principle. They also play an important role in other issues, for instance, in statistics of random processes. In Chapter 3 we present basics of discrete time martingales, which then are used in one way or another in all subsequent chapters. Another common feature of all chapters excluding Chapter 1 is that we use stochastic integration with respect to random orthogonal measures. In particular, we use it for spectral representation of trajectories of stationary processes and for proving that Gaussian stationary processes with rational spectral densities are components of solutions to stochastic equations. In the case of infinitely divisible processes, stochastic integration allows us to obtain a representation of trajectories through jump measures. Apart from this and from the obvious connection between the Wiener process and Itô's calculus, all other chapters are independent and can be read in any order.

The book is designed as a textbook. Therefore it does not contain any new theoretical material but rather a new compilation of some known facts, methods and ways of presenting the material. A relative novelty in Chapter 2 is viewing the Itô stochastic integral as a particular case of the integral of nonrandom functions against random orthogonal measures. In Chapter 6 we give two proofs of Itô's formula: one is more or less traditional and the other is based on using stochastic intervals. There are about 128 exercises in the book. About 41 of them are used in the main text and are marked with an asterisk. The bibliography contains some references we use in the lectures and which can also be recommended as a source of additional reading on the subjects presented here, deeper results, and further references.

The author is sincerely grateful to Wonjae Chang, Kyeong-Hun Kim, and Kijung Lee, who read parts of the book and pointed out many errors, to Dan Stroock for his friendly critisizm of the first draft, and to Naresh Jain for useful suggestions.

Nicolai Krylov
Minneapolis, January 2001

Bibliography

[Bi] Billingsley, P., Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1999.
[Do] Doob, J. L., Stochastic processes. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1990.
[Du] Dudley, R.M., Real analysis and probability. Chapman \& Hall/CRC, Boca Raton-London-New York-Washington, D.C., 1989.
[GS] Gīhman, Ĭ.Ī.; Skorokhod, A.V., The theory of stochastic processes. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 210, Springer-Verlag, Berlin-New York, 1980.
[IW] Ikeda, N.; Watanabe, S., Stochastic differential equations and diffusion processes. North-Holland Publishing Company, Amsterdam-Oxford-New York, 1981.
[It] Itô, K., On stochastic differential equations. Mem. Amer. Math. Soc., No. 4 (1951).
[IM] Itô, K., McKean, H.P., Diffusion processes and their sample paths. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 125, Springer-Verlag, Berlin, 1965.
[Kr] Krylov, N.V., Introduction to the theory of diffusion processes, Amer. Math. Soc., Providence, RI, 1995.
[Me] Meyer, P. A., Probability and potentials, Blaisdell Publishing Company, A Division of Ginn and Company, Waltham, Massachusetts, Toronto, London, 1966.
[RY] Revuz, D.; Yor, M., Continuous martingales and Brownian motion. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin-New York, 1999.
[Sk] Skorokhod, A. V., Random processes with independent increments. Mathematics and its Applications (Soviet Series), 47. Kluwer Academic Publishers Group, Dordrecht, 1991.
[St] Stroock, D.W., Probability theory, an analytic view (revised edition). Cambridge Univ. Press, 1999.
[SW] Stroock, D.W.; Varadhan, S.R.S., Multidimensional diffusion processes. Springer Verlag, Berlin-New York, 1979.
[Ya] Yaglom, A. M., Correlation theory of stationary and related random functions. Vols. I and II. Springer Series in Statistics. Springer-Verlag, Berlin-New York, 1987.

Index

, 1
$B_{r}^{o}(x), 13$
$\mathfrak{B}(X), 2,6$
$\mathfrak{B}^{n}, 15$
C, 16
$D[0, T], 134$
$D[0, \infty), 134$
$E\{\xi \mid \mathcal{G}\}, 71$
$E\{\xi \mid \zeta\}, 71$
$F_{\xi}, 4$
$\mathcal{F}^{P}, 2$
$\mathcal{F}_{t}^{w}, 52$
$\mathcal{F}_{s, t}^{\xi}, 146$
$\mathcal{F}_{\infty}, 83,89$
$\mathcal{F}_{\tau}, 83$
H, 66
$H_{0}, 169$
$L_{p}(\Pi, \mu), 39$
$L_{2}(0,1), 47$
L_{p}-norm, 39
$\ell, 2$
M, 195
$\mathfrak{M}, 211$
$N(a), 18$
$N(m, R), 22$
$P(A \mid \mathcal{G}), 71$
$P \xi^{-1}, 4$
$\mathcal{P}, 61$
$R_{T, \varepsilon}, 144$
$\mathbb{R}_{+}, 144$
$S(\Pi), 39$
S, 179
$X^{n}, 15$
$x_{\tau}, 55$
$\mathbb{Z}_{n}^{d}, 23$

$\beta(a, b), 87$
$\beta_{n}, 134$
$\Delta_{f}, 10$
$\eta_{t}(f), 145$
λ-system, 45
$\xi^{-1}(B), 3$
$\xi_{ \pm}, 4$
$\Pi_{0}, 39$
π-system, 45
$\rho_{t}(b), 204$
$\Sigma(C), 16$
σ-field, 1
σ-field generated by, 2, 4
$\sigma(\mathcal{F}), 2$
$\sigma(\xi), 4$
$\tau_{a}, 54$
[.], 5
$\bigvee_{n} \mathcal{F}_{n}, 89$
$\langle\xi\rangle, 178$
$\mu_{n} \xrightarrow{w} \mu, 10$
$(0, \gamma \rrbracket, 195$
$\|\cdot\|_{p}, 39$
$\|\sigma\|, 211$
adapted functions, 66
almost surely, 3
asymptotically normal sequences, 30

Borel functions, 6
Borel sets, 2, 6
Borel σ-field, 2, 6
cadlag functions, 134
Cauchy process, 143
centered Poisson measure, 156
complete σ-field, 3
completion of a σ-field, 2
complex Wiener process, 189
conditional expectation, 71
continuous process, 16
continuous-time random process, 14
correlation function, 95
covariance function, 22
cylinder σ-field, 16
defining sequence, 39
distribution, 4
Doob's decomposition, 79
Doob's inequality for moments, 85
Doob-Kolmogorov inequality, 84
ergodic process, 125
exchangeable sequence, 119
expectation, 4
exponential martingales, 205
Feller property, 216
filtration of σ-fields, 52,81
finite dimensional cylinder sets, 16
finite-dimensional distribution, 15
Gaussian process, 22, 104
Gaussian vector, 21, 104
generator of a process, 216
independence, 52, 55
independent processes, 55, 146
infinitely divisible process, 137
invariance principle, 32
invariant event, 122
Itô stochastic integral, 63, 171
Itô's formula, 193
jump measure, 144
Khinchin's formula, 140
Lebesgue σ-field, 3
Lévy measure, 140
Lévy's formula, 140
Markov process, 220
martingale, 78
mean-square differentiability, 118
mean-square integral, 101
measurable space, 1
modification of a process, 20
multidimensional Wiener process, 186
multiplicative decomposition, 79
normal correlation theorem, 76
normal vectors, 21
number of upcrossings, 87
Ornstein-Uhlenbeck process, 107
Parseval's equality, 49
path, 14
Poisson process, 41, 42, 143
Polish space, 6
positive definite function, 95
predictable functions, 61
probability measure, 2
probability space, 2
processes bounded in probability, 132
random field, 14
random orthogonal measure, 40
random process, 14
random sequence, 14
random spectral measure, 105
random variable, 4
reference measure, 40
regular measure, 7
relatively weakly compact family, 10
reverse martingale, 80
scalar product, 39
Scheffé's theorem, 89
second-order stationary process, 95
self-similarity, 31, 50
simple stopping time, 195
spectral density, 98
spectral'measure, 98
spectral representation, 105
stable processes, 58
standard random orthogonal measure, 108
stationary process, 119
step function, 39
stochastic differential, 188
stochastic integral, 44
stochastic interval, 195
stochastically continuous process, 132
stopped sequences, 82
stopping time, 54,81
submartingale, 78
supermartingale, 78
time homogeneous process, 137
trajectory, 14
Wald's distribution, 57
Wald's identity, 177, 184
weak convergence, 10
white noise, 110
Wiener measure, 30
Wiener process, 52
Wiener process relative to a filtration, 52

Selected Titles in This Series

(Continued from the front of this publication)
3 William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, 1994
2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993
1 Ethan Akin, The general topology of dynamical systems, 1993

