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Preface 

This text evolved from notes I developed for use in a course on several com
plex variables at the University of Utah. The eclectic nature of the topics 
presented in the text reflects the interests and motivation of the graduate 
students who tended to enroll for this course. These students were almost all 
planning to specialize in either algebraic geometry or representation theory 
of semisimple Lie groups. The algebraic geometry students were primarily 
interested in several complex variables because of its connections with al
gebraic geometry, while the group representations students were primarily 
interested in applications of complex analysis - both algebraic and analytic 
- to group representations. 

The course I designed to serve this mix of students involved a simulta
neous development of basic complex algebraic geometry and basic several 
complex variables, which emphasized and capitalized on the similarities in 
technique of much of the foundational material in the two subjects. The 
course began with an exposition of the algebraic properties of the local 
rings of regular and holomorphic functions, first on C n and then on vari
eties. This was followed by a development of abstract sheaf theory and sheaf 
cohomology and then by the introduction of coherent sheaves in both the 
algebraic and analytic settings. The fundamental vanishing theorems for 
both kinds of coherent sheaves were proved and then exploited. Typically 
the course ended with a proof and applications of Serre's GAGA theorems, 
which show the equivalence of the algebraic and analytic theories in the case 
of projective varieties. The notes for this course were corrected and refined, 
with the help of the students, each time the course was taught . This text is 
the result of tha t process. 

xin 
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There were instances where the course continued through the summer 
as a reading course for students in group representations. One summer, the 
objective was to prove the Borel-Weil-Bott theorem; another time, it was to 
explore a complex analysis approach to the study of representations of real 
semisimple Lie groups. Material from these summer courses was expanded 
and then included in the text as the final three chapters. 

The material on several complex variables in the text owes a great debt 
to the text of Gunning and Rossi [GR], and the recent rewriting of that text 
by Gunning [Guj. It was from Gunning and Rossi that I learned the subject, 
and the approach to the material that is used in Gunning and Rossi is also 
the approach used in this text. This means a thorough treatment of the local 
theory using the tools of commutative algebra, an extensive development of 
sheaf theory and the theory of coherent analytic sheaves, proofs of the main 
vanishing theorem for such sheaves (Cartan's Theorem B) in full general
ity, and a complete proof of the finite dimensionality of the cohomologies 
of coherent sheaves on compact varieties (the Cartan-Serre theorem). This 
does not mean that I have included treatments of all the topics covered in 
Gunning and Rossi. There is no discussion of pseudoconvexity, for example, 
or global embeddings, or the proper mapping theorem, or envelopes of holo-
morphy. I have included, however, a more extensive list of applications of 
the main results of the subject - particularly if one includes in this category 
Serre's GAGA theorems and the material on complex semisimple Lie groups 
and the proof of the Borel-Weil-Bott theorem. 

Several complex variables is a very rich subject, wThich can be approached 
from a variety of points of view. The serious student of several complex 
variables should consult, not only Gunning's rewriting of Gunning and Rossi, 
but also the many excellent texts which approach the subject from other 
points of view. These include [D], [Fi], [GRe], [GRe2], [Ho], [K], and [N], 
to name just a few. 

Interwoven with the material on several complex variables in this text is 
a simultaneous treatment of basic complex algebraic geometry. This includes 
the structure theory of local rings of regular functions and germs of varieties, 
dimension theory, the vanishing theorems for coherent and quasi-coherent 
algebraic sheaves, structure of regular maps between varieties, and the main 
theorems on the cohomology of coherent sheaves on projective spaces. 

There are real advantages to this simultaneous development of algebraic 
and analytic geometry. Results in the two subjects often have essentially 
the same proofs; they both rely heavily on the same background material -
commutative algebra for the local theory and homological algebra and sheaf 
theory for the global theory; and often a difficult proof in several complex 
variables can be motivated and clarified by an understanding of the often 
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similar but technically simpler proof of the analogous result in algebraic 
geometry. 

Several complex variables and complex algebraic geometry are not just 
similar; they are equivalent when done in the context of projective varieties. 
This is the content of Serre's GAGA theorems. We give complete proofs of 
these results in Chapter 13, after first studying the cohomology of coherent 
sheaves on projective spaces in Chapter 12. 

The text could easily have ended with Chapter 13. This is where the 
course typically ends. The material in Chapters 14 through 16 is on quite 
a different subject - Lie groups and their representations - albeit one that 
involves the extensive use of several complex variables and algebraic geome
try. Chapter 16 is devoted to a proof of the Borel-Weil-Bott theorem. This 
is the theorem which pinpoints the relationship between finite dimensional 
holomorphic representations of a complex semisimple Lie group G and the 
cohomologies of G-equivariant holomorphic line bundles on a projective va
riety, called the flag variety, constructed from G. Chapter 15 is a brief 
treatment of the subject of complex algebraic groups. This is included in 
order to provide proofs of some of the basic structure results for complex 
semisimple Lie groups that are needed in the formulation and proof of the 
Borel-Weil-Bott theorem. Chapter 14 is a survey of the background mate
rial needed if one is to understand Chapters 15 and 16. It includes material 
on topological groups and their representations, compact groups, Lie groups 
and Lie algebras, and finite dimensional representations of semisimple Lie 
algebras. These last three chapters are included primarily for the benefit 
of the student of Lie theory and group representations. This material illus
trates that both several complex variables and complex algebraic geometry 
are essential tools in the modern study of group representations. The chapter 
on algebraic groups (Chapter 15) provides particularly compelling examples 
of the utility of algebraic geometry applied in the context of the structure 
theory of Lie groups. The proof of the Borel-Weil-Bott theorem in Chapter 
16 involves applications of a wide range of material from several complex 
variables and algebraic geometry. In particular, it provides nice applications 
of the sheaf theory of Chapter 7, the Cartan-Serre theorem from Chapter 
11, the material on projective varieties in Chapter 12, Serre's theorems in 
Chapter 13, and of course, the background material on algebraic groups and 
general Lie theory from Chapters 14 and 15. 

I have tried to make the text as self-contained as possible. However, 
students who attempt to use it will need some background. This should 
include knowledge of the material from typical first year graduate courses 
in real and complex analysis, modern algebra, and topology. Also, students 
who wishes to confront the material in Chapters 14 through 16 will be 
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helped greatly if they have had a basic introduction to Lie theory. Though 
the background material in Chapter 14 is reasonably self-contained, it is 
intended as a survey, and so some of the more technical proofs have been 
left out. For example, the basic theorems relating Lie algebras and Lie 
groups are stated without proof, as is the existence of compact real forms 
for complex semisimple groups and the classification of finite dimensional 
representations of semisimple Lie algebras. 

Each chapter ends with an exercise set. Many exercises involve filling in 
details of proofs in the text or proving results that are needed elsewhere in 
the text, while others supplement the text by exploring examples or addi
tional material. Cross-references in the text to exercises indicate both the 
chapter and the exercise number; that is, Exercise 2.5 refers to Exercise 5 
of Chapter 2. 

There are many individuals who contributed to the completion of this 
text. Edward Dunne, Editor for the AMS book program, noticed an early 
version of the course notes on my website and suggested that I consider turn
ing them into a textbook. Without this suggestion and Ed's further advice 
and encouragement, the text would not exist. Several of my colleagues pro
vided valuable ideas and suggestions. I received encouragement and much 
useful advice on issues in several complex variables from Hugo Rossi. Aaron 
Bertram, Herb Clemens, Dragan Milicic, Paul Roberts, and Angelo Vistoli 
gave me valuable advice on algebraic geometry and commutative algebra, 
making up, in part, for my lack of expertise in these areas. Henryk Hecht, 
Dragan Milicic, and Peter Trombi provided help on Lie theory and group 
representations. Without Dragan's help and advice, the chapters on Lie 
theory, algebraic groups, and the Borel-Weil-Bott theorem would not exist. 
The proof of the Borel-Weil-Bott theorem presented in Chapter 16 is due 
to Dragan, and he was the one who insisted that I approach structure the
orems for semisimple Lie groups from the point of view of algebraic groups. 
The students who took the course the three times it was offered while the 
notes were being developed caught many errors and offered many useful 
suggestions. One of these students, Laura Smithies, after leaving Utah with 
a Ph.D. and taking a position at Kent State, volunteered to proofread the 
entire manuscript. I gratefully accepted this offer, and the result was nu
merous corrections and improvements. My sincere thanks goes out to all 
of these individuals and to my wife, 

, who showed great patience and 
understanding while this seemingly endless project was underway. 

Joseph L. Taylor 
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aligned pair of boxes, 249 
ample sheaf, 326 
analytic modules of finite type, 487 
analytic polyhedron, 261 
analytic sheaf, 216 
analytic vector, 486 
Arens-Royden theorem, 296 
Artin-Rees theorem, 197 

balanced set, 264, 304 
Banach algebra, 245, 288 
bidegree of a differential form, 238 

biholomorphic 
equivalence, 51 
mapping, 50, 55 

biholomorphically equivalent, 56 
biregular 

mapping, 55 
Borel subalgebra, 399, 443 
Borel subgroup, 443 
Borel-Weil theorem, 477 
Borel-Weil-Bott theorem, 480 
bounded 

complex, 119 
subset ofH(U), 30 

bounded subset, 264 
b o x i n C n , 249 
branching order, 73 

Cartan subalgebra, 395 
Cartan's factorization lemma, 251 
Cartan's first criterion, 391 
Cartan's second criterion, 391 
Cartan's Theorem A, 278 
Cartan 's Theorem B, 279 
Cartan-Serre theorem, 302 
Cartesian product 

of prevarieties, 187 
Casimir operator, 469 
category, 114 

abelian, 117 
additive, 116 
homotopy , 120 
of functors, 115 
of modules, 133 
of morphisms, 115 

Cauchy integral formula 
generalized, 8 
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Cauchy's inequalities, 25, 30 
Cauchy's integral formula, 24 
Cauchy-Riemann equations, 7, 29 
Cech cohomology, 176, 179 
Cech complex 

global, 176 
limit, 179 
of sheaves, 176 

centralizer, 440, 442 
chain of syzygies, 142 
character, 362 

of a representation, 375 
of an algebraic group, 429 
unitary, 362 

characteristic polynomial, 67 
Chern class, 181, 284 
closed embedding, 326 
closed graph theorem, 265 
closure of modules theorem, 274 
coherent 

algebraic sheaf, 194 
analytic sheaf, 216 
sheaf of algebras, 213, 356 

cohomology 
Cech, 176, 179 
of a complex, 119 
sheaf, 159 

coimage of a morphism, 117 
cokernel of a morphism, 117 
complete algebraic variety, 327 
completion of a local ring, 334 
complex 

exact, 119 
of maps, 12 
of morphisms, 119 

complex homomorphism, 290 
complex orthogonal group, 421 
constant presheaf, 147 
constant sheaf, 150 
continuous linear functional, 264 
contractible space, 183 
convex separation theorem, 265 
convolution product, 363 
cotangent space, 173 
Cousin data, 13 
Cousin problem, 12 

d-group, 434 
de Rham 

cohomology, 174 
complex, 174 

dense regular subcover, 72 
depth of a prime ideal, 110 
derivation 

of a Lie algebra, 393 
derived functors, 127 
diagonal group, 421 

differential form, 7, 173 
differential forms, 7 
differentials of a complex, 119 
dimension 

Krull, 99 
of a holomorphic variety, 96 
of a submanifold, 51 
of an algebraic variety, 104, 189 
pure, 97, 104 
tangential, 100 

direct image, 153 
with proper supports, 157 

direct image functor, 154 
discriminant, 64, 82 
divisible group, 134 
divisor, 285 
Dolbeault cohomology, 239 
Dolbeault complex, 239 
Dolbeault's lemma, 241 
domain of convergence, 36 
domain of holomorphy, 32-35 
dual basis, 469 

elementary symmetric functions, 41, 43 
embedding, 326 

of algebraic varieties, 204 
Engel's theorem, 386 
enough injectives, 124 
enough projectives, 125 
enveloping algebra, 469 
epimorphism, 114 
equivalence of categories, 115 
equivariant 

vector bundle, 460 
equivariant vector bundle, 460 
exact 

complex, 119 
functor, 118, 122 
sequence, 11, 118 

exceptional coordinate, 249 
exponential map, 382 
Ext, 131 
exterior differentiation, 239 

faithfully flat ring extension, 332 
family of supports, 158 
fine sheaf, 163 
finite 

algebra over a ring, 63, 79, 80 
extension, 63, 80, 81, 89 
morphism of algebraic varieties, 111 

finite branched holomorphic cover, 72, 74, 
83, 89 

finite extension, 83 
finite holomorphic covering map, 72 
finite holomorphic map, 230 
finite morphism, 87, 206 



Index 503 

finite vanishing order, 40, 80 
flabby sheaf, 163 
flag, 446 

full, 446 
variety, 446 

flat 
module, 136 
morphism, 205 

Forster's theorem, 297 
Fourier inversion theorem, 362 
Fourier transform, 362 
Frechet sheaf, 274 
Frechet space, 30 
free module, 133 
full subcategory, 114 
functor, 115 

(5-functor, 129 
additive, 116 
direct image, 154 
exact, 118, 122 
inverse image, 153 
left exact, 123 
restriction, 154 

fundamental group, 381 

Galois 
group, 63 

Galois extension, 63 
Gelfand transform, 291 
general linear group, 420 
generalized eigenspace, 389 
geometric fiber, 347 
germ 

of a function, 38 
of a holomorphic variety, 46 
of an algebraic variety, 46 
of an element of a presheaf, 148 

Going up theorem, 70 
graded ring, 197 
graph of a linear map, 265 
Grothendieck universe, 113, 127 
group action 

holomorphic, 378 
on a space, 377 

Haar measure, 359 
Hahn-Banach theorem, 265 
Harish-Chandra module, 486 
Hartog's 

lemma, 27 
theorem, 28 

height of a prime ideal, 110 
Hilbert space, 360 
Hilbert's basis theorem, 39 
Hilbert's Nullstellensatz, 68, 70 
Hilbert's syzygy theorem, 142 
holomorphic 

Banach space valued function, 20 
extension, 32 
function, 2, 25 
function on a subvariety, 55 
functional calculus, 288, 293 
mapping, 35, 55 
p-form, 240 
submanifold, 50 
subvariety, 45 
variety, 170 

holomorphically convex, 33 
compact set, 257 
hull, 33, 257 
open set, 257 
variety, 257 

homogeneous ideal, 328 
homotopic 

maps, 183 
morphisms of complexes, 120 

homotopy category, 120 
hyperplane in projective space, 347 

ideal 
of a Lie algebra, 380 
of a variety, 47 

ideal sheaf, 200 
of a subvariety, 221 

image 
of a morphism, 117 

immersion, 382 
implicit function theorem, 51 
implicit mapping theorem, 51 
inclusion morphisms, 116 
induced bundle, 461 
induction, 460 
injective 

object, 123 
resolution, 124 

inner product, 360 
integral 

element, 63 
extension, 63 

integral subgroup, 382 
integrally closed, 64 
interpolation theorem, 19 
intertwining operator, 359 
invariant subspace, 358 
inverse image, 153 
inverse image functor, 153 

algebraic, 205 
analytic, 229 

inverse mapping theorem, 52, 103 
inverse of a morphism, 114 
invertible sheaves, 181 
involution, 360 
irreducible 

germ of a variety, 49 
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subvariety, 49 
variety, 189 

irreducible components, 189 
irreducible representation, 358 
isomorphism in a category, 114 
isotropy group, 424 

Jacobi identity, 379 
Jacobian, 51 
Jensen's inequality, 26, 28 
joint spectrum, 289 
Jordan decomposition 

abstract , 394 
abstract multiplicative, 432 
multiplicative, 431 
of a matrix, 388 

Jordan-Chevalley decomposition lemma, 388 

kernel of a morphism, 117 
Killing form, 388 
Krull dimension, 99 
Krull's theorem, 198 

left exact functor, 123 
length of a Weyl group element, 480 
Leray cover, 177 
Lie algebra, 379 

compact, 409 
nilpotent, 385 
of a Lie group, 380 
semisimple, 385 
solvable, 385 

Lie correspondence, 380 
Lie group, 358, 376 

algebraic, 419 
complex, 358, 376 
real, 376 

Lie subalgebra, 380 
Lie subgroup, 377 
Lie's theorem, 387 
line bundle, 180 
local paramaterization theorem, 85 
local ring, 39 
localization 

algebraic, 191 
analytic, 298 

locally closed set, 162 
locally convex topological vector space, 264 
locally finitely generated analytic sheaf, 216 
locus of an ideal, 47 

Mackey-Arens theorem, 307 
manifold 

C°°, 170 
complex analytic, 170 
topological, 170 

matrix coefficient, 371, 454 

maximal ideal space, 291 
maximum modulus theorem, 35 
meromorphic function, 13, 19, 285 
Meyer-Vietoris sequence, 168 
minimal globalization, 487 
minimal polynomial, 62, 81 
Mittag-LefBer theorem, 13 
module 

free, 133 
projective, 133 

monomorphism, 114 
Montel space, 30, 264 
morphism 

finite, 206 
of complexes, 119 
of functors, 115 
of germs of varieties, 87 
of Lie algebras, 380 
of Lie groups, 376 
of morphisms, 115 
of presheaves, 146 
of ringed spaces, 168 
of sheaves, 150 
of vector bundles, 171 

morphisms of a category, 114 

Nakayama's lemma, 56 
neatly embedded, 102 
nilpotent 

Lie algebra, 385 
nilpotent element, 386 
Noether normalization theorem 

generalized, 93 
Noether property, 298 
Noether's normalization theorem, 68 
Noetherian ring, 39 
non-singular 

algebraic variety, 107 
germ of a holomorphic variety, 51 
point of a holomorphic subvariety, 51 

norm for a finite ring extension, 67, 98 
normal 

germ of a variety, 91 
point of a variety, 91 

normal domain, 64 
Nullstellensatz, 61 

objects of a category, 114 
Oka's theorem, 219 
Oka-Weil subdomain, 258 
open mapping theorem, 265 
operator 

hermitian, 360 
self-adjoint, 360 
unitary, 360 

orbit of a group action, 424 
orthogonal 



Index 505 

complement, 360 
vectors, 360 

orthogonal projection, 360 
Osgood's lemma, 24, 28, 30 

partition of unity, 5 
Peter-Weyl theorem, 375 
Picard group 

of a ringed space, 181, 283 
of an algebra, 297 

Plancherel theorem, 362 
Poincare lemma, 174 
pole set, 286 
polydisc, 24 
polynomial polyhedron, 294 
Pontryagin duality theorem, 362 
power sum functions, 41 
power sums, 43 
presheaf, 146 

constant, 147 
skyscraper, 147 

principle part 
of a meromorphic function, 13 

principle series representations, 489 
probability measure, 364 
projection morphisms, 116 
projective 

module, 133 
object, 123 
resolution, 125 

projective morphism, 330 
projective space, 313 
projective variety, 316 
proper map, 58, 72, 156 
pure dimension, 97, 104 
pure order 

of a cover, 73 

quasi-coherent sheaf, 194 
quasi-inverse, 115 
quasi-isomorphism of complexes, 125 
quasi-projective variety, 316 

radical 
of a Lie algebra, 392, 442 
of a Lie group, 442 
of an ideal, 49 

real form 
of a Lie algebra, 413 
of a Lie group, 401, 413 

reducible 
germ of a variety, 49 
subvariety, 49 

regular 
element of a torus, 436 
function, 38 
function on a subvariety, 55 

germ of a holomorphic variety, 51 
germ of an algebraic variety, 107 
local ring, 141 
mapping, 55 
point of a holomorphic subvariety, 51 
point of an algebraic variety, 107, 189 
V-valued function, 421 
weight, 476 

regular Borel measure, 359 
regular locus, 95 
regular representation, 362 
regular system of parameters, 141 
removable singularity theorem, 41 
representation 

adjoint, 384 
holomorphic, 384 
irreducible, 358 
left regular, 371 
of a Lie algebra, 384 
of a topological group, 358 
of an algebraic group, 422 
right regular, 371 

resolution 
injective, 124 
projective, 125 

resolvent set, 289 
restriction 

functor, 154 
map, 146 
of a sheaf, 154 

Riemann sphere, 188 
ringed space, 168 
root space decomposition, 395 
root spaces, 395 
roots 

of a Cartan subalgebra, 395 
positive system of, 398 

Ruckert's Nullstellensatz, 68, 85 

saturated family of bounded sets, 304 
Schur's lemma, 360, 369 
Schwartz inequality, 360 
Schwarz's lemma, 35 
section 

of a presheaf, 149 
of a vector bundle, 171 

seminorm, 29, 264 
semisimple 

algebraic group, 442 
element, 388 
group element, 432 
Lie algebra, 385 
Lie group, 409 
linear operator, 430 

separated quotient, 265 
sheaf, 147 

acyclic, 159 
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algebraic, 194 
ample, 326 
analytic, 216 
coherent analytic, 216 
cohomology, 159 
constant, 150 
fine, 163 
flabby, 163 
Frechet, 274 
invertible, 181 
morphism, 150 
of alternating p-cochains, 175 
of commutative rings, 152 
of divisors, 285 
of homomorphisms, 157 
of meromorphic functions, 285 
of modules, 152 
of p-cochains, 174 
of sections of a presheaf, 149 
soft, 163 
very ample, 326 

Shilov's Idempotent theorem, 295 
short exact sequence, 120 
simply connected, 381 
singular 

germ of a holomorphic variety, 51 
germ of an algebraic variety, 107 
locus, 95 
locus of an algebraic variety, 107 
point of a holomorphic subvariety, 51 
point of an algebraic variety, 107, 189 
weight, 478 

skyscraper presheaf, 147 
smooth algebraic variety, 107, 189 
soft sheaf, 163 
solvable 

Lie algebra, 385 
solvable algebraic group, 437 
special linear group, 421 
spectra radius, 289 
spectral theorem, 361 
spectrum, 289 
split 

epimorphism, 124 
monomorphism, 124 
short exact sequence, 124 

splitting field, 63 
stabilizer, 424, 427 
stalk of a presheaf, 148 
Stein compact set, 282 
Stein manifold, 285 
Stein space, 257 
structure sheaf, 168 
subcategory, 114 

full, 114 
subvariety 

algebraic, 45, 188 

holomorphic, 45 
support of a section, 158 
symplectic group, 421 
system of simple roots, 418 
syzygies 

chain of, 142 

tangent 
bundle, 173 
space, 100 
vector, 100 

tangential dimension, 100 
tensor product 

of modules, 135 
of sheaves, 157 

Theorem of the primitive element, 62 
thin subset, 41, 86 
topological dimension, 95 
topological group, 245, 358 
topological vector space, 264 
Tor, 136 
toral subalgebra, 395 
total degree of a differential form, 238 
totally bounded set, 305 
triangular group, 421 
trivial bundle, 171 

unipotent 
algebraic group, 438 
group element, 432 
linear operator, 430 

unitary group of Hilbert space, 360 
universal covering group, 381 

Vandermonde determinant, 65 
vanishing order, 40, 51 
variety 

affine, 186 
algebraic, 187 
complete, 327 
holomorphic, 170 
irreducible, 189 

vector bundle, 171 
vector field, 173 

holomorphic, 380 
right invariant, 380 

very ample, 326 
Vietoris-Begle theorem, 161 

wall between Weyl chambers, 479 
Weierstrass division theorem, 43 
Weierstrass polynomial, 42 
Weierstrass preparation theorem, 42 
Weierstrass theorem, 14 
weight, 402, 404, 429, 436 

dominant, 409 
highest, 402 
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integral, 409 
space, 402, 404, 429 
vector, 429 

Weyl chamber, 406 
positive, 406 

Weyl group, 407 
Weyl system, 413, 415 

Zariski topology, 38 
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