Several Complex Variables

 with Connections to Algebraic Geometry and Lie Groups
Joseph L.Taylor

Graduate Studies
in Mathematics
Volume 46

46 Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, 2002
45 Inder K. Rana, An introduction to measure and integration, second edition, 2002
44 Jim Agler and John E. M ${ }^{\mathbf{c}}$ Carthy, Pick interpolation and Hilbert function spaces, 2002
$43 \mathbf{N}$. V. Krylov, Introduction to the theory of random processes, 2002
42 Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, 2002
41 Georgi V. Smirnov, Introduction to the theory of differential inclusions, 2002
40 Robert E. Greene and Steven G. Krantz, Function theory of one complex variable, 2002
39 Larry C. Grove, Classical groups and geometric algebra, 2002
38 Elton P. Hsu, Stochastic analysis on manifolds, 2002
37 Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, 2001
36 Martin Schechter, Principles of functional analysis, second edition, 2002
35 James F. Davis and Paul Kirk, Lecture notes in algebraic topology, 2001
34 Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001
33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001
32 Robert G. Bartle, A modern theory of integration, 2001
31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001

30 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001
29 Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001
25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000
24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000
23 Alberto Candel and Lawrence Conlon, Foliations I, 2000
22 Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 2000
21 John B. Conway, A course in operator theory, 2000
20 Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
19 Lawrence C. Evans, Partial differential equations, 1998
18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997
17 Henryk Iwaniec, Topics in classical automorphic forms, 1997
Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997

15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997

14 Elliott H. Lieb and Michael Loss, Analysis, 1997
13 Paul C. Shields, The ergodic theory of discrete sample paths, 1996
12 N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996
11 Jacques Dixmier, Enveloping algebras, 1996 Printing
10 Barry Simon, Representations of finite and compact groups, 1996
9 Dino Lorenzini, An invitation to arithmetic geometry, 1996
8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996

This page intentionally left blank

Several Complex Variables with Connections to Algebraic Geometry and Lie Groups

This page intentionally left blank

Several Complex Variables with Connections to Algebraic Geometry and Lie Groups

Joseph L.Taylor

Graduate Studies
in Mathematics

Volume 46

American Mathematical Society Providence, Rhode Island

Editorial Board

Steven G. Krantz
David Saltman (Chair)
David Sattinger
Ronald Stern

2000 Mathematics Subject Classification. Primary 34-01, 14-01, 22-01, 43-01.
Abstract. A graduate text with an integrated treatment of several complex variables and complex algebraic geometry, with applications to the structure theory and representation theory of Lie groups.

Library of Congress Cataloging-in-Publication Data

Taylor, Joseph L., 1941-
Several complex variables with connections to algebraic geometry and Lie groups / Joseph L. Taylor.
p. cm. - (Graduate studies in mathematics, ISSN 1065-7339; v. 46)

Includes bibliographical references and index.
ISBN 0-8218-3178-X (alk. paper)

1. Functions of several complex variables. 2. Geometry, Algebraic. I. Title. II. Series.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2002 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.
(a)

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/
10987654321070605040302

Contents

Preface xiii
Chapter 1. Selected Problems in One Complex Variable 1
§1.1. Preliminaries 2
§1.2. A Simple Problem 2
§1.3. Partitions of Unity 4
§1.4. The Cauchy-Riemann Equations 7
§1.5. The Proof of Proposition 1.2.2 10
§1.6. The Mittag-Leffler and Weierstrass Theorems 12
§1.7. Conclusions and Comments 16
Exercises 18
Chapter 2. Holomorphic Functions of Several Variables 23
§2.1. Cauchy's Formula and Power Series Expansions 23
§2.2. Hartog's Theorem 26
§2.3. The Cauchy-Riemann Equations 29
§2.4. Convergence Theorems 29
$\S 2.5$. Domains of Holomorphy 31
Exercises 35
Chapter 3. Local Rings and Varieties 37
§3.1. Rings of Germs of Holomorphic Functions 38
§3.2. Hilbert's Basis Theorem 39
§3.3. The Weierstrass Theorems 40
§3.4. The Local Ring of Holomorphic Functions is Noetherian 44
§3.5. Varieties 45
§3.6. Irreducible Varieties 49
§3.7. Implicit and Inverse Mapping Theorems 50
§3.8. Holomorphic Functions on a Subvariety 55
Exercises 57
Chapter 4. The Nullstellensatz 61
§4.1. Reduction to the Case of Prime Ideals 61
§4.2. Survey of Results on Ring and Field Extensions 62
§4.3. Hilbert's Nullstellensatz 68
§4.4. Finite Branched Holomorphic Covers 72
§4.5. The Nullstellensatz 79
§4.6. Morphisms of Germs of Varieties 87
Exercises 92
Chapter 5. Dimension 95
§5.1. Topological Dimension 95
§5.2. Subvarieties of Codimension 1 97
§5.3. Krull Dimension 99
§5.4. Tangential Dimension 100
§5.5. Dimension and Regularity 103
§5.6. Dimension of Algebraic Varieties 104
§5.7. Algebraic vs. Holomorphic Dimension 108
Exercises 110
Chapter 6. Homological Algebra 113
§6.1. Abelian Categories 113
§6.2. Complexes 119
§6.3. Injective and Projective Resolutions 122
§6.4. Higher Derived Functors 126
§6.5. Ext 131
§6.6. The Category of Modules, Tor 133
§6.7. Hilbert's Syzygy Theorem 137
Exercises 142
Chapter 7. Sheaves and Sheaf Cohomology 145
§7.1. Sheaves 145
§7.2. Morphisms of Sheaves 150
§7.3. Operations on Sheaves 152
§7.4. Sheaf Cohomology 157
§7.5. Classes of Acyclic Sheaves 163
§7.6. Ringed Spaces 168
§7.7. De Rham Cohomology 172
§7.8. Čech Cohomology 174
§7.9. Line Bundles and Čech Cohomology 180
Exercises 182
Chapter 8. Coherent Algebraic Sheaves 185
§8.1. Abstract Varieties 186
§8.2. Localization 189
§8.3. Coherent and Quasi-coherent Algebraic Sheaves 194
§8.4. Theorems of Artin-Rees and Krull 197
§8.5. The Vanishing Theorem for Quasi-coherent Sheaves 199
§8.6. Cohomological Characterization of Affine Varieties 200
§8.7. Morphisms - Direct and Inverse Image 204
§8.8. An Open Mapping Theorem 207
Exercises 212
Chapter 9. Coherent Analytic Sheaves 215
§9.1. Coherence in the Analytic Case 215
§9.2. Oka's Theorem 217
§9.3. Ideal Sheaves 221
$\S 9.4$. Coherent Sheaves on Varieties 225
§9.5. Morphisms between Coherent Sheaves 226
§9.6. Direct and Inverse Image 229
Exercises 234
Chapter 10. Stein Spaces 237
§10.1. Dolbeault Cohomology 237
§10.2. Chains of Syzygies 243
§10.3. Functional Analysis Preliminaries 245
§10.4. Cartan's Factorization Lemma 248
$\S 10.5$. Amalgamation of Syzygies 252
§10.6. Stein Spaces 257
Exercises 260
Chapter 11. Fréchet Sheaves - Cartan's Theorems 263
§11.1. Topological Vector Spaces 264
§11.2. The Topology of $\mathcal{H}(X)$ 266
§11.3. Fréchet Sheaves 274
§11.4. Cartan's Theorems 277
§11.5. Applications of Cartan's Theorems 281
§11.6. Invertible Groups and Line Bundles 283
§11.7. Meromorphic Functions 284
§11.8. Holomorphic Functional Calculus 288
§11.9. Localization 298
§11.10. Coherent Sheaves on Compact Varieties 300
§11.11. Schwartz's Theorem 302
Exercises 309
Chapter 12. Projective Varieties 313
§12.1. Complex Projective Space 313
§12.2. Projective Space as an Algebraic and a Holomorphic Variety 314
§12.3. The Sheaves $\mathcal{O}(k)$ and $\mathcal{H}(k)$ 317
§12.4. Applications of the Sheaves $\mathcal{O}(k)$ 323
§12.5. Embeddings in Projective Space 325
Exercises 328
Chapter 13. Algebraic vs. Analytic - Serre's Theorems 331
§13.1. Faithfully Flat Ring Extensions 331
§13.2. Completion of Local Rings 334
§13.3. Local Rings of Algebraic vs. Holomorphic Functions 338
§13.4. The Algebraic to Holomorphic Functor 341
§13.5. Serre's Theorems 344
§13.6. Applications 351
Exercises 355
Chapter 14. Lie Groups and Their Representations 357
§14.1. Topological Groups 358
§14.2. Compact Topological Groups 363
§14.3. Lie Groups and Lie Algebras 376
§14.4. Lie Algebras 385
§14.5. Structure of Semisimple Lie Algebras 392
§14.6. Representations of $\mathfrak{s l}_{2}(\mathbb{C})$ 400
§14.7. Representations of Semisimple Lie Algebras 404
§14.8. Compact Semisimple Groups 409
Exercises 416
Chapter 15. Algebraic Groups 419
§15.1. Algebraic Groups and Their Representations 419
§15.2. Quotients and Group Actions 423
§15.3. Existence of the Quotient 427
§15.4. Jordan Decomposition 430
§15.5. Tori 433
§15.6. Solvable Algebraic Groups 437
§15.7. Semisimple Groups and Borel Subgroups 442
§15.8. Complex Semisimple Lie Groups 451
Exercises 456
Chapter 16. The Borel-Weil-Bott Theorem 459
§16.1. Vector Bundles and Induced Representations 460
§16.2. Equivariant Line Bundles on the Flag Variety 464
§16.3. The Casimir Operator 469
§16.4. The Borel-Weil Theorem 474
§16.5. The Borel-Weil-Bott Theorem 478
$\S 16.6$. Consequences for Real Semisimple Lie Groups 483
§16.7. Infinite Dimensional Representations 484
Exercises 493
Bibliography 497
Index 501

This page intentionally left blank

Preface

This text evolved from notes I developed for use in a course on several complex variables at the University of Utah. The eclectic nature of the topics presented in the text reflects the interests and motivation of the graduate students who tended to enroll for this course. These students were almost all planning to specialize in either algebraic geometry or representation theory of semisimple Lie groups. The algebraic geometry students were primarily interested in several complex variables because of its connections with algebraic geometry, while the group representations students were primarily interested in applications of complex analysis - both algebraic and analytic - to group representations.

The course I designed to serve this mix of students involved a simultaneous development of basic complex algebraic geometry and basic several complex variables, which emphasized and capitalized on the similarities in technique of much of the foundational material in the two subjects. The course began with an exposition of the algebraic properties of the local rings of regular and holomorphic functions, first on \mathbb{C}^{n} and then on varieties. This was followed by a development of abstract sheaf theory and sheaf cohomology and then by the introduction of coherent sheaves in both the algebraic and analytic settings. The fundamental vanishing theorems for both kinds of coherent sheaves were proved and then exploited. Typically the course ended with a proof and applications of Serre's GAGA theorems, which show the equivalence of the algebraic and analytic theories in the case of projective varieties. The notes for this course were corrected and refined, with the help of the students, each time the course was taught. This text is the result of that process.

There were instances where the course continued through the summer as a reading course for students in group representations. One summer, the objective was to prove the Borel-Weil-Bott theorem; another time, it was to explore a complex analysis approach to the study of representations of real semisimple Lie groups. Material from these summer courses was expanded and then included in the text as the final three chapters.

The material on several complex variables in the text owes a great debt to the text of Gunning and Rossi $[\mathbf{G R}]$, and the recent rewriting of that text by Gunning $[\mathbf{G u}]$. It was from Gunning and Rossi that I learned the subject, and the approach to the material that is used in Gunning and Rossi is also the approach used in this text. This means a thorough treatment of the local theory using the tools of commutative algebra, an extensive development of sheaf theory and the theory of coherent analytic sheaves, proofs of the main vanishing theorem for such sheaves (Cartan's Theorem B) in full generality, and a complete proof of the finite dimensionality of the cohomologies of coherent sheaves on compact varieties (the Cartan-Serre theorem). This does not mean that I have included treatments of all the topics covered in Gunning and Rossi. There is no discussion of pseudoconvexity, for example, or global embeddings, or the proper mapping theorem, or envelopes of holomorphy. I have included, however, a more extensive list of applications of the main results of the subject - particularly if one includes in this category Serre's GAGA theorems and the material on complex semisimple Lie groups and the proof of the Borel-Weil-Bott theorem.

Several complex variables is a very rich subject, which can be approached from a variety of points of view. The serious student of several complex variables should consult, not only Gunning's rewriting of Gunning and Rossi, but also the many excellent texts which approach the subject from other points of view. These include $[\mathbf{D}],[\mathbf{F i}],[\mathbf{G R e}],[\mathbf{G R e} \mathbf{2}],[\mathbf{H o}],[\mathbf{K}]$, and $[\mathbf{N}]$, to name just a few.

Interwoven with the material on several complex variables in this text is a simultaneous treatment of basic complex algebraic geometry. This includes the structure theory of local rings of regular functions and germs of varieties, dimension theory, the vanishing theorems for coherent and quasi-coherent algebraic sheaves, structure of regular maps between varieties, and the main theorems on the cohomology of coherent sheaves on projective spaces.

There are real advantages to this simultaneous development of algebraic and analytic geometry. Results in the two subjects often have essentially the same proofs; they both rely heavily on the same background material commutative algebra for the local theory and homological algebra and sheaf theory for the global theory; and often a difficult proof in several complex variables can be motivated and clarified by an understanding of the often
similar but technically simpler proof of the analogous result in algebraic geometry.

Several complex variables and complex algebraic geometry are not just similar; they are equivalent when done in the context of projective varieties. This is the content of Serre's GAGA theorems. We give complete proofs of these results in Chapter 13, after first studying the cohomology of coherent sheaves on projective spaces in Chapter 12.

The text could easily have ended with Chapter 13. This is where the course typically ends. The material in Chapters 14 through 16 is on quite a different subject - Lie groups and their representations - albeit one that involves the extensive use of several complex variables and algebraic geometry. Chapter 16 is devoted to a proof of the Borel-Weil-Bott theorem. This is the theorem which pinpoints the relationship between finite dimensional holomorphic representations of a complex semisimple Lie group G and the cohomologies of G-equivariant holomorphic line bundles on a projective variety, called the flag variety, constructed from G. Chapter 15 is a brief treatment of the subject of complex algebraic groups. This is included in order to provide proofs of some of the basic structure results for complex semisimple Lie groups that are needed in the formulation and proof of the Borel-Weil-Bott theorem. Chapter 14 is a survey of the background material needed if one is to understand Chapters 15 and 16. It includes material on topological groups and their representations, compact groups, Lie groups and Lie algebras, and finite dimensional representations of semisimple Lie algebras. These last three chapters are included primarily for the benefit of the student of Lie theory and group representations. This material illustrates that both several complex variables and complex algebraic geometry are essential tools in the modern study of group representations. The chapter on algebraic groups (Chapter 15) provides particularly compelling examples of the utility of algebraic geometry applied in the context of the structure theory of Lie groups. The proof of the Borel-Weil-Bott theorem in Chapter 16 involves applications of a wide range of material from several complex variables and algebraic geometry. In particular, it provides nice applications of the sheaf theory of Chapter 7, the Cartan-Serre theorem from Chapter 11, the material on projective varieties in Chapter 12, Serre's theorems in Chapter 13, and of course, the background material on algebraic groups and general Lie theory from Chapters 14 and 15 .

I have tried to make the text as self-contained as possible. However, students who attempt to use it will need some background. This should include knowledge of the material from typical first year graduate courses in real and complex analysis, modern algebra, and topology. Also, students who wishes to confront the material in Chapters 14 through 16 will be
helped greatly if they have had a basic introduction to Lie theory. Though the background material in Chapter 14 is reasonably self-contained, it is intended as a survey, and so some of the more technical proofs have been left out. For example, the basic theorems relating Lie algebras and Lie groups are stated without proof, as is the existence of compact real forms for complex semisimple groups and the classification of finite dimensional representations of semisimple Lie algebras.

Each chapter ends with an exercise set. Many exercises involve filling in details of proofs in the text or proving results that are needed elsewhere in the text, while others supplement the text by exploring examples or additional material. Cross-references in the text to exercises indicate both the chapter and the exercise number; that is, Exercise 2.5 refers to Exercise 5 of Chapter 2.

There are many individuals who contributed to the completion of this text. Edward Dunne, Editor for the AMS book program, noticed an early version of the course notes on my website and suggested that I consider turning them into a textbook. Without this suggestion and Ed's further advice and encouragement, the text would not exist. Several of my colleagues provided valuable ideas and suggestions. I received encouragement and much useful advice on issues in several complex variables from Hugo Rossi. Aaron Bertram, Herb Clemens, Dragan Miličić, Paul Roberts, and Angelo Vistoli gave me valuable advice on algebraic geometry and commutative algebra, making up, in part, for my lack of expertise in these areas. Henryk Hecht, Dragan Miličić, and Peter Trombi provided help on Lie theory and group representations. Without Dragan's help and advice, the chapters on Lie theory, algebraic groups, and the Borel-Weil-Bott theorem would not exist. The proof of the Borel-Weil-Bott theorem presented in Chapter 16 is due to Dragan, and he was the one who insisted that I approach structure theorems for semisimple Lie groups from the point of view of algebraic groups. The students who took the course the three times it was offered while the notes were being developed caught many errors and offered many useful suggestions. One of these students, Laura Smithies, after leaving Utah with a Ph.D. and taking a position at Kent State, volunteered to proofread the entire manuscript. I gratefully accepted this offer, and the result was numerous corrections and improvements. My sincere thanks goes out to all of these individuals and to my wife, Ulla, who showed great patience and understanding while this seemingly endless project was underway.

Joseph L. Taylor

This page intentionally left blank

Bibliography

[AM] Atiyah, M. F. and Macdonald, I. G., Introduction to Commutative Algebra, AddisonWesley, 1969.
[BB] Beilinson, A. and Bernstein, J., Localisation de g-modules, C. R. Acad. Sci., Paris, Sér. 1292 (1981), 15-18.
[Bj] Björk, J.-E., Analytic D-Modules and Applications, Kluwer, 1993.
[B] Bourbaki, N., Groupes et Algèbres de Lie, Masson, 1975.
[Br] Bredon, G. E., Sheaf Theory, McGraw-Hill, 1967.
[CE] Cartan, H. and Eilenberg, S., Homological Algebra, Princeton University Press, 1956.
[CS] Cartan, H. and Serre, J. P., Un théorème de finitude concernant les variétiés analytiques compactes, C. R. Acad. Sci., Paris 237 (1953), 128-130.
[Ch] Chevalley, C., Fondements de la géométrie algébriques, Paris, 1958.
[Ch2] Chevalley, C., Une démonstration d'un théorème sur les groupes algébriques, J. Mathématique Pure et Appliquées, 39(4) (1960), 307-317.
[E] Eisenbud, D., Commutative Algebra with a View toward Algebraic Geometry, Springer-Verlag, 1994.
[D] D'Angelo, J. P., Several Complex Variables and the Geometry of Real Hypersurfaces, Springer-Verlag, 1994.
[Fi] Field, M., Several Complex Variables and Complex Manifolds I and II, London Mathematical Society Lecture Note Series 65 and 66, Cambridge University Press, 1982.
[Fo] Forster, O., Lectures on Riemann Surfaces, Springer-Verlag, 1981.
[F] Frisch, J., Points de platitude d'un morphisme d'espaces analytiques complexes, Inventiones Math. 4 (1967), 118 - 138.
[GM] Gelfand, S. and Manin, Yu., Methods of Homological Algebra I: Introduction to Cohomology Theory and Derived Categories, Springer-Verlag, 1991.
[GP] Guillemin, V. and Pollack, A., Differential Topology, Prentice Hall, 1974.
[Go] Godement, R., Topologie Algébrique et Théorie des Faisceaux, Hermann, 1958.
[Gr] Grauert, H., Analytische faserungen uber holomorphvollstandigen raumen, Math. Annalen 135 (1958), 263-273.
[GRe] Grauert, H. and Remmert, R., Theory of Stein Spaces, Springer-Verlag, 1979.
[GRe2] Grauert, H. and Remmert, R., Coherent Analytic Sheaves, Springer-Verlag, 1984.
[GPR] Grauert, H., Peternell, Th., and Remmert, R., Several Complex Variables VII, Encylclopaedia of Mathematical Sciences 74, Springer-Verlag, 1984.
[Gro] Grothendieck, A., Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9 (1957), 119-221.
[Gu] Gunning, R. C., Introduction to Holomorphic Functions of Several Complex Variables, Wadsworth and Brooks/Cole, 1990.
[GR] Gunning, R. C. and Rossi, H., Analytic Functions of Several Complex Variables, Prentice-Hall, 1965.
[H] Hartshorne, R., Algebraic Geometry, Springer-Verlag, 1977.
[HM] Hecht, H., Miličić, D., Schmid, W., and Wolf, J., Localization and standard modules for real semisimple Lie groups I:The duality theorem, Inventiones Mathematicae 90 (1987), 297 - 332.
[HT] Hecht, H. and Taylor, J. L., Analytic localization of group representations, Adv. in Math. 79 (1990), 139-212.
[He] Helgason, S., Differential Geometry and Symmetric Spaces, Academic Press, 1962.
[Ho] Hörmander, L., Introduction to Complex Analysis in Several Variables, North Holland, 1973.
[Hum] Humphreys, J. E., Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1970.
[Hum2] Humphreys, J. E., Linear Algebraic Groups, Springer-Verlag, 1981.
[Hun] Hungerford, T. W., Algebra, Holt, Rinehart, and Winston, 1974.
[KS] Kashiwara, M. and Schapira, P., Sheaves on Manifolds, Springer-Verlag, 1990.
[KSc] Kashiwara, M. and Schmid, W., Quasi-equivariant D-modules, equivariant derived category and representations of reductive Lie groups, RIMS 980 (1994), 1-26.
[K] Krantz S., Function Theory of Several Complex Variables, second edition, AMS, 1992.
[Mat] Matsumura, H., Commutative Algebra, second edition, Benjamin/Cummings, 1980.
[M] Miličić, D., A proof of the Borel-Weil theorem, unpublished notes.
[Mac] Mac Lane, S., Homology, Springer-Verlag, 1967.
[Mit] Mitchell, B., Theory of Categories, Pure App. Math. 17, Academic Press, 1965.
[MZ] Montgomery, D. and Zippin, L., Topological Transformation Groups, Tracts in Pure and Applied Mathematics 1, Interscience, 1955.
[Mum] Mumford, D., The Red Book of Varieties and Schemes, Lecture Notes in Math. 1358, Springer-Verlag, 1988.
[Nai] Naimark, M. A., Normed Algebras, Wolters-Noordhoff, 1972.
[N] Narasimhan, R., Introduction to the Theory of Analytic Spaces, Lecture Notes in Mathematics 25, Springer-Verlag, 1966.
[Ro] Rotman, J., Notes on Homological Algebra, Reinhold Math. Studies 26, Van Nostrand, 1970.
[R] Rudin, W., Real and Complex Analysis, McGraw-Hill, 1987.
[R2] Rudin, W., Functional Analysis, McGraw - Hill, 1973.
[R3] Rudin, W., Fourier Analysis on Groups, Interscience, 1962.
[Sc] Schaefer, H. H., Topological Vector Spaces, Macmillan, 1966.
[Sch] Schmid, W., Boundary value problems for group invariant differential equations, in Élie Cartan et les mathématiques d'Aujourd'hui, Astérisque numéro hors séries 6 (1985), 311-322.
[S] Serre, J. P., Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6 (1956), 1-42.
[S2] Serre, J. P., Faisceaux algébriques cohérents, Ann. of Math. 61 (1955), 197-278.
[Siu] Siu, Y.-T., Noetherianess of rings of holomorphic functions on Stein compact sets, Proc. AMS 21 (1969), 483 - 489.
[Sm] Smithies, L., Equivariant analytic localization of group representations, Memoirs of AMS 728153.
[T] Taylor, J. L., A general framework for a multi-operator functional calculus, Adv. in Math 9 (2) (1972), 183-252.
[T2] Taylor, J. L., Topological invariants of the maximal ideal space of a Banach algebra, Adv. in Math 19 (1976), 149 - 206.
[V] Varadarajan, V. S., Lie Groups, Lie Algebras, and Their Representations, Springer Verlag, 1984.
[V2] Varadarajan, V. S., An Introduction to Harmonic Analysis on Semi-simple Lie Groups, Cambridge Studies in Advanced Mathematics 16, Cambridge University Press, 1989.
[Vo] Vogan, D. A., Representations of Real Reductive Lie Groups, Progress in Mathematics 15, Birkhäuser, 1981.
[Wa] Warner, F. W., Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman, and Co., 1971.
[W] Wells, R., Differential Analysis on Complex Manifolds, Springer-Verlag, 1980.
[ZS] Zariski, O and Samuel, P., Commutative Algebra, Van Nostrand, 1960.

This page intentionally left blank

Index

abelian category, 116, 117
abelian subcategory, 118
abelian variety, 421
acyclic
objects for a functor, 130
sheaves, 159
additive category, 116
additive functor, 116
adjacent Weyl chambers, 479
adjoint of an operator, 360
adjoint representation, 384
adjunction morphisms, 155
admissible representation, 485
affine variety, 186
algebraic
element, 62
field extension, 62
group, 376, 419
group action, 424
prevariety, 186
sheaf, 194
subvariety, 45
variety, 187
algebraically induced analytic sheaves, 347
aligned pair of boxes, 249
ample sheaf, 326
analytic modules of finite type, 487
analytic polyhedron, 261
analytic sheaf, 216
analytic vector, 486
Arens-Royden theorem, 296
Artin-Rees theorem, 197
balanced set, 264, 304
Banach algebra, 245, 288
bidegree of a differential form, 238
biholomorphic
equivalence, 51
mapping, 50, 55
biholomorphically equivalent, 56
biregular
mapping, 55
Borel subalgebra, 399, 443
Borel subgroup, 443
Borel-Weil theorem, 477
Borel-Weil-Bott theorem, 480
bounded
complex, 119
subset of $\mathcal{H}(U), 30$
bounded subset, 264
box in $\mathbb{C}^{n}, 249$
branching order, 73

Cartan subalgebra, 395
Cartan's factorization lemma, 251
Cartan's first criterion, 391
Cartan's second criterion, 391
Cartan's Theorem A, 278
Cartan's Theorem B, 279
Cartan-Serre theorem, 302
Cartesian product
of prevarieties, 187
Casimir operator, 469
category, 114
abelian, 117
additive, 116
homotopy, 120
of functors, 115
of modules, 133
of morphisms, 115
Cauchy integral formula generalized, 8

Cauchy's inequalities, 25, 30
Cauchy's integral formula, 24
Cauchy-Riemann equations, 7, 29
Čech cohomology, 176, 179
Čech complex
global, 176
limit, 179
of sheaves, 176
centralizer, 440,442
chain of syzygies, 142
character, 362
of a representation, 375
of an algebraic group, 429
unitary, 362
characteristic polynomial, 67
Chern class, 181, 284
closed embedding, 326
closed graph theorem, 265
closure of modules theorem, 274
coherent
algebraic sheaf, 194
analytic sheaf, 216
sheaf of algebras, 213,356
cohomology
Čech, 176,179
of a complex, 119
sheaf, 159
coimage of a morphism, 117
cokernel of a morphism, 117
complete algebraic variety, 327
completion of a local ring, 334
complex
exact, 119
of maps, 12
of morphisms, 119
complex homomorphism, 290
complex orthogonal group, 421
constant presheaf, 147
constant sheaf, 150
continuous linear functional, 264
contractible space, 183
convex separation theorem, 265
convolution product, 363
cotangent space, 173
Cousin data, 13
Cousin problem, 12
d-group, 434
de Rham
cohomology, 174
complex, 174
dense regular subcover, 72
depth of a prime ideal, 110
derivation
of a Lie algebra, 393
derived functors, 127
diagonal group, 421
differential form, 7, 173
differential forms, 7
differentials of a complex, 119
dimension
Krull, 99
of a holomorphic variety, 96
of a submanifold, 51
of an algebraic variety, 104, 189
pure, 97, 104
tangential, 100
direct image, 153
with proper supports, 157
direct image functor, 154
discriminant, 64, 82
divisible group, 134
divisor, 285
Dolbeault cohomology, 239
Dolbeault complex, 239
Dolbeault's lemma, 241
domain of convergence, 36
domain of holomorphy, 32-35
dual basis, 469
elementary symmetric functions, 41,43
embedding, 326
of algebraic varieties, 204
Engel's theorem, 386
enough injectives, 124
enough projectives, 125
enveloping algebra, 469
epimorphism, 114
equivalence of categories, 115
equivariant
vector bundle, 460
equivariant vector bundle, 460
exact
complex, 119
functor, 118, 122
sequence, 11, 118
exceptional coordinate, 249
exponential map, 382
Ext, 131
exterior differentiation, 239
faithfully flat ring extension, 332
family of supports, 158
fine sheaf, 163
finite
algebra over a ring, 63, 79, 80
extension, 63, 80, 81, 89
morphism of algebraic varieties, 111
finite branched holomorphic cover, 72, 74, 83, 89
finite extension, 83
finite holomorphic covering map, 72
finite holomorphic map, 230
finite morphism, 87, 206
finite vanishing order, 40, 80
flabby sheaf, 163
flag, 446
full, 446
variety, 446
flat
module, 136
morphism, 205
Forster's theorem, 297
Fourier inversion theorem, 362
Fourier transform, 362
Fréchet sheaf, 274
Fréchet space, 30
free module, 133
full subcategory, 114
functor, 115
δ-functor, 129
additive, 116
direct image, 154
exact, 118,122
inverse image, 153
left exact, 123
restriction, 154
fundamental group, 381

Galois

group, 63
Galois extension, 63
Gelfand transform, 291
general linear group, 420
generalized eigenspace, 389
geometric fiber, 347
germ
of a function, 38
of a holomorphic variety, 46
of an algebraic variety, 46
of an element of a presheaf, 148
Going up theorem, 70
graded ring, 197
graph of a linear map, 265
Grothendieck universe, 113, 127
group action
holomorphic, 378
on a space, 377
Haar measure, 359
Hahn-Banach theorem, 265
Harish-Chandra module, 486

Hartog's

lemma, 27
theorem, 28
height of a prime ideal, 110
Hilbert space, 360
Hilbert's basis theorem, 39
Hilbert's Nullstellensatz, 68, 70
Hilbert's syzygy theorem, 142
holomorphic

Banach space valued function, 20
extension, 32
function, 2,25
function on a subvariety, 55
functional calculus, 288, 293
mapping, 35,55
p-form, 240
submanifold, 50
subvariety, 45
variety, 170
holomorphically convex, 33
compact set, 257
hull, 33, 257
open set, 257
variety, 257
homogeneous ideal, 328
homotopic
maps, 183
morphisms of complexes, 120
homotopy category, 120
hyperplane in projective space, 347
ideal
of a Lie algebra, 380
of a variety, 47
ideal sheaf, 200
of a subvariety, 221
image
of a morphism, 117
immersion, 382
implicit function theorem, 51
implicit mapping theorem, 51
inclusion morphisms, 116
induced bundle, 461
induction, 460
injective
object, 123
resolution, 124
inner product, 360
integral
element, 63
extension, 63
integral subgroup, 382
integrally closed, 64
interpolation theorem, 19
intertwining operator, 359
invariant subspace, 358
inverse image, 153
inverse image functor, 153
algebraic, 205
analytic, 229
inverse mapping theorem, 52, 103
inverse of a morphism, 114
invertible sheaves, 181
involution, 360
irreducible germ of a variety, 49
subvariety, 49
variety, 189
irreducible components, 189
irreducible representation, 358
isomorphism in a category, 114
isotropy group, 424
Jacobi identity, 379
Jacobian, 51
Jensen's inequality, 26, 28
joint spectrum, 289
Jordan decomposition
abstract, 394
abstract multiplicative, 432
multiplicative, 431
of a matrix, 388
Jordan-Chevalley decomposition lemma, 388
kernel of a morphism, 117
Killing form, 388
Krull dimension, 99
Krull's theorem, 198
left exact functor, 123
length of a Weyl group element, 480
Leray cover, 177
Lie algebra, 379
compact, 409
nilpotent, 385
of a Lie group, 380
semisimple, 385
solvable, 385
Lie correspondence, 380
Lie group, 358, 376
algebraic, 419
complex, 358,376
real, 376
Lie subalgebra, 380
Lie subgroup, 377
Lie's theorem, 387
line bundle, 180
local paramaterization theorem, 85
local ring, 39
localization
algebraic, 191
analytic, 298
locally closed set, 162
locally convex topological vector space, 264
locally finitely generated analytic sheaf, 216
locus of an ideal, 47
Mackey-Arens theorem, 307
manifold
$\mathcal{C}^{\infty}, 170$
complex analytic, 170
topological, 170
matrix coefficient, 371, 454
maximal ideal space, 291
maximum modulus theorem, 35
meromorphic function, 13, 19, 285
Meyer-Vietoris sequence, 168
minimal globalization, 487
minimal polynomial, 62,81
Mittag-Leffler theorem, 13
module
free, 133
projective, 133
monomorphism, 114
Montel space, 30, 264
morphism
finite, 206
of complexes, 119
of functors, 115
of germs of varieties, 87
of Lie algebras, 380
of Lie groups, 376
of morphisms, 115
of presheaves, 146
of ringed spaces, 168
of sheaves, 150
of vector bundles, 171
morphisms of a category, 114
Nakayama's lemma, 56
neatly embedded, 102
nilpotent
Lie algebra, 385
nilpotent element, 386
Noether normalization theorem
generalized, 93
Noether property, 298
Noether's normalization theorem, 68
Noetherian ring, 39
non-singular
algebraic variety, 107
germ of a holomorphic variety, 51
point of a holomorphic subvariety, 51
norm for a finite ring extension, 67,98
normal
germ of a variety, 91
point of a variety, 91
normal domain, 64
Nullstellensatz, 61
objects of a category, 114
Oka's theorem, 219
Oka-Weil subdomain, 258
open mapping theorem, 265
operator
hermitian, 360
self-adjoint, 360
unitary, 360
orbit of a group action, 424
orthogonal
complement, 360
vectors, 360
orthogonal projection, 360
Osgood's lemma, 24, 28, 30
partition of unity, 5
Peter-Weyl theorem, 375
Picard group
of a ringed space, 181, 283
of an algebra, 297
Plancherel theorem, 362
Poincaré lemma, 174
pole set, 286
polydisc, 24
polynomial polyhedron, 294
Pontryagin duality theorem, 362
power sum functions, 41
power sums, 43
presheaf, 146
constant, 147
skyscraper, 147
principle part
of a meromorphic function, 13
principle series representations, 489
probability measure, 364
projection morphisms, 116
projective
module, 133
object, 123
resolution, 125
projective morphism, 330
projective space, 313
projective variety, 316
proper map, 58, 72, 156
pure dimension, 97, 104
pure order
of a cover, 73
quasi-coherent sheaf, 194
quasi-inverse, 115
quasi-isomorphism of complexes, 125
quasi-projective variety, 316
radical
of a Lie algebra, 392, 442
of a Lie group, 442
of an ideal, 49
real form
of a Lie algebra, 413
of a Lie group, 401, 413
reducible
germ of a variety, 49
subvariety, 49
regular
element of a torus, 436
function, 38
function on a subvariety, 55
germ of a holomorphic variety, 51
germ of an algebraic variety, 107
local ring, 141
mapping, 55
point of a holomorphic subvariety, 51
point of an algebraic variety, 107, 189
V-valued function, 421
weight, 476
regular Borel measure, 359
regular locus, 95
regular representation, 362
regular system of parameters, 141
removable singularity theorem, 41
representation
adjoint, 384
holomorphic, 384
irreducible, 358
left regular, 371
of a Lie algebra, 384
of a topological group, 358
of an algebraic group, 422
right regular, 371
resolution
injective, 124
projective, 125
resolvent set, 289
restriction
functor, 154
map, 146
of a sheaf, 154
Riemann sphere, 188
ringed space, 168
root space decomposition, 395
root spaces, 395
roots
of a Cartan subalgebra, 395
positive system of, 398
Rückert's Nullstellensatz, 68, 85
saturated family of bounded sets, 304
Schur's lemma, 360, 369
Schwartz inequality, 360
Schwarz's lemma, 35
section
of a presheaf, 149
of a vector bundle, 171
seminorm, 29, 264
semisimple
algebraic group, 442
element, 388
group element, 432
Lie algebra, 385
Lie group, 409
linear operator, 430
separated quotient, 265
sheaf, 147
acyclic, 159
algebraic, 194
ample, 326
analytic, 216
coherent analytic, 216
cohomology, 159
constant, 150
fine, 163
flabby, 163
Fréchet, 274
invertible, 181
morphism, 150
of alternating p-cochains, 175
of commutative rings, 152
of divisors, 285
of homomorphisms, 157
of meromorphic functions, 285
of modules, 152
of p-cochains, 174
of sections of a presheaf, 149
soft, 163
very ample, 326
Shilov's Idempotent theorem, 295
short exact sequence, 120
simply connected, 381
singular
germ of a holomorphic variety, 51
germ of an algebraic variety, 107
locus, 95
locus of an algebraic variety, 107
point of a holomorphic subvariety, 51
point of an algebraic variety, 107, 189
weight, 478
skyscraper presheaf, 147
smooth algebraic variety, 107, 189
soft sheaf, 163
solvable
Lie algebra, 385
solvable algebraic group, 437
special linear group, 421
spectra radius, 289
spectral theorem, 361
spectrum, 289
split
epimorphism, 124
monomorphism, 124
short exact sequence, 124
splitting field, 63
stabilizer, 424,427
stalk of a presheaf, 148
Stein compact set, 282
Stein manifold, 285
Stein space, 257
structure sheaf, 168
subcategory, 114
full, 114
subvariety
algebraic, 45, 188
holomorphic, 45
support of a section, 158
symplectic group, 421
system of simple roots, 418
syzygies
chain of, 142
tangent
bundle, 173
space, 100
vector, 100
tangential dimension, 100
tensor product
of modules, 135
of sheaves, 157
Theorem of the primitive element, 62
thin subset, 41,86
topological dimension, 95
topological group, 245, 358
topological vector space, 264
Tor, 136
toral subalgebra, 395
total degree of a differential form, 238
totally bounded set, 305
triangular group, 421
trivial bundle, 171
unipotent
algebraic group, 438
group element, 432
linear operator, 430
unitary group of Hilbert space, 360
universal covering group, 381
Vandermonde determinant, 65
vanishing order, 40,51
variety
affine, 186
algebraic, 187
complete, 327
holomorphic, 170
irreducible, 189
vector bundle, 171
vector field, 173
holomorphic, 380
right invariant, 380
very ample, 326
Vietoris-Begle theorem, 161
wall between Weyl chambers, 479
Weierstrass division theorem, 43
Weierstrass polynomial, 42
Weierstrass preparation theorem, 42
Weierstrass theorem, 14
weight, 402, 404, 429, 436
dominant, 409
highest, 402
integral, 409
space, $402,404,429$
vector, 429
Weyl chamber, 406
positive, 406
Weyl group, 407
Weyl system, 413, 415
Zariski topology, 38

This page intentionally left blank

Selected Titles in This Series

(Continued from the front of this publication)
7 Gerald J. Janusz, Algebraic number fields, second edition, 1996
6 Jens Carsten Jantzen, Lectures on quantum groups, 1996
5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995
4 Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
3 William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, 1994

2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993

1 Ethan Akin, The general topology of dynamical systems, 1993

GSM/46

