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Preface 

Secondary cohomology operations are one of the tools available which bear 
on questions left unresolved by primary operations. This book develops this 
specialized topic in terms of elementary concepts from general homotopy 
theory. The special circumstances of their applications mean that secondary 
operations are often found embedded in detailed computations and other 
technicalities. It has been known for some time that the subject can be set 
up in elementary terms. Perhaps more recent is the understanding that there 
are systematic strategies for making calculations which can also be developed 
in the same elementary framework. For the author, that understanding 
emerged in joint work with Alex Zabrodsky. 

The first six chapters of this book develop the subject along the lines 
alluded to above. This work takes us through a proof of the Hopf invariant 
one theorem of J. F. Adams for the prime 2 and Liulevicius, Shimada and 
Yamanoshita for odd primes. Our proofs are in the spirit of those works 
but do not rely on calculations of the cohomology of universal examples. 
Moreover, by applying the elegant method employed by Shimada and Ya­
manoshita on the Steenrod algebra, the relation leading to the factorization 
of the appropriate Steenrod operation by secondary operations is worked 
out without working through the cohomology of the Steenrod algebra. 

Besides the Hopf invariant one theorem, many other results about clas­
sical secondary operations are presented in the first six chapters. Notable 
among these is Browder's evaluation of higher order Bocksteins on p-th. pow­
ers. 

Our approach to the subject is through the idea of secondary composi­
tions. This is an old idea, having great success in the hands of Barratt and 
Toda, among others, in the study of the homotopy groups of spheres. Many 
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people have realized that secondary compositions supply a description of 
secondary cohomology operations and Spanier published an account of the 
basic theory. Nevertheless, it usually transpires that to make calculations, 
one must rely on ad hoc information in many cases or on advanced methods 
developed for the Adams spectral sequence. 

In our work on finite i7-spaces, Zabrodsky and I were confronted with 
the evaluation of a certain p-th order operation which was inaccessible by any 
method we knew at that time. We were able to resolve our problem by using 
the Milnor filtration where a space is regarded as the classifying space of its 
loop space. We realized that this method gave an alternative path through 
most of the literature where secondary operations were calculated and Alex 
gave a series of lectures in this vein for a workshop held in Barcelona. The 
idea that a textbook devoted to a similar treatment might be useful comes 
from the fact that the method still finds uses and the belief that the subject 
has both elegance and scope. 

The table of contents indicates what may be found. Here I want to 
make some marginal comments on the material. I expect that readers of 
this book are familiar with the Steenrod algebra and its uses. For many 
people this means knowing the basic properties through the Adem relations 
and Milnor's structure theorem for the Hopf algebra. The first chapter 
interweaves a geometric discussion of primary operations with a summary 
discussion of features of the Steenrod operations. Also present is one of the 
systematic strategies for calculations. It is an argument first given by Adem 
to study compositions. I call it the Adem argument to indicate its general 
nature. 

On the algebraic side, chapter one contains a new proof of a theorem 
due to A. Negishi concerning certain left multiplications in the Steenrod 
algebra. This result is used at the prime 2 to give the same argument that 
Shimada and Yamanoshita give at odd primes for the relation factoring cer­
tain Steenrod operations through secondary operations. Naturally the level 
of detail here exceeds that of a summary discussion. I have also included a 
largely unnecessary discussion of the ideal in the Steenrod algebra consist­
ing of operations annihilating classes of a fixed dimension. This material is 
included because it simplifies some of my early work on the subject. 

The overall purpose of the first chapter is to have the Steenrod algebra 
and the cohomology of Eilenberg-Mac Lane spaces ready for use in subse­
quent work. I have not tried to develop these topics, even in sketch form. 

Our treatment of secondary operations deviates from the approach found 
in most of the literature. I will to try to delineate the differences. Typi­
cally, a secondary operation is produced in the cohomology of a universal 
example. This approach, where an element is picked out of a module, does 
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not come with means for evaluation in specific cases. Our approach is to 
represent the cohomology class by a map known as a colifting defined in 
homotopy theoretic terms from the same data defining the operation. Then 
an evaluation of the operation is represented by a secondary composition. 
This simple geometric description entails a general formula for making cal­
culations. In the literature, it is known as the Peterson-Stein formula or 
compatibility with connecting homomorphisms in Cartan's treatment. In 
elementary terms, the method is simply an adjoint relationship appearing 
in diagrams which can be recognized in many calculations. In the work with 
Zabrodsky mentioned above, we found exactly these patterns presented by 
the Milnor filtration. For us, the key feature provided by this filtration is an 
analysis of essential maps which become null-homotopic upon looping. Our 
direct hold on this phenomenon is another place where our treatment differs 
from most of the literature. There, the phenomenon is encoded in terms of 
splittings of universal examples as spaces, but not as i7-spaces. 

Chapter two is a bridge to the point of view dominating our development. 
Chapter three presents the basic geometric theory including our version of 
the Peterson-Stein formula and our use of the Milnor filtration. I have 
tried to separate those elements which appear to be general from those 
particular to secondary operations. Chapter four develops the basic theory 
of secondary operations. Except for the language, there is no difference 
between the results of our development and the traditional ones found in 
Adams' paper, the Cartan seminar, or the book by Mosher and Tangora. In 
chapter four we also indicate how our theory applies to operations of order 
higher than secondary operations. However, we do not develop this aspect 
in a systematic way. It is my opinion that technical matters get in the 
way of understanding unless one already has a good hold on the secondary 
situation. Moreover, I am unaware of Milnor filtration type information for 
the universal examples that serve higher order operations except for the case 
of higher order Bocksteins. 

Chapter five presents several examples where the Milnor filtration comes 
into the story. All these calculations appear as direct applications of the 
basic strategies, strategies arising from recognition of a common pattern 
described in chapter two. 

In particular, we have the evaluation of Adams and Liulevicius-Shimada-
Yamanoshita operations in the cohomology of complex projective space. 
Moreover, the algebraic part of the decomposition formula is produced in 
this chapter. Thus the means to settle Hopf invariant one are present but 
the denouement is delayed until the next chapter. 

Readers wishing to follow a connected account of the Hopf invariant 
one theorems can do so by leaving chapter three after Prop. 3.5.3 ((a) if 
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p = 2 is preferred) omitting the material in chapter four after subsection 
4.2.8 (exercises 4.2.3-5 may be omitted) and going to section 5.3 (5.4 for 
odd primes). 

Chapter six contains the Hopf invariant one results. The first part in­
cludes classical background material following lectures of John Moore. The 
second part assembles previous work to finish the proofs for the cases left 
open by the classical work. 

As may be inferred, we do not base our work on the cohomology of 
universal examples, but it would be perverse to ignore this topic. Chapter 
seven is devoted in part to the work of Massey and Peterson which provides 
the most comprehensive hold on the cohomology structure of the spaces 
arising in the classical theory. The geometric work of earlier chapters takes 
its place in this theory, in particular, in the discussion of the Hopf algebra 
structure and the principal action. 

Chapter seven also includes a discussion of twisted operations and Car-
tan formulas for secondary operations. I know that unrestrained glee is 
inappropriate to a sober preface, but let me say that I was pleased to find 
that the material of chapters three and four could sustain the discussion of 
these topics. 

It is my belief that the ideas developed in this text can continue to be 
of use in homotopy theory. The book includes many examples and exercises 
with the intention that the reader will work through these as the principal 
means to understand the subject. Some of these examples, especially in 
chapter seven, are important for applications, notably in obstruction theory. 
However, I have only supplied references and have not tried to sketch the 
applications themselves. In fact, an excellent exercise is to look at the 
references and rework the relevant parts. Who knows, maybe that will lead 
to further understanding of these classical topics. 

I mentioned earlier that the point of view for this book grew out of 
work with Alex Zabrodsky. I like to think that Alex would have enjoyed 
sharing authorship of this book. I would like to think that his influence here 
is undiminished, but I know that is not true. This book in dedicated in 
memoriam to Alex as thanks for the pleasure of working with him and for 
his profound contributions to homotopy theory. 
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