Problems in Operator Theory

Y. A. Abramovich
 C. D. Aliprantis

Graduate Studies in Mathematics
Volume 5 I

Problems in Operator Theory

This page intentionally left blank

Problems in Operator Theory

Y. A. Abramovich
Indiana University-Purdue University Indianapolis

C. D. Aliprantis

Purdue University

Graduate Studies
in Mathematics
Volume 5I

Editorial Board

Walter Craig
Nikolai Ivanov
Steven G. Krantz
David Saltman (Chair)

2000 Mathematics Subject Classification. Primary 46Axx, 46Bxx, 46Gxx, 47Axx, 47Bxx, $47 \mathrm{Cxx}, 47 \mathrm{Dxx}, 47 \mathrm{Lxx}, 28 \mathrm{Axx}, 28 \mathrm{Exx}, 15 \mathrm{~A} 48,15 \mathrm{~A} 18$.

Library of Congress Cataloging-in-Publication Data

Abramovich, Y. A. (Yuri A.)
Problems in operator theory / Y. A. Abramovich, C. D. Aliprantis. p. cm. - (Graduate studies in mathematics, ISSN 1065-7339; v. 51)

Includes bibliographical references and index.
ISBN 0-8218-2147-4 (alk. paper)

1. Operator theory-Problems, exercises, etc. I. Aliprantis, Charalambos D. II. Abramovich, Y. A. (Yuri A.). Invitation to operator theory. III. Title. IV. Series.

QA329.A27 2002
$515^{\prime} .724^{\prime} 076$-dc21 2002074421

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(c) 2002 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

$$
10987654321 \quad 070605040302
$$

To the Memory of our Parents

This page intentionally left blank

Contents

Foreword xi
Chapter 1. Odds and Ends 1
§1.1. Banach Spaces, Operators, and Linear Functionals 1
$\S 1.2$. Banach Lattices and Positive Operators 20
§1.3. Bases in Banach Spaces 31
§1.4. Ultrapowers of Banach Spaces 44
§1.5. Vector-valued Functions 48
§1.6. Fundamentals of Measure Theory 51
Chapter 2. Basic Operator Theory 63
§2.1. Bounded Below Operators 63
§2.2. The Ascent and Descent of an Operator 68
§2.3. Banach Lattices with Order Continuous Norms 71
§2.4. Compact and Weakly Compact Positive Operators 78
Chapter 3. Operators on $A L$ - and $A M$-spaces 87
§3.1. $A L$ - and $A M$-spaces 87
§3.2. Complex Banach Lattices 96
§3.3. The Center of a Banach Lattice 105
§3.4. The Predual of a Principal Ideal 111
Chapter 4. Special Classes of Operators 119
§4.1. Finite-rank Operators 119
§4.2. Multiplication Operators 125
§4.3. Lattice and Algebraic Homomorphisms 129
§4.4. Fredholm Operators 134
§4.5. Strictly Singular Operators 139
Chapter 5. Integral Operators 145
§5.1. The Basics of Integral Operators 145
§5.2. Abstract Integral Operators 154
§5.3. Conditional Expectations and Positive Projections 169
§5.4. Positive Projections and Lattice-subspaces 180
Chapter 6. Spectral Properties 189
§6.1. The Spectrum of an Operator 189
§6.2. Special Points of the Spectrum 197
§6.3. The Resolvent of a Positive Operator 201
§6.4. Functional Calculus 205
Chapter 7. Some Special Spectra 215
§7.1. The Spectrum of a Compact Operator 215
§7.2. Turning Approximate Eigenvalues into Eigenvalues 222
§7.3. The Spectrum of a Lattice Homomorphism 230
§7.4. The Order Spectrum of an Order Bounded Operator 232
$\S 7.5$. The Essential Spectrum of a Bounded Operator 237
Chapter 8. Positive Matrices 243
§8.1. The Banach Lattices $M_{n}(\mathbb{R})$ and $M_{n}(\mathbb{C})$ 243
§8.2. Operators on Finite Dimensional Spaces 251
§8.3. Matrices with Non-negative Entries 262
§8.4. Irreducible Matrices 265
§8.5. The Perron-Frobenius Theorem 268
Chapter 9. Irreducible Operators 273
§9.1. Irreducible and Expanding Operators 273
§9.2. Ideal Irreducibility and the Spectral Radius 283
§9.3. Band Irreducibility and the Spectral Radius 290
§9.4. Krein Operators and $C(\Omega)$-spaces 293
Chapter 10. Invariant Subspaces 299
§10.1. A Smorgasbord of Invariant Subspaces 299
§10.2. The Lomonosov Invariant Subspace Theorem 307
§10.3. Invariant Ideals for Positive Operators 310
§10.4. Invariant Subspaces of Families of Positive Operators 317
§10.5. Compact-friendly Operators 320
$\S 10.6$. Positive Operators on Banach Spaces with Bases 329
§10.7. Non-transitive Algebras 331
Chapter 11. The Daugavet Equation 335
§11.1. The Daugavet Equation and Uniform Convexity 335
§11.2. The Daugavet Property in $A L$ - and $A M$-spaces 352
§11.3. The Daugavet Property in Banach Spaces 356
§11.4. The Daugavet Property in $C(\Omega)$-spaces 359
§11.5. Slices and the Daugavet Property 365
§11.6. Narrow Operators 369
§11.7. Some Applications of the Daugavet Equation 372
Bibliography 375
Index 379

Foreword

This book contains complete solutions to the more than six hundred exercises in the authors' book: An Invitation to Operator Theory, American Mathematical Society, 2002. The problems have been spread over eleven chapters following the format of that book. Each problem is identified by a triplet of numbers $x . y . z ; x$ designates the chapter, y the section, and z the exercise. For instance, Problem 3.4.7 indicates Exercise 7 in Section 4 of Chapter 3.

All solutions are based on the material covered in the text with frequent references to the results in the text. For example, a reference to Theorem 5.9 refers to Theorem 5.9 and a reference to Example 6.21 refers to Example 6.21 in the book An Invitation to Operator Theory. We have added an extra amount of material to many solutions in order to make this book as selfcontained as possible.

This problem book will be beneficial to students only if they use it "properly," that is to say, if students look at a solution of a problem only after trying very hard to solve the problem. Students will do themselves great injustice by reading a solution without any prior attempt on the problem. It should be a real challenge to students to produce solutions which are different from the ones presented here.

Due to the extra material incorporated into the problems, the book can be used as a companion supplement to any text used for the standard functional analysis graduate courses. In addition, this solution book can be used as a reference not only for mathematical subjects but also for other disciplines that rely on functional analytic or measure theoretic techniques.

We would like to express our most sincere thanks to all people who made constructive comments and corrections regarding the text and the problems. Special thanks are due to Professors Arkady Kitover and Vladimir Troitsky who read the solutions and made numerous suggestions and corrections. A final thank you goes to Arlene O'Sean, the AMS Copy Editor, for her excellent job in editing the manuscript.
Y. A. Abramovich and C. D. Aliprantis

Indianapolis and West Lafayette, May 2002

Bibliography

1. Y. A. Abramovich, Some theorems on normed lattices, Vestnik Leningr. Univ. Mat. Meh. Astronom. no. 13 (1971), 5-11. (English translation: Vestnik Leningr. Univ. Math. 4 (1977), 153-159.)
2. Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, Local quasinilpotence, cycles and invariant subspaces, in: Interaction between Functional Analysis, Harmonic Analysis, and Probability (N. Kalton, E. Saab, and S. Montgomery-Smith, eds.), Lecture Notes in Pure and Applied Mathematics, 175, Marcel Dekker, New York, 1995, pp. 1-12.
3. Y. A. Abramovich, C. D. Aliprantis, and W. R. Zame, A representation theorem for Riesz spaces and its applications to economics, Economic Theory 5 (1995), 527-535.
4. C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: A Hitchhikers Guide, $2^{\text {nd }}$ Edition, Springer-Verlag, Heidelberg and New York, 1999.
5. C. D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces, Academic Press, New York and London, 1978.
6. C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York and London, 1985.
7. C. D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, $3^{\text {rd }}$ Edition, Academic Press, New York and London, 1998.
8. C. D. Aliprantis and O. Burkinshaw, Problems in Real Analysis, $2^{\text {nd }}$ Edition, Academic Press, New York and London, 1998.
9. C. D. Aliprantis, O. Burkinshaw, and P. Kranz, On lattice properties of the composition operator, Manuscripta Math. 36 (1981), 19-31.
10. T. Andô, Contractive projections in L_{p}-spaces, Pacific J. Math. 17 (1966), 391-405.
11. T. Andô, Banachverbände und positiver Projektionen, Math. Z. 109 (1969), 121-130.
12. S. I. Ansari, Essential disjointness and the Daugavet equation, Houston J. Math. 19 (1993), 587-601.
13. W. Arendt, Über das spektrum regularer operatoren, Ph.D. Dissertation, University of Tübingen, 1979.
14. N. Aronszajn and K. T. Smith, Invariant subspaces of completely continuous operators, Ann. of Math. 60 (1954), 345-350.
15. W. B. Arveson and J. Feldman, A note on invariant subspaces, Michigan Math. J. 15 (1968), 61-64.
16. A. Benedek and R. Panzone, The spaces with mixed norm, Duke Math. J. 28 (1961), 301-324.
17. A. R. Bernstein and A. Robinson, Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos, Pacific J. Math. 16 (1966), 421-431.
18. C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
19. E. Bishop and R. R. Phelps, The support functionals of a convex set, in: V. Klee ed., Convexity (Proceedings of Symposia in Pure Mathematics, 7, Amer. Math. Soc., Providence, RI, 1963), 27-35.
20. A. V. Bukhvalov, V. B. Korotkov, A. G. Kusraev, S. S. Kutateladze, and B. M. Makarov, Vector Lattices and Integral Operators, Nauka, Novosibirsk, 1992. (English translation edited by S. S. Kutateladze was published by Kluwer Academic Publishers, Dordrecht and Boston, 1996.)
21. V. Caselles, On irreducible operators on Banach lattices, Indag. Math. 48 (1986), 1116.
22. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
23. J. Diestel, H. Jarchow, and A. Tong, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, 1995.
24. J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys, 15, Amer. Math. Soc., Providence, Rhode Island, 1977.
25. P. G. Dodds and D. H. Fremlin, Compact operators in Banach lattices, Israel J. Math. 34 (1979), 287-320.
26. P. G. Dodds, C. B. Huijsmans, and B. de Pagter, Characterizations of conditional expectation-type operators, Pacific J. Math. 141 (1990), 55-77.
27. R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York and London, 1972.
28. N. Dunford and J. T. Schwartz, Linear Operators I, Wiley (Interscience), New York, 1958.
29. Z. Ercan and S. Onal, Invariant subspaces for positive operators acting on a Banach space with Markushevich basis, Positivity, forthcoming.
30. V. Gantmacher, Über schwache totalstetige operatoren, Mat. Sb. (N.S.) 7 (49) (1940), 301-308.
31. S. A. Gershgorin, Über die Albrenzung Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR Ser. Fiz.-Mat. 6 (1931), 749-754.
32. W. T. Gowers and B. Maurey, The unconditional sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874.
33. W. T. Gowers and B. Maurey, Banach spaces with small spaces of operators, Math. Ann. 307 (1997), 541-568.
34. J. J. Grobler, Band irreducible operators, Indag. Math. 48 (1986), 405-409.
35. A. Grothendieck, Une characterisation vectorielle metrique des espaces L^{1}, Canad. J. Math. 7 (1955), 552-561.
36. A. Grothendieck, Produits tensoriels toplogiques et espaces nuclaires, Mem. Amer. Math. Soc., 16, 1965.
37. F. L. Hernández and B. Rodriguez-Salinas, On ℓ^{p}-complimented copies in Orlicz spaces II, Israel J. Math. 68 (1989), 27-55.
38. R. B. Honor, Density and transitivity results on ℓ^{∞} and ℓ^{1}, J. London Math. Soc. 32 (1985), 521-527.
39. R. C. James, Weakly compact sets, Trans. Amer. Math. Soc. 113 (1964), 129-140.
40. V. M. Kadets, Some remarks concerning the Daugavet equation, Quaestiones Math. 19 (1996), 225-235.
41. V. M. Kadets and M. M. Popov, On the Liapunov convexity theorem with applications to sign-embeddings, Ukrainian Math. J. 44 (1992), 1192-1200.
42. V. M. Kadets and M. M. Popov, The Daugavet property for narrow operators in rich subspaces of $C[0,1]$ and $L_{1}[0,1]$, St. Petersburg Math. J. 8 (1997), 571-584.
43. V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and D. Werner, Banach spaces with the Daugavet property, Trans. Amer. Math. Soc. 352 (2000), 855-873.
44. G. K. Kalisch, On similarity, reducing manifolds, and unitary equivalences of certain Volterra operators, Ann. of Math. 66 (1957), 481-494.
45. L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford and New York, 1982.
46. L. V. Kantorovich, B. Z. Vulikh, and A. G. Pinsker, Functional Analysis in Partially Ordered Spaces, Gostekhizdat, Moscow and Leningrad, 1950.
47. R. Khalil, The Daugavet equation in vector-valued function spaces, Panamer. Math. J. 6 (1996), 51-53.
48. J. Kim, The characterization of a lattice homomorphism, Canadian J. Math. 27 (1975), 172-175.
49. V. B. Korotkov, Integral Operators, Nauka, Novosibirsk, 1983.
50. C.-S. Lin, Generalized Daugavet equations and invertible operators on uniformly convex Banach spaces, J. Math. Anal. Appl. 197 (1996), 518-528.
51. J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel J. Math. 9 (1971), 263-269.
52. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin and New York, 1977.
53. V. I. Lomonosov, A counterexample to the Bishop-Phelps theorem in complex spaces, Israel J. Math. 115 (2000), 25-28.
54. G. Ya. Lozanovsky, On a theorem of N. Dunford, Izv. Vyssh. Uchebn. Zaved. Mat. 8 (1974), 58-59. (Russian)
55. H. P. Lotz, Minimal and reflexive Banach lattices, Trans. Amer. Math. Soc. 211 (1975), 85-100.
56. P. Meyer-Nieberg, Quasitriangulierbare Operatoren und invariante Untervekrorräume stetiger linearer Operatoren, Arch. Math. (Basel) 22 (1971), 186-199.
57. D. P. Milman, On some criteria for the regularity of spaces of the type (B), Dokl. Akad. Nauk SSSR, N. S., 20 (1938), 243-246. (In Russian.)
58. S-T. C. Moy, Characterization of conditional expectation as a transformation on function spaces, Pacific J. Math. 4 (1954), 47-63.
59. J. R. Munkres, Topology, Prentice-Hall, Englewood Cliffs, NJ, 1975.
60. H. Nakano, Modern Spectral Theory, Maruzen Co., Tokyo, 1950.
61. B. de Pagter, Irreducible compact operators, Math. Z. 192 (1986), 149-153.
62. C. Pearcy and N. Salinas, An invariant-subspace theorem, Michigan Math. J. 20 (1973), 21-31.
63. A. Pelczynski, On the impossibility of embedding of the space L in certain Banach spaces, Coll. Math. 8 (1961), 199-203.
64. B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), 369-374.
65. A. M. Plichko and M. M. Popov, Symmetric function spaces on atomless probability spaces, Dissertationes Mathematicae, 306, 1990.
66. C. J. Read, A solution to the invariant subspace problem on the space ℓ_{1}, Bulletin London Math. Soc. 17 (1985), 305-317.
67. C. J. Read, A short proof concerning the invariant subspace problem, J. London Math. Soc. (2) 34 (1986), 335-348.
68. C. J. Read, Quasinilpotent operators and the invariant subspace problem, J. London Math. Soc. (2) 56 (1997), 595-606.
69. H. H. Schaefer, Spekraleigenschaften positwer linearer Operatoren, Math. Z. 82 (1963), 303-313.
70. H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin and New York, 1974.
71. H. H. Schaefer, On theorems of de Pagter and Andô-Krieger, Math. Z. 192 (1986), 155-157.
72. I. Singer, Bases in Banach Spaces, Vol. 1, Springer-Verlag, Berlin and New York, 1970.
73. G. G. Sirotkin, Compact-friendly multiplication operators on Banach function spaces, J. Funct. Analysis, forthcoming.
74. V. L. Šmulian, Sur la structure de la sphere unitaire dans l'espace de Banach, Mat. Sb. (N.S.) 9 (1941), 545-561.
75. A. Sobczyk, Projection of the space m on its subspace c_{0}, Bull. Amer. Math. Soc. 47 (1941), 938-947.
76. A. Spalsbury, Operators not positive with respect to any basis, Quaestiones Math. 23 (2000), 489-494.
77. A. Taylor and D. C. Lay, Introduction to Functional Analysis, R. E. Krieger, Malabar, Florida, 1986.
78. T. Terzioglu, A characterization of compact linear mappings, Arch. Math. (Basel) 22 (1971), 76-78.
79. V. G. Troitsky, On the modulus of C. J. Read's operator, Positivity 3(1998), 257-264.
80. L. Tzafriri, Remarks on contractive projections in L_{p}-spaces, Israel J. Math. 7 (1969), 9-15.
81. L. Tzafriri, An isomorphic characterization of $L_{p^{-}}$and c_{0}-spaces, II, Michigan Math. J. 18 (1971), 21-31.
82. L. Weis and D. Werner, The Daugavet equation for operators not fixing a copy of C(S), J. Operator Theory 39 (1998), 89-98.
83. A. C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam, 1983.

Index

$A L$-space, 87,90
AM-compact operator, 313
AM-space, 87, 90
represented as $L_{\infty}(\pi), 152$
with unit, 87
abstract integral operator, 154
additive semigroup of operators, 319
adjoint of resolvent, 190
adjoint of strictly singular operator, 142
adjoint operator, 66
algebra of operators, 304
non-transitive, 304, 305, 331
transitive, 306
unital, 304
algebraic complement of subspace, 136
algebraic homomorphism, 129
analytic function, 50, 205
annihilator, 19
of a set, 257
of a vector subspace, 19, 257
antisymmetry property, 20
approximate eigenvalue, 198, 222
approximate point spectrum, 198, 232
approximation of vectors in $E_{u}, 104$
approximation property, 122
Archimedean Riesz space, 22, 25, 72, 108, 212
ascent of operator, 68, 137, 210
atom, $72,74,352$
in $C(\Omega)$-space, 352
atomic Banach lattice, 282
atomic measure space, 154
atomless Riesz space, 73
automatic continuity, 132
backward shift, 69, 286, 311

Banach function space, 154
Banach lattice, 332
atomic, 282
complex, 96
with mixed norm, 163
with order continuous norm, 71, 76, 90, 126, 329
Banach space
direct sum, 7, 195
quotient, 18
reflexive, $11,40,341,367$
renormed, 373
separable, 362
uniformly convex, 11, 338, 341, 342, 344
uniformly smooth, 338, 342-344
band, $24,72,75,76,106,159,265,291$
generated by a set, 24
generated by a vector, 24
generated by an ideal, 24
principal, 110
projection, 29, 321
band irreducibility, 290
band irreducible operator, 273, 276, 281
quasinilpotent, 292
band projection, 108
Bartle-Dunford-Schwartz theorem, 363
basic sequence, 39
basis, 31, 329
in $C[0,1], 37$
in $L_{p}[0,1], 34$
in a B-space, 31,33
orthogonal, 244
orthonornal, 244
unconditional, 36, 40, 329
biorthogonal sequence, 40

Bochner integrable function, 368
Borel measure, 94, 126, 231, 362
bounded below operator, 63
Calkin algebra, 241
Carleman operator, 147
carrier, 31
of functional, 156
of ideal, 31
Cayley-Hamilton theorem, 250, 258
center, 105
of $L_{p}(\mu), 107,157$
of a Banach function space, 157
of Banach lattice, 105, 106
central operator, 106, 274
Cesaro operator, 195
chain of open sets, 51
characteristic polynomial, $245,250,252,255$, 256, 268
Clarkson's inequality, 345
clopen set, 26
closed ideal, 112
closest point to a set, 11
cofinal set, 51
collection of operators, 317
finitely quasinilpotent, 318
locally quasinilpotent, 317
commutant of an operator, 304
commutator of two operators, 209
commuting Krein operators, 295
commuting operators, 191, 296
compact operator, 78,82
compact-friendly operator, 321
compactly dominated operator, 289, 292
complement
algebraic of subspace, 136
of closed subspace, 121, 359
complemented subspace, 121, 359
complete measure, 52
completely continuous function, 332
completeness of normed Riesz spaces, 28
completion
Dedekind, 30, 93
Maeda-Ogasawara-Vulikh, 108
norm, 112
complex Banach lattice, 96, 243
complex ideal, 99
complex lattice homomorphism, 130
complexification, 3, 96, 97
of $\mathbb{R}^{n}, 97$
of $C_{\mathbb{R}}(\Omega), 97$
of a B-lattice, 96
of a B-space, 227
of a real normed space, 4
of a real vector space, 3,5
component, 26, 77
composition of analytic functions, 206
composition operator, $83,128,303$
conditional expectation operator, 169, 170
cone, 15, 20, 21, 329
generated by a Schauder basis, 329
generating, 21, 183
in a B-space, 329
in a normed Riesz space, 27
conjugate, 98
of complex number, 98
of matrix, 98
continuity of positive operators, 27,331
contour, 205
Jordan, 205
contraction, 64, 218
contractive projection, 170, 175
convergence
*, 55
in measure, 57
notions in $L_{0}, 158$
order, 22, 53
ultrafilter, 45
convex hull of components, 77
convolution of kernels, 162
countable spectrum, 197
countable sup property, 54
curve in a topological space, 50
cyclic vector, 260
Daugavet equation, 335, 363, 365
Daugavet property, 352, 353, 356, 359, 367
Dedekind complete Riesz space, 26, 30, 54, $105,108,155,233$
Dedekind completion, 30, 93
derivatives of the resolvent function, 189
descent of operator, 68, 137, 210
finite, 138
diagonal matrix, 109
diagonal projection, 109
diagonalizable matrix, 246
diagonalizing matrix, 246
direct sum Banach space, 7, 195
direct sum of operators, 306
direct sum operator, 195
Dirichlet's theorem, 186
discrete vector, 72
disjoint linear functionals, 74
disjoint sequence, 212
disjoint vectors, 74,125
disjointly strictly singular operator, 144
disjointness of I from integral operators, 151
domination of operators, 100, 290, 310
double adjoint, 303
double power bounded operator, 195
dual of ℓ_{p}-sum of B-spaces, 224
duality of $A M$ - and $A L$-spaces, 88
Dunford's theorem, 160
Dunford-Pettis operator, 316
dyadic point, 38
E_{n}^{\sim}, order continuous dual of $E, 31$
eigenspace, 283
eigenvalue, 201, 206, 240, 262
approximate, 198, 222
eigenvector of matrix, 262,267
equivalent norms, 97
essential singularity, 210
essential spectrum, 237
of forward shift, 238
essentially nilpotent operator, 239
expanding operator, 273
exposed point of a set, 367
extension of additive function, 21
extension of linear functional, 10
factorization of compact operators, 82
filter of sets, 44
Finite Dimensional Separation Theorem, 16
finite-rank operator, $79,119,123,127,215$, 355
finitely quasinilpotent collection, 318
forward shift, 69, 238, 311
Fréchet differentiability of the norm, 347
Fredholm alternative, 138
Fredholm operator, 134
Frobenius' theorem, 262
function
linear, 184
analytic, 50, 205
Bochner integrable, 368
completely continuous, 332
harmonic, 186
matrix-valued, 267
piecewise linear, 184
Rademacher, 91, 370
retraction, 13
functional
multiplicative, 221
supporting set at a point, 347
functional calculus, 205
Gantmacher's theorem, 80
Gateaux differentiability of the norm, 347
generalized Harris operator, 323
generating cone, 21, 183
Gershgorin's theorem, 263
Gribanov's theorem, 149
Haar system, 34
harmonic function, 186
Harris operator, 293, 323
hereditarily indecomposable B-space, 143
Hermitian matrix, 243, 246, 249
Hilbert space, 102
Hilbert-Schmidt operator, 153
homomorphism
algebraic, 129
lattice, $74,105,117,129,227,264$
hyperinvariant closed subspace, 283
$\mathcal{I}(X, Y)$, set of isomorphisms from X to Y, 67
ideal, 99, 265
complex, 99
invariant, 310
null, 116, 311
null of an ℓ-seminorm, 115
null of functional, 31
order dense, 58
order dense in $L_{0}(\pi), 58$
principal, 90
range of operator, 311
ideal irreducibility, 283
ideal irreducible operator, 100, 273, 276
identity operator, 160,356
implication scheme, 273
independence
of eigenvectors, 197
of linear functionals, 119
index of operator, 134, 137
Index Theorem, 137
inequality
Clarkson's, 345
Jensen's, 173
Khintchine's, 143
triangle, 96
inner product preserving matrix, 244
integral operator, $94,145,215,294$
internal point of a set, 87
interval preserving operator, 46, 132, 231, 264
invariant ideal, 310
invariant measure, 276
invariant subspace, 5, 203, 299
inverse of operator, $1,7,193,232,235$
invertible elements in a B-algebra, 237
invertible matrix, 263
invertible operator, $7,193,232,235,251$
irreducibility
band, 290
ideal, 283
irreducible matrix, 265,266
irreducible operator, 273
isolated point, 352, 361
isolated point of $\sigma(T), 197,210,239$
isometry, 8,353
lattice, 225
linear, $8,142,225$
isomorphism
lattice, 117
James' theorem, 341

Jensen's inequality, 173
joint continuity of composition, 10
joint spectral radius, 320
Jordan contour, 205
$K B$-space, 75
Kadets-Klee property, 344
Khintchine's inequality, 143
Krein operator, 266, 267, 271, 273, 293
compact, 294
with positive eigenvalues, 295
Krein-Rutman theorem, 219
Kronecker's theorem, 231
L-space, 114
$L_{0}(\mu)$, space of measurable functions, 54
$L_{p, 1}, B$-lattice of mixed norms, 163
$L_{p, \infty}, B$-lattice of mixed norms, 163
ℓ_{p}-sum of B-spaces, 223
$\mathcal{L}(X, Y)$, the B-space of bounded operators, 2, 10
$\mathcal{L}_{r}(E, F)$, the B-lattice of regular operators, 28
Lat (T), algebra of T-invariant closed subspaces, 301
Laplace's equation, 186
lattice homomorphism, $46,74,105,117,129$, 132, 227, 229
complex, 130
order continuous, 133
spectrum, 230
lattice isometry, 225
lattice isomorphism, 117
lattice operations
in $\mathcal{L}_{r}(E, F), 26$
weakly σ-continuous, 91
lattice seminorm, 115
lattice-subspace, 183
finite dimensional, 183
law
Parallelogram, 345
limit functional, 134
linear function, 184
linear functional
limit, 134
multiplicative, 131, 142
linear isometry, $8,114,142,225$
linearly independent functionals, 119
locally quasinilpotent collection, 317
locally quasinilpotent operator, 285
Lomonosov operator, 308
Lomonosov's Invariant Subspace Theorem, 307
M-space, 113
Maeda-Ogasawara-Vulikh Representation Theorem, 108, 110
majorizing vector subspace, 183
Markov matrix, 95, 263, 269
Markov operator, 95, 130, 276, 308
Markov projection, 177
matrix
diagonal, 109
diagonalizable, 246
diagonalizing, 246
Hermitian, 243, 246, 249
inner product preserving, 244
invertible, 263
irreducible, 265, 266
Markov, 95, 263, 269
nilpotent, 249, 265
non-negative, 262
norm preserving, 244
positive, 262
positive semidefinite, 248
primitive, 271
quasinilpotent, 249
stochastic, 95
strongly positive, 262
unitary, 244,246
upper triangularizable, 251
upper triangularizing, 251
matrix representing an operator, 6,255
matrix-valued function, 267
maximum modulus principle, 187
measure, 107, 126
atomic, 154
Borel, 94, 126, 362
complete, 52
invariant, 276
of bounded variation, 126
on a semiring, 59
separable, 148
measure convergence, 57
measure of non-compactness, 240
of operator, 241
of set, 240
minimal extension, 155
minimal polynomial, 253
mixed norm, 163
Miyajima projection, 183
continuous, 185
modulus, 123, 262
of finite-rank operator, 123
of integral operator, 94
of matrix, 262
of regular operator, 74
Morera's theorem, 48
multiplication operator, $125,127,303,307$
weakly compact, 220
multiplicative linear functional, 131, 142, 221
multiplicative semigroup, 319
multiplicity of eigenvalues, 252

Nakano's theorem, 156
narrow operator, 369
nearest point mapping, 11
nearest point to a set, 11
Neumann series, 191
nilpotent matrix, 249, 265
nilpotent operator, 70, 195
non-negative matrix, 262
non-transitive algebra, 304, 305, 331
norm, 1
Fréchet differentiable, 347
Gateaux differentiable, 347
mixed, 163
of integral operator, 94
of operator, 1
quotient, 18,112
uniformly convex, 11
uniqueness in a B-lattice, 28
norm completion, 112, 114
of $A L$-space, 114
of $A M$-space, 113
norm extension, 233
norm of integral operator, 94
norm preserving matrix, 244
norm totally bounded set, 81
norming subspace, 49
norms on $\mathbb{C}^{n}, 98$
nuclear operator, 124
null ideal, 31, 65, 311
of an ℓ-seminorm, 115
of functional, 116
one-to-one operator, 7,251
operator
$A M$-compact, 313
abstract integral, 154
adjoint, 66
band irreducible, 273, 276, 281
bounded below, 63
Carleman, 147
central, 106, 274
Cesaro, 195
compact, 78,82
compact-friendly, 320, 321
compactly dominated, 289, 292
composition, $83,128,303$
conditional expectation, 169, 170
contraction, 64
direct sum, 195
disjointly strictly singular, 144
double power bounded, 195
Dunford-Pettis, 316
essentially nilpotent, 239
expanding, 273
finite-rank, 79, 119, 123, 127, 215, 355
Fredholm, 134
generalized Harris, 323

Harris, 293, 323
Hilbert-Schmidt, 153
ideal irreducible, 100, 273, 276
identity, 151, 160, 356
integral, 94, 145, 215, 294
interval preserving, 46, 132, 231, 264
invertible, 7, 193, 232, 235, 251
irreducible, 273
isometry, 8
Krein, 266, 267, 271, 273, 293
locally quasinilpotent, 285
locally quasinilpotent but not quasinilpotent, 285
Lomonosov, 308
Markov, 95, 130, 276, 308
multiplication, 125, 127, 303, 307
narrow, 369, 372
nilpotent, 70, 195
non-strictly singular, 143
nuclear, 124
one-to-one, 7, 251
order continuous, 25, 202
polynomially compact, 307
power compact, 219, 239
principal ideal preserving, 106
projection, 176
quasinilpotent, 192, 195
rank-one, 127, 354, 365
regular, 93
shift, 219, 306
strictly positive, 127, 311
strictly singular, 139, 220, 240
strong Krein, 273
strongly expanding, 274, 275, 281
surjective, $7,63,226,251$
symmetric, 328,339
Volterra, 216, 219, 331
weakly compact, $78,80,84,220,367$
weakly expanding, 274
with closed range, 65-67, 139
with countable spectrum, 197
with separable range, 81,362
operator domination, 100, 310
operator norm, 1
orbit of vector, 260
order closed set, 23
order complete lattice of invariant subspaces, 301
order complete Riesz space, 22
order completeness of $L_{0}(\mu), 54$
order continuity of the norm
in an $A L$-space, 90
order continuous dual, 31
of $L_{\infty}, 157$
order continuous operator, 25, 202
order convergence, 22,53
order dense ideal, 58
order dense Riesz subspace, 54
order interval, 92
weakly compact, 92
order spectrum, 232
order unit, 87, 125
ordered vector space
Archimedean, 21
orthogonal basis, 244
orthogonal complement, 247
orthomorphism, 105
orthonornal basis, 244
Parallelogram Law, 345
partition of set, 171
Perron-Frobenius theorem, 268, 270
piecewise linear function, 184
point
closest to a set, 11
dyadic, 38
exposed, 367
internal of set, 87
isolated, 352, 361
isolated of $\sigma(T), 239$
nearest to a set, 11
quasi-interior, 125,126
strongly exposed, 367
support of a set, 14
Poisson's formula, 186
pole of the resolvent, 210
polynomial
characteristic, $245,250,252,255,256,268$
minimal, 253
polynomially compact operator, 307
positive matrix, 262
positive operator
on a B-space, 329
positive projection, 169, 180
positive semidefinite matrix, 248
power compact operator, 219, 239
primitive matrix, 271
principal band, 110, 159
principal ideal, 90
principal ideal preserving operator, 106
product rule for derivatives, 48
projection, 29, 121, 169, 176, 179, 199
band, 108, 110
contractive, 170,175
diagonal, 109
finite-rank operator, 121
Markov, 177
orthogonal, 179
positive, 180
spectral, 211, 239
projection band, 321
property
antisymmetry, 20
Daugavet, 352

Kadets-Klee, 344
reflexivity, 20
Schur, 84, 333
transitivity, 20
pseudoinverse of operator, 139
quasi-interior point, 125, 126
quasinilpotent matrix, 249
quasinilpotent operator, 192, 195
quotient Banach space, 18
quotient map, 18, 111
quotient norm, 18, 112
Rademacher functions, 91, 370
range ideal of operator, 311
range of operator, 66, 139
rank of a matrix, 258
rank-one operator, 127, 354, 365
reducing subspace, 207
reflexive B-space, 11, 40, 341, 367
reflexivity property, 20
regular operator, 93
representation
Kakutani-Bohnenblust-Krein, 130
Maeda-Ogasawara-Vulikh, 108
of $A M$-space as $L_{\infty}(\pi), 152$
of finite-rank operator, 120
of operator by matrix, 255
resolvent
of positive operator, 201
resolvent identity
second, 189
retract of a space, 13
retraction, 13
Riemann-Lebesgue lemma, 91
Riesz space, 133, 155
Archimedean, 22, 24, 52, 72, 108, 212
atomless, 73
Dedekind complete, 26, 30, 54, 105, 108, 155, 233
order complete, 22
Riesz subspace, 110, 112
order dense, 54
Riesz's lemma, 135
Riesz-Kantorovich formula, 26, 125
*-convergence, 55
\mathcal{S}-invariant subspace, 318
Schauder system, 37
Schur property, 84, 333
second resolvent identity, 189
semigroup of operators, 319
additive, 319
multiplicative, 319
semiring of sets, 59
separable B-space, 362
separable measure, 148
separable range, 81,362
separation of points, 157,183
separation of sets, 16
Separation Theorem
Finite Dimensional, 16
sequence
basic, 39
biorthogonal, 40
disjoint, 212
weakly unconditionally Cauchy, 360
series
Neumann, 191
unconditionally convergent, 41,361
weakly unconditionally Cauchy, 360
set
clopen, 26
cofinal, 51
solid, 23
spectral, 209, 211
totally bounded, 169
weakly compact, 84
shift, 69
shift operator, 219,306
backward, 69, 286, 311
forward, 69, 238, 311
similar matrices, 244,255
similar operators, 199
similarity invariance, 121
singularity
essential, 210
slice of a set, 365
solid set, 23
space
L, 114
M, 113
Hilbert, 102
special points of the spectrum, 197
Spectral Mapping Theorem
for polynomials, 205
spectral projection, 211, 239
spectral radius, $190,192,283,289,290,292$, 294
joint, 320
of sum of operators, 202
Rota-Strang, 320
spectral set, 209,211
spectrum, 189, 220
approximate, 198, 232
essential, 237
of a direct sum operator, 195
of compact operator, 215
of composition of operators, 196, 201
of lattice homomorphism, 230
of multiplication operator, 194
of operator, 189
of order bounded operator, 236
of projection, 199
of similar operators, 200
order, 232
spectrum of order bounded operator, 236
stochastic matrix, 95
strictly positive operator, 127,311
strictly singular operator, 139, 220, 240
strong Krein operator, 273
strong unit, 87
strongly expanding operator, $274,275,281$
strongly exposed point, 367
strongly positive matrix, 262
subgroup of the unit circle, 230,231
dense, 231
finite, 230
subspace
complemented, 121
invariant, 5, 203
norming, 49
reducing, 207
subspace invariant under a collection, 318
subspace invariant under an operator, 5
subspace of an ultrapower, 46
sum of B-spaces, 223
sum of narrow operators, 370,372
sum of unconditionally convergent series, 42
sum of vector spaces closed, 111
support point of a set, 14
supporting functional, 347
surjective operator, $7,63,226,251$
symmetric operator, 328,339
system
Haar, 34
Schauder, 37
totally bounded set, $76,81,169$
trace, 120
of finite-rank operator, 120
of matrix, 244
transformer, 132
transitive algebra, 306
transitivity property, 20
transpose of matrix, 259
triangle inequality, 96
\mathcal{U}-limit of sequence, 45
ultrafilter, 44, 229
free, 229
ultrafilter convergence, 45
ultrapower of a B-space, 44
unbounded component of $\rho(T), 202$
unconditional basis, $36,40,329$
unconditionally convergent series, 41,361
uniformly convex B-space, $11,341,342,344$
uniformly convex norm, 11
uniformly smooth B-space, $342-344$
uniqueness of kernel, 145
unit, 87, 330
order, 87,125
strong, 87
weak, $25,125,126,156,169,275,330$
unital algebra, 127
unital algebra of operators, 304
unitary matrix, 244, 246
upper triangularizable matrix, 251
upper triangularizing matrix, 251
vector
cyclic, 260
vector sublattice, 178
closed, 178
generated by a vector space, 182
Volterra operator, 216, 219, 331
weak unit, $25,125,126,169,275,330$ in $E_{\mathrm{n}}^{*}, 156$
weakly compact interval, 92
weakly compact operator, $78,80,84,220$, 367
weakly compact set, 84
weakly expanding operator, 274
weakly sequentially continuous lattice operations, 91
weakly unconditionally Cauchy sequence, 360
weakly unconditionally Cauchy series, 360

Titles in This Series

51 Y. A. Abramovich and C. D. Aliprantis, Problems in operator theory, 2002
50 Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, 2002
49 John R. Harper, Secondary cohomology operations, 2002
48 Y. Eliashberg and N. Mishachev, Introduction to the h-principle, 2002
47 A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and quantum computation, 2002

46 Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, 2002
Inder K. Rana, An introduction to measure and integration, second edition, 2002
44 Jim Agler and John E. M ${ }^{\text {c Carthy, Pick interpolation and Hilbert function spaces, } 2002}$
43 N. V. Krylov, Introduction to the theory of random processes, 2002
42 Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, 2002
41 Georgi V. Smirnov, Introduction to the theory of differential inclusions, 2002
40 Robert E. Greene and Steven G. Krantz, Function theory of one complex variable, 2002
39 Larry C. Grove, Classical groups and geometric algebra, 2002
38 Elton P. Hsu, Stochastic analysis on manifolds, 2002
37 Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, 2001
36 Martin Schechter, Principles of functional analysis, second edition, 2002
35 James F. Davis and Paul Kirk, Lecture notes in algebraic topology, 2001
34 Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001
33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001
32 Robert G. Bartle, A modern theory of integration, 2001
31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001
30 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001
29 Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001
25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000
24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000
23 Alberto Candel and Lawrence Conlon, Foliations I, 2000
22 Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 2000

21 John B. Conway, A course in operator theory, 2000
20 Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
19 Lawrence C. Evans, Partial differential equations, 1998
18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997
17 Henryk Iwaniec, Topics in classical automorphic forms, 1997
16 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997
15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997
14 Elliott H. Lieb and Michael Loss, Analysis, 1997
13 Paul C. Shields, The ergodic theory of discrete sample paths, 1996

TITLES IN THIS SERIES

12 N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996
11 Jacques Dixmier, Enveloping algebras, 1996 Printing
10 Barry Simon, Representations of finite and compact groups, 1996
9 Dino Lorenzini, An invitation to arithmetic geometry, 1996
8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
7 Gerald J. Janusz, Algebraic number fields, second edition, 1996
6 Jens Carsten Jantzen, Lectures on quantum groups, 1996
5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995
4 Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
3 William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, 1994
2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993
1 Ethan Akin, The general topology of dynamical systems, 1993

This is one of the few books available in the literature that contains problems devoted entirely to the theory of operators on Banach spaces and Banach lattices. The book contains complete solutions to the more than 600 exercises in the companion volume, An Invitation to Operator Theory, Volume 50 in the AMS series Graduate Studies in Mathematics, also by Abramovich and Aliprantis.

The exercises and solutions contained in this volume serve many purposes. First, they provide an opportunity to the readers to test their understanding of the theory. Second, they are used to demonstrate explicitly technical details in the proofs of many results in operator theory, providing the reader with rigorous and complete accounts of such details. Third, the exercises include many well-known results whose proofs are not readily available elsewhere. Finally, the book contains a considerable amount of additional material and further developments. By adding extra material to many exercises, the authors have managed to keep the presentation as self-contained as possible.
The book can be very useful as a supplementary text to graduate courses in operator theory, real analysis, function theory, integration theory, measure theory, and functional analysis. It will also make a nice reference tool for researchers in physics, engineering, economics, and finance.

ISBN 0-8218-2147-4

