A Course in Convexity

Alexander Barvinok

Graduate Studies in Mathematics
Volume 54
Contents

Preface vii

Chapter I. Convex Sets at Large 1
1. Convex Sets. Main Definitions, Some Interesting Examples and Problems 1
2. Properties of the Convex Hull. Carathéodory’s Theorem 7
3. An Application: Positive Polynomials 12
4. Theorems of Radon and Helly 17
5. Applications of Helly’s Theorem in Combinatorial Geometry 21
6. An Application to Approximation 24
7. The Euler Characteristic 28
8. Application: Convex Sets and Linear Transformations 33
9. Polyhedra and Linear Transformations 37
10. Remarks 39

Chapter II. Faces and Extreme Points 41
1. The Isolation Theorem 41
2. Convex Sets in Euclidean Space 47
3. Extreme Points. The Krein-Milman Theorem for Euclidean Space 51
4. Extreme Points of Polyhedra 53
5. The Birkhoff Polytope 56
6. The Permutation Polytope and the Schur-Horn Theorem 58
7. The Transportation Polyhedron 60
8. Convex Cones 65
9. The Moment Curve and the Moment Cone 67
10. An Application: “Double Precision” Formulas for Numerical Integration 70
11. The Cone of Non-negative Polynomials 73
12. The Cone of Positive Semidefinite Matrices 78
13. Linear Equations in Positive Semidefinite Matrices 83
14. Applications: Quadratic Convexity Theorems 89
15. Applications: Problems of Graph Realizability 94
16. Closed Convex Sets 99
17. Remarks 103

Chapter III. Convex Sets in Topological Vector Spaces 105
1. Separation Theorems in Euclidean Space and Beyond 105
2. Topological Vector Spaces, Convex Sets and Hyperplanes 109
3. Separation Theorems in Topological Vector Spaces 117
4. The Krein-Milman Theorem for Topological Vector Spaces 121
5. Polyhedra in L^∞ 123
6. An Application: Problems of Linear Optimal Control 126
7. An Application: The Lyapunov Convexity Theorem 130
8. The “Simplex” of Probability Measures 133
10. Remarks 141

Chapter IV. Polarity, Duality and Linear Programming 143
1. Polarity in Euclidean Space 143
2. An Application: Recognizing Points in the Moment Cone 150
3. Duality of Vector Spaces 154
4. Duality of Topological Vector Spaces 157
5. Ordering a Vector Space by a Cone 160
6. Linear Programming Problems 162
7. Zero Duality Gap 166
8. Polyhedral Linear Programming 172
9. An Application: The Transportation Problem 176
10. Semidefinite Programming 178
11. An Application: The Clique and Chromatic Numbers of a Graph 182
12. Linear Programming in L^∞ 185
13. Uniform Approximation as a Linear Programming Problem 191
14. The Mass-Transfer Problem 196
15. Remarks 202

Chapter V. Convex Bodies and Ellipsoids 203
1. Ellipsoids 203
2. The Maximum Volume Ellipsoid of a Convex Body 207
3. Norms and Their Approximations 216
4. The Ellipsoid Method 225
5. The Gaussian Measure on Euclidean Space 232
6. Applications to Low Rank Approximations of Matrices 240
7. The Measure and Metric on the Unit Sphere 244
8. Remarks 248

Chapter VI. Faces of Polytopes 249
1. Polytopes and Polarity 249
2. The Facial Structure of the Permutation Polytope 254
3. The Euler-Poincaré Formula 258
4. Polytopes with Many Faces: Cyclic Polytopes 262
5. Simple Polytopes 264
6. The h-vector of a Simple Polytope. Dehn-Sommerville Equations 267
7. The Upper Bound Theorem 270
8. Centrally Symmetric Polytopes 274
9. Remarks 277

Chapter VII. Lattices and Convex Bodies 279
1. Lattices 279
2. The Determinant of a Lattice 286
3. Minkowski’s Convex Body Theorem 293
4. Applications: Sums of Squares and Rational Approximations 298
5. Sphere Packings 302
6. The Minkowski-Hlawka Theorem 305
7. The Dual Lattice 309
8. The Flatness Theorem 315
9. Constructing a Short Vector and a Reduced Basis 319
10. Remarks 324

Chapter VIII. Lattice Points and Polyhedra 325
1. Generating Functions and Simple Rational Cones 325
2. Generating Functions and Rational Cones 330
3. Generating Functions and Rational Polyhedra 335
4. Brion’s Theorem 341
5. The Ehrhart Polynomial of a Polytope 349
6. Example: Totally Unimodular Polytopes 353
7. Remarks 356

Bibliography 357

Index 363
Preface

Convexity is very easy to define, to visualize and to get an intuition about. A set is called convex if for every two points \(a \) and \(b \) in the set, the straight line interval \([a, b]\) is also in the set. Thus the main building block of convexity theory is a straight line interval.

\[a \longrightarrow b \]

Convexity is more intuitive than, say, linear algebra. In linear algebra, the interval is replaced by the whole straight line. We have some difficulty visualizing a straight line because it runs unchecked in both directions.

On the other hand, the structure of convexity is richer than that of linear algebra. It is already evident in the fact that all points on the line are alike whereas the interval has two points, \(a \) and \(b \), which clearly stand out.

Indeed, convexity has an immensely rich structure and numerous applications. On the other hand, almost every “convex” idea can be explained by a two-dimensional picture. There must be some reason for that apart from the tautological one that all our pictures are two-dimensional. One possible explanation is that since the definition of a convex set involves only three points (the two points \(a \) and \(b \) and a typical point \(x \) of the interval) and every three points lie in some plane, whenever we invoke a convexity argument in our reasoning, it can be properly pictured (moreover, since our three points \(a, b \) and \(x \) lie on the same line, we have room for a fourth point which often plays the role of the origin). Simplicity, intuitive appeal and universality of applications make teaching convexity (and writing a book on convexity) a rather gratifying experience.

About this book. This book grew out of sets of lecture notes for graduate courses that I taught at the University of Michigan in Ann Arbor since 1994. Consequently, this is a graduate textbook. The textbook covers several directions, which,
although not independent, provide enough material for several one-semester three-credit courses.

One possibility is to follow discrete and combinatorial aspects of convexity: combinatorial properties of convex sets (Chapter I) – the structure of some interesting polytopes and polyhedra (the first part of Chapter II, some results of Chapter IV and Chapter VI) – lattice points and convex bodies (Chapter VII) – lattice points and polyhedra (Chapter VIII).

Another possibility is to follow the analytic line: basic properties of convex sets (Chapter I) – the structure of some interesting non-polyhedral convex sets, such as the moment cone, the cone of non-negative polynomials and the cone of positive semidefinite matrices (Chapter II and some results of Chapter IV) – metric properties of convex bodies (Chapter V).

Yet another possibility is to follow infinite-dimensional and dimension-free applications of convexity: basic properties of convex sets in a vector space (Chapter I) – separation theorems and the structure of some interesting infinite-dimensional convex sets (Chapter III) – linear inequalities and linear programming in an abstract setting (Chapter IV).

The main focus of the book is on applications of convexity rather than on studying convexity for its own sake. Consequently, mathematical applications range from analysis and probability to algebra to combinatorics to number theory. Finite- and infinite-dimensional optimization problems, such as the Transportation Problem, the Diet Problem, problems of optimal control, statistics and approximation are discussed as well.

The choice of topics covered in the book is entirely subjective. It is probably impossible to write a textbook that covers “all” convexity just as it is impossible to write a textbook that covers all mathematics. I don’t even presume to claim to cover all “essential” or “important” aspects of convexity, although I believe that many of the topics discussed in the book belong to both categories.

The audience. The book is intended for graduate students in mathematics and other fields such as operations research, electrical engineering and computer science. That was the typical audience for the courses that I taught. This is, of course, reflected in the selection of topics covered in the book. Also, a significant portion of the material is suitable for undergraduates.

Prerequisites. The main prerequisite is linear algebra, especially the coordinate-free linear algebra. Knowledge of basic linear algebra should be sufficient for understanding the main convexity results (called “Theorems”) and solving problems which address convex properties per se.

In many places, knowledge of some basic analysis and topology is needed. In most cases, some general understanding coupled with basic computational skills will be sufficient. For example, when it comes to the topology of Euclidean space, it suffices to know that a set in Euclidean space is compact if and only if it is closed and bounded and that a linear functional attains its maximum and minimum on such a set. Whenever the book says “Lebesgue integral” or “Borel set”, it does so for the sake of brevity and means, roughly, “the integral makes sense” and “the
set is nice and behaves predictably”. For the most part, the only properties of
the integral that the book uses are linearity (the integral of a linear combination
of two functions is the linear combination of the integrals of the functions) and
monotonicity (the integral of a non-negative function is non-negative). The relative
abundance of integrals in a textbook on convexity is explained by the fact that the
most natural way to define a linear functional is by using an integral of some sort. A
few exercises openly require some additional skills (knowledge of functional analysis
or representation theory).

When it comes to applications (often called “Propositions”), the reader is ex-
pected to have some knowledge in the general area which concerns the application.

Style. The numbering in each chapter is consecutive: for example, Theorem 2.1
is followed by Definition 2.2 which is followed by Theorem 2.3. When a reference
is made to another chapter, a roman numeral is included: for example, if Theorem
2.1 of Chapter I is referenced in Chapter III, it will be referred to as Theorem
I.2.1. Definitions, theorems and other numbered objects in the text (except figures)
are usually followed by a set of problems (exercises). For example, Problem 5
following Definition 2.6 in Chapter II will be referred to as Problem 5 of Section
2.6 from within Chapter II and as Problem 5 of Section II.2.6 from everywhere else
in the book. Figures are numbered consecutively throughout the book. There is a
certain difference between “Theorems” and “Propositions”. Theorems state some
general and fundamental convex properties or, in some cases, are called “Theorems”
historically. Propositions describe properties of particular convex sets or refer to
an application.

Problems. There are three kinds of problems in the text. The problems marked
by ∗ are deemed difficult (they may be so marked simply because the author is
unaware of an easy solution). Problems with straightforward solutions are marked
by ◦. Solving a problem marked by ◦ is essential for understanding the material and
its result may be used in the future. Some problems are not marked at all. There are
no solutions at the end of the book and there is no accompanying solution manual
(that I am aware of) , which, in my opinion, makes the book rather convenient for
use in courses where grades are given. On the other hand, many of the difficult
and some of the easy problems used later in the text are supplied with a hint to a
solution.

Acknowledgment. My greatest intellectual debt is to my teacher A.M. Vershik.
As a student, I took his courses on convexity and linear programming. Later, we
discussed various topics in convex analysis and geometry and he shared his notes
on the subject with me. We planned to write a book on convexity together and
actually started to write one (in Russian), but the project was effectively terminated
by my relocation to the United States. The overall plan, structure and scope of
the book have changed since then, although much has remained the same. All
unfortunate choices, mistakes, typos, blunders and other slips in the text are my
own. A.M. Vershik always insisted on a “dimension-free” approach to convexity,
whenever possible, which simplifies and makes transparent many fundamental facts,
and on stressing the idea of duality in the broadest sense. In particular, I learned
the algebraic approach to the Hahn-Banach Theorem (Sections II.1, III.1–3) and
the general view of infinite-dimensional linear programming (Chapter IV) from him. This approach makes the exposition rather simple and elegant. It makes it possible to deduce a variety of strong duality results from a single simple theorem (Theorem IV.7.2). My interest in quadratic convexity (Section II.14) and other “hidden convexity” results (Section III.7) was inspired by him. He also encouraged my preoccupation with lattice points (Chapter VIII) and various peculiar polytopes (Sections II.5–7).

I am grateful to my colleagues in the Department of Mathematics at the University of Michigan in Ann Arbor, especially to P. Hanlon, B.A. Taylor, J. Stembridge and S. Fomin with whose blessings I promoted convexity within the Michigan combinatorics curriculum. I thank the students who took Math 669 convexity classes in 1994–2001. Special thanks to G. Blekherman who contributed some of his interesting results on the metric structure of the set of non-negative multivariate polynomials (Problems 8 and 9 of Section V.2.4).

Since the draft of this book was posted on the web, I received very useful and detailed comments from R. Connelly, N. Ivanov, J. Lawrence, L. Lovász, G. Ziegler and A.M. Vershik. I am particularly grateful to J. Lawrence who suggested a number of essential improvements, among them are the greater generality of the “polarity as a valuation” theorem (Theorem IV.1.5), a simplified proof of the Euler-Poincaré Formula (Corollary VI.3.2) and an elegant proof of Gram’s relations (Problem 1 of Section VIII.4.4) and many mathematical, stylistic and bibliographical corrections.

I thank A. Yong for reading the whole manuscript carefully and suggesting numerous mathematical and stylistic corrections. I thank M. Wendt for catching a mistake and alerting me by e-mail.

I thank S. Gelfand (AMS) for insisting over a number of years that I write the book and for believing that I was able to finish it.

I am grateful to the National Science Foundation for its support.

Ann Arbor, 2002
Alexander Barvinok
Bibliography

Index

δ-net, 219
f-vector, 260
h-vector, 267

affine
 hull, 42
 hyperplane, 42
 independence, 42
 subspace, 42
algebra
 of closed convex sets, 29
 of compact convex sets, 29
 of polyhedra, 39
 of rational polyhedra, 337

Borsuk conjecture, 214
boundary, 47

chromatic number, 182
clique number, 182
closure, 111
codimension, 43
combination
 affine, 42
 conic, 65
 convex, 2
condition
 interior point, 170
 Kuhn-Tucker, 170
 Slater’s, 171
 stability, 170
cone, 65
 C_+, 161
 L_1^+, 161
 L_+^∞, 161
 V_+, 161

\mathbb{R}^d, 160
S_+, 160
base of, 66
dual, 162
homogeneous, 79
moment, 68, 151
of feasible directions, 100
of non-negative polynomials, 73, 151
of positive semidefinite Hermitian matrices, 91
of positive semidefinite matrices, 79
of powers of linear forms, 151
polyhedral, 147
rational, 330
 simple, 326
recession, 99
support, 341
unimodular, 353
conic hull, 65
contingency tables, 353
convex
 body, 207, 210
 symmetric about the origin, 207
 combination, 5
 hull, 2, 5
 set, 2, 5
 algebraically open, 45
convolution, 34
coset, 288
crosspolytope, 9
cube, 9
dilation, 6
dimension, 42, 49
direct product, 110
distance, 2
Index

distortion, 243
duality
 gap, 165, 168
 of L^1 and L^∞, 155
 of continuous functions and signed measures, 155
 of Euclidean spaces, 155
 of spaces of symmetric matrices, 155
 of topological vector spaces, 159
 of vector spaces, 154
 strong, 173
edge, 252
ellipsoid, 203
center of, 203
maximum volume, 209
minimum volume, 209, 216
Euler characteristic, 29, 31
Eulerian numbers, 269
extreme ray, 65

face, 50
figure, 253
proper, 50
facet, 252
Farkas Lemma, 174
feasible flow, 61
forest, 63
Formula
 double precision, 71
 Euler-Poincaré, 259
 Gauss-Bonnet, 261
 Inclusion-Exclusion, 28
 Pick’s, 291
 Stirling’s, 297
 Fourier-Motzkin elimination, 38
function
 Gamma, 297
 generating, 325
 indicator, 6, 28
 Lovász’s theta, 182
 support, 36, 207

graph
 d-realizable, 94
 chordal, 97
 realizable, 94
 Grassmannian, 36, 246

halfspace
 closed, 23, 43
 open, 23, 43
hyperoctahedron, 9
hyperplane, 21, 42
dense, 112, 113
isolating, 44
strictly, 44

separating, 44
strictly, 44
support, 50

identity
 Fleck’s, 14
 Liouville’s, 14
index of a vertex, 267
inequality
 active, 54
 Brunn-Minkowski, 206, 234
 functional, 206
 concentration
 for Lipschitz functions, 237, 247
 for the Gaussian measure, 236
 for the unit sphere, 247
 Firey, 207
 isoperimetric
 for the Gaussian measure, 234
 for the sphere, 246
interior, 47, 111
 algebraic, 109
interval, 2, 5
kissing number, 304

lattice, 280
 A_d, 280
 D_n, 281
 D_n^+, 281
 E_6, 281
 E_7, 281
 E_8, 281
 basis of, 280
 fundamental parallelepiped of, 286
 reduced, 319
 covering radius of, 311
 determinant of, 287
 dual, 309
 fundamental parallelepiped of, 280
 packing density of, 302
 packing radius of, 302
 rank of, 280
 standard integer, 280
 unimodular, 288
linear functional, 42
 positive, 134, 161, 197
map
 continuous, 110
 moment, 4
 rigidity, 98
matrix
 r-diagonal, 93, 181
doubly stochastic, 56
 Gram, 94
 permutation, 56
polystochastic, 64
positive definite, 79
positive semidefinite, 79
Hermitian, 91
measure
 Borel probability, 22, 134
 counting, 23
 delta, 134, 197
 moments of, 139
 standard Gaussian, 232, 233
Minkowski sum, 5
moment curve, 68
neighborhood, 110
neighbors, 252
 lower, 268
 upper, 268
norm, 119, 216
 ℓ^1, 217, 223
 ℓ^2, 217
 ℓ^∞, 217
Euclidean, 2
numerical range, 90
order, 160
 lexicographic, 161
orthogonal labeling, 183
parallel subspace, 42
permutohedron, 256
plan
 feasible
dual, 163
 primal, 163
optimal
dual, 163
 primal, 163
point, 1, 5
 exposed, 50
 extreme, 51
polar, 143, 156
polyhedron, 3, 8
 in $L^\infty[0, 1]$, 124
 rational, 330
 transportation, 61
polynomial
 of M.-D. Choi and T.-Y. Lam, 78
 Ehrhart, 349
 Motzkin’s, 78
 non-negative, 15, 214
 positive, 15
polytopal complex, 261
polytope, 8
 24-cell, 147
 Birkhoff, 57, 138
 centrally symmetric, 274
 cyclic, 262
integer, 330
multidex transportation, 103
permutation, 59
self-dual, 147
simple, 264
simplicial, 264
totally unimodular, 353
transportation, 61
Traveling Salesman, 213
principle
discretization, 139
maximum, 189
problem
 Assignment, 58
cycloheptane, 94
cyclohexane, 95
Diet, 55, 175
Mass-Transfer, 196
min-cost, 103
 of linear programming, 55, 128, 163
dual, 163
 in the canonical form, 166
 in the standard form, 166
 primal, 163
 of uniform (Chebyshev) approximation, 24, 191
 Transportation, 64, 176
Waring’s, 15
projection, 43
projective plane, 145
randomized rounding, 89
ray, 99
reciprocity relation, 329, 334, 351
ridge, 252
scalar product, 2
 in the space of polynomials, 16
scaling, 6, 111
semidefinite programming, 179
semigroup, 282, 330, 337
set
 balanced, 111
 closed, 110
 compact, 110
 extreme, 121
 open, 109
simplex, 264
d-dimensional, 48
 standard, 9
space
 R^∞, 155
 R_∞, 47, 49, 108, 117, 155
dual, 115
Euclidean, 1
 subgroup of, 279
normed, 119
of continuous functions, 113, 133
of signed Borel measures, 133
projective, 86
quotient, 42
topological, 109
topological vector
 locally convex, 119
 vector, 5
spherical angle, 149
exterior, 149
straight line, 42
sublattice, 288
 index of, 288
tensor product, 219
Theorem
 Alaoglu’s, 116
 Bipolar, 144, 159
 Birkhoff-von Neumann, 4, 57
 Blichfeldt’s, 293
 Bohnenblust’s, 93
 Brianchon-Gram, 344
 Brickman’s, 4, 89
 Brion’s, 346
 Carathéodory’s, 10
 colored, 11
 dual, 137
 Center Transversal, 24
 Dines’, 84
 Doignon’s, 318
 Dvoretzky’s, 247
 dual, 247
 Eberhard’s, 266
 Gauss-Lucas, 8
 Ham Sandwich, 24
 Helly’s, 18
 colored, 21
 fractional, 20
 measure of the intersection, 20
 hidden convexity, 84
 Hilbert’s, 77
 Howe’s, 318
 Isolation, 45
 Jung’s, 24
 Kirchberger’s, 21
 Krasnoselsky’s, 24
 Krein-Milman, 121
 for cones, 66
 in Euclidean space, 52
 Kronecker’s, 314
 Lagrange’s, 299
 Lyapunov’s, 130
 M.B. Gromova’s, 63
 Milman’s QS, 248
 Minkowski’s Convex Body, 294
 Minkowski’s Extremal Convex Body, 296
 Minkowski’s Second, 296
 Minkowski-Hlawka, 306
 of Bakonyi and Johnson, 97
 of Friedland and Loewy, 93
 of Li and Tam, 85
 of Pukhlikov, Khovanskii and Lawrence, 338
 Piercing, 20
 polarity is a valuation, 147
 Polya’s, 16
 Rado’s, 257
 Radon’s, 17
 Schur-Horn, 4
 Straszewicz’, 50
 Tikhonov’s, 110
 Toeplitz-Hausdorff, 90
 Tverberg’s, 18
 Volume Ratio, 248
 Weak Duality, 164
 Weyl-Minkowski, 9, 55, 145
topology, 110
 stronger, 110
 weak*, 115
 weak, of the duality, 157
 weaker, 110
transformation
 linear
 adjoint, 156
 dual, 156
 projective, 253
 translation, 6, 111
 tree, 63
 triangulation, 332
valuation, 29
 variance, 141
 vector, 1, 5
 vertex, 54, 252
 volume, 2, 35
 dual, 149, 207
 intrinsic, 35, 36
 volumetric barrier, 207
zonotope, 256, 292
Convexity is a simple idea that manifests itself in a surprising variety of places. This fertile field has an immensely rich structure and numerous applications. Barvinok demonstrates that simplicity, intuitive appeal, and the universality of applications make teaching (and learning) convexity a gratifying experience. The book will benefit both teacher and student: It is easy to understand, entertaining to the reader, and includes many exercises that vary in degree of difficulty. Overall, the author demonstrates the power of a few simple unifying principles in a variety of pure and applied problems.

The prerequisites are minimal amounts of linear algebra, analysis, and elementary topology, plus basic computational skills. Portions of the book could be used by advanced undergraduates. As a whole, it is designed for graduate students interested in mathematical methods, computer science, electrical engineering, and operations research. The book will also be of interest to research mathematicians, who will find some results that are recent, some that are new, and many known results that are discussed from a new perspective.