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Preface to the Second Edition 

The Scrapbook, originally published over twenty years ago, eventually was 
allowed to go out of print by the original publisher. I am very pleased that the 
American Mathematical Society is now making it available to a new generation 
of readers. I am indeed grateful. 

The book is an impressionistic journey through the classical subject of 
complex curves, that is, compact Riemann surfaces. Curve theory, as with most 
other central areas of complex algebraic geometry, has continued to advance, 
notably in areas such as the theory of vector bundles on curves and in our 
understanding of the moduli stacks of curves. But the basics of the theory 
touched on in the Scrapbook have weathered a test of time much longer than 
the twenty-some years since the first edition and are likely to stand the test 
of many more decades of scrutiny. For this reason, I saw no need to rewrite 
the book for this new edition. However, the available literature has grown 
immensely. So I have taken the opportunity to point out a few more sources 
in an addendum to the original list of references. 

Herb Clemens 
Columbus, Ohio 
September 2002 
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Preface 

This is a book of "impressions" of a journey through the theory of com­
plex algebraic curves. It is neither self-contained, balanced, nor particularly 
tightly organized. As with any notebook made on a journey, what appears 
is that which strikes the writer's fancy. Some topics appear because of their 
compelling intrinsic beauty. Others are left out because, for all their impor­
tance, the traveler found them boring or was too dull or lazy to give them 
their due. 

Looking back at the end of the journey, one can see that a common 
theme in fact does emerge, as is so often the case; that theme is the theory 
of theta functions. In fact very much of the material in the book is prepara­
tion for our study of the final topic, the so-called Schottky problem. More 
than once, in fact, we tear ourselves away from interesting topics leading 
elsewhere and return to our main route. 

Some of the subjects are extremely elementary. In fact, we begin with 
some musings in the vicinity of secondary-school algebra. Later, on occa­
sion and without much warning, we jump into some fairly deep water. Our 
intent is to struggle with some deep topics in much the same way that a 
beginning researcher might, using whatever tools we have at hand or can grab 
somehow or other. Sometimes we use no background material and do 
everything in detail; sometimes we use some of the heaviest of modern 
machinery. We hope to motivate further study or, preferably, further 
discussion with an expert in the field. In short, our aim is to motivate and 
stimulate mathematical activity rather than to present a finished product, 
and our point of view is romantic rather than rigorous. 

The material treated here was originally brought together for a Summer 
Course of the Italian National Research Council held in Cortona, Italy, in 
1976. It comes from so many sources that adequate acknowledgment 
would be difficult. The treatment of real two-dimensional geometries of 
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X Preface 

constant curvature comes from Cartan's classic text on Riemannian 
geometry; several items concerning the arithmetic of curves are borrowed 
from Serre's lovely book, A Course in Arithmetic; Manin's beautiful 
theorem on rational points of elliptic curves given in Chapter Two was 
explained to the author by A. Beauville; some of the theta identities in 
Chapter Three are lifted from the famous analysis text of Whittaker and 
Watson; and the construction of the level-two moduli space for elliptic 
curves was motivated by David Mumford's way of viewing the moduli 
space of curves of a fixed genus. The discussion of the Jacobian variety in 
Chapter Four leans heavily on work of Joseph Lewittes, and the discussion 
of the Schottky problem comes from work of Accola, Farkas, Igusa, and 
Rauch. But perhaps the author's greatest debt is to Phillip Griffiths, 
through whom he came to enjoy this subject. 

The author also wishes to thank Sylvia M. Morris, Mathematics De­
partment of the University of Utah, for preparing the manuscript, and Toni 
W. Bunker, of the same department, for preparing the figures. 

Herbert Clemens 
Salt Lake City, Utah 



Notation 

Most of the notation used in this book is quite standard, for example, 

Z = ring of integers, 
Q = field of rational numbers, 
(R = field of real numbers, 
C = field of complex numbers. 

Each of the six chapters is divided into sections, for instance, Chapter 
Three has Sections 3.1, 3.2, etc. Equations are numbered consecutively 
within chapters—(3.1), (3.2), etc.—as are the figures. 

Square brackets will be used to enclose matrices and are also used 
later in the book in expressions involving theta functions with character­
istic, for example, #[*](«; T) 

When there are complicated exponents, the exp form of the exponen­
tial is used with the convention exp{x} = ex. 

XI 
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