A Scrapbook of Complex Curve

Theory

SECOND EDITION

C. Herbert Clemens

Graduate Studies in Mathematics
Volume 55

A Scrapbook of
 Complex Curve
 Theory

This page intentionally left blank

A Scrapbook of Complex Curve Theory

Second Edition

C. Herbert Clemens

Graduate Studies
in Mathematics
Volume 55

American Mathematical Society
Providence, Rhode Island

Editorial Board

Walter Craig
Nikolai Ivanov
Steven G. Krantz
David Saltman (Chair)

2000 Mathematics Subject Classification. Primary 14-01, 14H05, 14H42, 14K25, 30Fxx, 32G15.

Library of Congress Cataloging-in-Publication Data

Clemens, C. Herbert (Charles Herbert), 1939-
A scrapbook of complex curve theory / C. Herbert Clemens.-2nd ed.
p. cm. - (Graduate studies in mathematics, ISSN 1065-7339 ; v. 55)

Includes bibliographical references and index.
ISBN 0-8218-3307-3 (alk. paper)

1. Curves, Algebraic. 2. Functions, Theta. 3. Jacobi varieties. I. Title. II. Series.

QA565.C55 2002
516.3'52-dc21

2002033352

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permissioncams.org.

First edition © 1980 by Plenum Press, New York.
Second edition © 2003 by C. Herbert Clemens. All rights reserved.
Printed in the United States of America.
(1) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://wwr.ams.org/

Contents

Preface to the Second Edition vii
Preface ix
Notation xi
Chapter One - Conics
1.1. Hyperbola Shadows 1
1.2. Real Projective Space, The "Unifier" 5
1.3. Complex Projective Space, The Great "Unifier" 7
1.4. Linear Families of Conics 9
1.5. The Mystic Hexagon 11
1.6. The Cross Ratio 13
1.7. Cayley's Way of Doing Geometries of Constant Curvature 17
1.8. Through the Looking Glass 20
1.9. The Polar Curve 22
1.10. Perpendiculars in Hyperbolic Space 26
1.11. Circles in the K-Geometry 30
1.12. Rational Points on Conics 33
Chapter Two - Cubics
2.1. Inflection Points 37
2.2. Normal Form for a Cubic 39
2.3. Cubics as Topological Groups 42
2.4. The Group of Rational Points on a Cubic 45
2.5. A Thought about Complex Conjugation 50
2.6. Some Meromorphic Functions on Cubics 51
2.7. Cross Ratio Revisited, A Moduli Space for Cubics 52
2.8. The Abelian Differential on a Cubic 53
2.9. The Elliptic Integral 55
2.10. The Picard-Fuchs Equation 58
2.11. Rational Points on Cubics over \mathbb{F}_{p} 62
2.12. Manin's Result: The Unity of Mathematics 65
2.13. Some Remarks on Serre Duality 69
Chapter Three - Theta Functions
3.1. Back to the Group Law on Cubics 73
3.2. You Can't Parametrize a Smooth Cubic Algebraically 75
3.3. Meromorphic Functions on Elliptic Curves 78
3.4. Meromorphic Functions on Plane Cubics 82
3.5. The Weierstrass p-Function 85
3.6. Theta-Null Values Give Moduli of Elliptic Curves 89
3.7. The Moduli Space of "Level-Two Structures" on Elliptic Curves 92
3.8. Automorphisms of Elliptic Curves 95
3.9. The Moduli Space of Elliptic Curves 96
3.10. And So, By the Way, We Get Picard's Theorem 98
3.11. The Complex Structure of \mathscr{M} 100
3.12. The j-Invariant of an Elliptic Curve 102
3.13. Theta-Nulls as Modular Forms 106
3.14. A Fundamental Domain for Γ_{2} 109
3.15. Jacobi's Identity 111
Chapter Four - The Jacobian Variety
4.1. Cohomology of a Complex Curve 113
4.2. Duality 116
4.3. The Chern Class of a Holomorphic Line Bundle 118
4.4. Abel's Theorem for Curves 122
4.5. The Classical Version of Abel's Theorem 127
4.6. The Jacobi Inversion Theorem 131
4.7. Back to Theta Functions 132
4.8. The Basic Computation 134
4.9. Riemann's Theorem 136
4.10. Linear Systems of Degree g 138
4.11. Riemann's Constant 139
4.12. Riemann's Singularities Theorem 142
Chapter Five - Quartics and Quintics
5.1. Topology of Plane Quartics 147
5.2. The Twenty-Eight Bitangents 150
5.3. Where Are the Hyperelliptic Curves of Genus 3? 155
5.4. Quintics 158
Chapter Six - The Schottky Relation
6.1. Prym Varieties 161
6.2. Riemann's Theta Relation 164
6.3. Products of Pairs of Theta Functions 167
6.4. A Proportionality Theorem Relating Jacobians and Pryms 168
6.5. The Proportionality Theorem of Schottky-Jung 173
6.6. The Schottky Relation 174
References 181
Additional References 183
Index 185

Preface to the Second Edition

The Scrapbook, originally published over twenty years ago, eventually was allowed to go out of print by the original publisher. I am very pleased that the American Mathematical Society is now making it available to a new generation of readers. I am indeed grateful.

The book is an impressionistic journey through the classical subject of complex curves, that is, compact Riemann surfaces. Curve theory, as with most other central areas of complex algebraic geometry, has continued to advance, notably in areas such as the theory of vector bundles on curves and in our understanding of the moduli stacks of curves. But the basics of the theory touched on in the Scrapbook have weathered a test of time much longer than the twenty-some years since the first edition and are likely to stand the test of many more decades of scrutiny. For this reason, I saw no need to rewrite the book for this new edition. However, the available literature has grown immensely. So I have taken the opportunity to point out a few more sources in an addendum to the original list of references.

Herb Clemens
Columbus, Ohio
September 2002

This page intentionally left blank

Preface

This is a book of "impressions" of a journey through the theory of complex algebraic curves. It is neither self-contained, balanced, nor particularly tightly organized. As with any notebook made on a journey, what appears is that which strikes the writer's fancy. Some topics appear because of their compelling intrinsic beauty. Others are left out because, for all their importance, the traveler found them boring or was too dull or lazy to give them their due.

Looking back at the end of the journey, one can see that a common theme in fact does emerge, as is so often the case; that theme is the theory of theta functions. In fact very much of the material in the book is preparation for our study of the final topic, the so-called Schottky problem. More than once, in fact, we tear ourselves away from interesting topics leading elsewhere and return to our main route.

Some of the subjects are extremely elementary. In fact, we begin with some musings in the vicinity of secondary-school algebra. Later, on occasion and without much warning, we jump into some fairly deep water. Our intent is to struggle with some deep topics in much the same way that a beginning researcher might, using whatever tools we have at hand or can grab somehow or other. Sometimes we use no background material and do everything in detail; sometimes we use some of the heaviest of modern machinery. We hope to motivate further study or, preferably, further discussion with an expert in the field. In short, our aim is to motivate and stimulate mathematical activity rather than to present a finished product, and our point of view is romantic rather than rigorous.

The material treated here was originally brought together for a Summer Course of the Italian National Research Council held in Cortona, Italy, in 1976. It comes from so many sources that adequate acknowledgment would be difficult. The treatment of real two-dimensional geometries of
constant curvature comes from Cartan's classic text on Riemannian geometry; several items concerning the arithmetic of curves are borrowed from Serre's lovely book, A Course in Arithmetic; Manin's beautiful theorem on rational points of elliptic curves given in Chapter Two was explained to the author by A. Beauville; some of the theta identities in Chapter Three are lifted from the famous analysis text of Whittaker and Watson; and the construction of the level-two moduli space for elliptic curves was motivated by David Mumford's way of viewing the moduli space of curves of a fixed genus. The discussion of the Jacobian variety in Chapter Four leans heavily on work of Joseph Lewittes, and the discussion of the Schottky problem comes from work of Accola, Farkas, Igusa, and Rauch. But perhaps the author's greatest debt is to Phillip Griffiths, through whom he came to enjoy this subject.

The author also wishes to thank Sylvia M. Morris, Mathematics Department of the University of Utah, for preparing the manuscript, and Toni W. Bunker, of the same department, for preparing the figures.

Herbert Clemens
Salt Lake City, Utah

Notation

Most of the notation used in this book is quite standard, for example,
$\mathbb{Z}=$ ring of integers,
$\mathbb{Q}=$ field of rational numbers,
$\mathbb{R}=$ field of real numbers,
$\mathbb{C}=$ field of complex numbers.
Each of the six chapters is divided into sections, for instance, Chapter Three has Sections 3.1, 3.2, etc. Equations are numbered consecutively within chapters-(3.1), (3.2), etc.-as are the figures.

Square brackets will be used to enclose matrices and are also used later in the book in expressions involving theta functions with characteristic, for example, $\theta\left[\begin{array}{l}1 \\ 1\end{array}\right](u ; \tau)$

When there are complicated exponents, the exp form of the exponential is used with the convention $\exp \{x\}=e^{x}$.

This page intentionally left blank

This page intentionally left blank

References

We include here only those references cited frequently.

1. Griffiths, P., and Harris, J., Principles of Algebraic Geometry. New York: John Wiley and Sons, 1978.
2. Gunning, R. C., and Rossi, H., Analytic Functions of Several Complex Variables. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1965.
3. Gunning, R. C., Lectures on Riemann Surfaces. Princeton, New Jersey: Princeton University Press, 1966.
4. Hirzebruch, F., Topological Methods in Algebraic Geometry. New York: SpringerVerlag, 1966.
5. Lang, S., Linear Algebra. Reading, Massachusetts: Addison-Wesley Publishing Co., 1971.
6. Mumford, D., Abelian Varieties. Tata Institute of Fundamental Research, Bombay: Oxford University Press, 1970.
7. O'Neill, B., Elementary Differential Geometry. New York: Academic Press, 1966.
8. Serre, J.-P., A Course in Arithmetic. New York: Springer-Verlag, 1973.
9. Springer, G., Introduction to Riemann Surfaces. Reading, Massachusetts: Addison-Wesley Publishing Co., 1957.
10. Steenrod, N., The Topology of Fibre Bundles. Princeton, New Jersey: Princeton University Press, 1951.
11. van der Waerden, B. L., Algebra. New York: Fredrick Ungar Publishing Co., 1970.

This page intentionally left blank

Additional References

[1] Enrico Arbarello, Maurizio Cornalba, Phillip Griffiths, and Joseph Harris, Geometry of Algebraic Curves. Vol. I. Grundlehren der Mathematischen Wissenschaften 267. Springer-Verlag, New York, 1985. MR 86h:14019
[2] Egbert Brieskorn and Horst Knörrer, Plane Algebraic Curves. Birkhäuser Verlag, Basel, 1986. MR 88a:14001
[3] David Cox, John Little, and Donal O'Shea, Ideals, Varieties, and Algorithms. An introduction to computational algebraic geometry and commutative algebra. Second edition. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1997. MR 97h:13024
[4] David Eisenbud and Joseph Harris, The Geometry of Schemes. Graduate Texts in Mathematics, 197. Springer-Verlag, New York, 2000. MR 2001d:14002
[5] Gerd Fischer Plane Algebraic Curves, Student Mathematical Library 15, American Mathematical Society, Providence, 2001. MR 2002g: 14042
[6] William Fulton, Algebraic Curves: An introduction to algebraic geometry. Reprint of 1969 original. Advanced Book Classics. Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. MR 90 k : 14023
[7] Joseph Harris, Algebraic Geometry: A first course. Graduate Texts in Mathematics, 133. Springer-Verlag, New York, 1995. MR 97e:14001
[8] Robin Hartshorne, Algebraic Geometry. Graduate Texts in Mathematics, 52. Springer-Verlag, New York-Heidelberg, 1977. MR 57 \#3116
[9] Klaus Hulek, Elementary Algebraic Geometry, The Student Mathematical Library, American Mathematical Society, Providence, 2002.
[10] Frances Kirwan, Complex Algebraic Curves. London Mathematical Society Student Texts, 23. Cambridge University Press, Cambridge, 1992. MR 93j:14025
[11] Miles Reid, Undergraduate Algebraic Geometry. London Mathematical Society Student Texts, 12. Cambridge University Press, Cambridge, 1988. MR 90a:14001
[12] Igor R. Shafarevich, Basic Algebraic Geometry 1. Varieties in projective space. Second edition. Springer-Verlag, Berlin, 1994. MR 95m: 14001
[13] Igor R. Shafarevich, Basic Algebraic Geometry 2. Schemes and complex manifolds. Second edition. Springer-Verlag, Berlin, 1994. MR 95m: 14002
[14] Kenji Ueno, Algebraic Geometry 1. From algebraic varieties to schemes. Translations of Mathematical Monographs, 185. Iwanami Series in Modern Mathematics. American Mathematical Society, Providence, 1999. MR 2000g:14001

This page intentionally left blank

Index

Abelian varieties, 134, 175
Abel's theorem, 82, 122, 127
Absolute, the, 17, 28
Accola, x, 175
Affine-coordinates, 40
Affine set, 8
Albanese variety, 122
Analytic continuation, 53
Analytic manifold, 53
Andreotti, 145, 159
Anharmonic lines, 30
Associativity of cubic group law, 44
Automorphic form, 104; see also Modular forms
Automorphism, 100
of elliptic curve, 94,95

Base locus, 176
Basepoint, 55
Beauville, x
Bezout's theorem, 12
Bitangents, 150
Blowing up a point, 47
Branch point, 52,145 ; see also Ramification point

Canonical bundle, 140,158
Canonical divisor, 140, 152, 175
Canonical mapping, 151,175
Cap product, 124
Cardinality, 63, 67

Cartan, x
Cauchy integral formula, 55
Cayley, 17
Čech cochain, 70
Čech one-cochain, 119
Cell complex, 113
Character formula, 63
Characters, 167
Chern class, 118, 139
Chinese remainder theorem, 35
Circle, 30
Cohomology groups, 134
Complex conjugation, 50
Complex manifold, $66,69,70,105$
Component, 12
Cone, 6; 18, 176
Congruence, 64
Conic, 8, 9, 17
through five given points, 11
Contact, 39, 77
Coordinates
affine, 8
homogeneous, 8
Cotangent bundle, 55, 140
Cotangent space, 66
Covering group, 134
Covering space, 58,89
Cremona transformation, 48
Cross ratio, 13, 18, 28, 52, 91,93
Cubic, 12, 37, 73, 82, 89
Cup-product pairing, 116
Curvature, 20
Euclidean, 31
geodesic, 31

Curve

cubic, 95
elliptic, 75, 91, 94, 95, 96
Cusp, 154
Cusp form, 112

Deformation, 172
deRham cohomology, 59, 66
deRham complex, 66
Desingularization, 78
Differential, 54, 89
abelian, 53
exact, 60
holomorphic, 152
meromorphic, 137
Prym, 163
Differential equation, 59
Differential forms, 115, 125
Divisor, 84
Dolbeault complex, 66
Double complex, 70, 115, 120
Double points, 154
Dual curve, 24
Dual mapping, 152

Eisenstein series, 87
Ellipse, 1
Elliptic integral, 55
Euclid's fifth postulate, 17
Euler characteristic, 55, 101, 145, 154
Euler's formula, 23, 38

Family of curves, 147
Farkas, $x, 161$
Fibered product, 52
Finitely generated abelian group, 50
Fourier coefficients, 136
Fourier expansion, 78
Fourier series, 89,136, 166
Fourier transform, 107
Framing, 94, 95
Frobenius mapping, 67
Function
meromorphic, $51,78,80,82,137$
rational, 75
theta, 73, 106, 132, 159, 164
trigonometric, 85

Fundamental domain, 80, 96, 109, 110, 134
Fundamental group, 161

Gauss map, 151, 155
Genus, 114, 149
Geodesic, 20, 27
Geometry
of constant curvature, 17
differential, 54
plant, 15
Riemannian, 17, 33
Grassmann variety, 153
Green's theorem, 56
Group of rational points, 45
Gunning, 115, 118, 132

Hessian curve, 39, 152
Hirzebruch, 125
Hodge theory, 115
Homogeneous equation, 5
Hyperbola, 1
Hyperbolic geometry, 21, 26, 32
Hyperelliptic curve, 151, 155

Igusa, x
Implicit function theorem, 54
Infinity, 40, 50
Inflection points, 37
Intersection pairing, 102, 162
Invariant, 14
global, 66
local, 66
Involution, 162, 175
Isometries, 167
group of, 21
Isomorphism class, 93, 95, 97

Jacobi inversion theorem, 131, 136
Jacobian matrix, 65, 153
Jacobian variety, 113, 123, 127
Jacobi's identity, 111
j-Invariant, 102, 105

Kahler manifold, 66, 115, 125
K-Geometry, 30

Index

Kodaira, 145, 158

Lattices, 165, 170
Laurent series, 86, 88
Law of the sine, 13
Lefschetz duality, 122
Lefschetz fixed-point theorem, 65
Lefschetz number, 65
Lewittes, 144
Lie group, 131
Linear fractional transformation, 95
Linear systems, 138, 176
Line bundles, 113, 142
Line integral, 56
Lorentz transformations, 22

Manin, $\mathbf{x}, 65$
Mayer, 145, 159
Metric, 120
Euclidean, 32
induced, 19
Modular forms, 73, 87, 105, 106, 109, 112
Moduli space, 53, 91, 96, 101, 145
Monodromy group, 92
Mordell's theorem, 50
Multiplicity of a point, 142
Mumford, x, 134
Mystic hexagon, 11, 26

Nondegenerate plane curve, 24
Nonsingularity, 147
Normalization, 156

Orthonormal basis, 165

Parabola, 1
Parametrization, 75
rational, 76
Pencil, 176
Period, 59
Period matrix, 164, 168, 174
Perpendicularity, 6, 27
Picard-Fuchs equation, 58, 64, 68
Picard's theorem, 98
Picard variety, 115, 122
Poincaré dual, 116

Poincaré mapping, 123, 129, 142
Point
infinitely near, 78
singular, 76, 77
Poisson summation formula, 89, 108
Polar coordinates, 56
Polar curves, 22
Polar mapping, 24, 29, 37
Polar of a point, 25
Pontryagin product, 124, 131
Power-series expansion, 62
Projection, 176
Projective line, 18
Projective plane,
complex, 8
real, 148
Projective set, 8
Projective space, 103, 132, 151
complex, 7
real, 5
Projectivization, 8
Prym varieties, 161, 171, 178

Quadratic form, 133
Quadrics, 176
Quartics, 147
Quintics, 158

Ramification, 89
Ramification point, 43
Rational points, 33, 62
Rauch, x
Regular singular points, 61
Residue, 59
Resultant, 9
Riemann, 133
Riemann relation, 58, 78, 117, 163
Riemann-Roch theorem, 68, 85, 87, 95, 128, 136, 151
Riemann's constant, 137, 139
Riemann sphere, 80
Riemann's singularities theorem, 142,159, 178
Riemann's theorem, 136
Riemann's theta relation, 111, 165, 167
Riemann surface, 147, 175

Scalar product, 165

Schottky, 161
Schottky-Jung, 173, 178
Schottky relation, 164, 174, 178
Serre, vi, 87, 105, 132, 145
Serre duality, 68, 69
Sheaf, 67
of holomorphic functions, 114
Sheaf cohomology, 66, 113
Skew-Hermitian matrix, 126
Spectral sequence, 115
Spencer, 145
Spherical distance, 19
Spherical geometry, 26
Stereographic projection, 26, 33, 42, 51, 76
Surface integral, 56
Symmetric product, 25, 52, 131
Symplectic basis, 102, 114, 133

Tangent cone, 77, 160
Tangent line, 154

Tangent spaces, 150
Tate, 44, 46, 73
Theta characteristics, 140, 143, 155, 157, 158, 171, 177
Theta functions, 132
Theta-null, 89, 106, 109
Tjurin, 158
Topological group, 43
Torus, 43
Transversality, 65

Unbranched double covering, 160, 161
Universal covering spaces, 133
Upper half-plane, 97, 103
van der Monde determinant, 10

Wedge algebra, 124
Weierstrass p-function, 58, 85, 87

This fine book by Herb Clemens quickly became a favorite of many complex algebraic geometers when it was first published in 1980. It has been popular with novices and experts ever since. It is written as a book of "impressions" of a journey through the theory of complex algebraic curves. Many topics of compelling beauty occur along the way. A cursory glance at the subjects visited reveals an apparently eclectic selection, from conics and cubics to theta functions, Jacobians, and questions of moduli. By the end of the book, the theme of theta functions becomes clear, culminating in the Schottky problem.

The author's intent was to motivate further study and to stimulate mathematical activity. The attentive reader will learn much about complex algebraic curves and the tools used to study them. The book can be especially useful to anyone preparing a course on the topic of complex curves or anyone interested in supplementing his/her reading.

