Representation Theory of Finite Groups: Algebra and Arithmetic

Steven H.Weintraub

Graduate Studies in Mathematics
Volume 59

Representation Theory of Finite Groups: Algebra and Arithmetic

Steven H.Weintraub

Graduate Studies
in Mathematics
Volume 59

Editorial Board
Walter Craig
Nikolai Ivanov
Steven G. Krantz
David Saltman (Chair)

2000 Mathematics Subject Classification. Primary 20C05, 20C15, 20C20; Secondary 20-01.

For additional information and updates on this book, visit
www.ams.org/bookpages/gsm-59
Library of Congress Cataloging-in-Publication Data
Weintraub, Steven H.
Representation theory of finite groups / Steven H. Weintraub
p. cm. - (Graduate studies in mathematics, ISSN 1065-7339; v. 59)
Includes bibliographical references and index.
ISBN 0-8218-3222-0 (alk. paper)

1. Representations of groups.
2. Finite groups. I. Title. II. Series.

QA176.W45 2003
$512^{\prime} .2-\mathrm{dc} 21$
2003045186

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2003 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.
© The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

$$
10987654321 \quad 080706050403
$$

To Aunt Ros

This page intentionally left blank

Contents

Preface vii
Chapter 1. Introduction 1
Chapter 2. Semisimple Rings and Modules 7
§2.1. Basic Notions 7
§2.2. Structure Theorems 9
§2.3. Idempotents and Blocks 21
§2.4. Behavior under Field Extensions 27
$\S 2.5$. Theorems of Burnside and Frobenius-Schur 38
Chapter 3. Semisimple Group Representations 41
§3.1. Examples and General Results 41
§3.2. Representations of Abelian Groups 53
§3.3. Decomposition of the Regular Representation 56
§3.4. Applications of Frobenius's Theorem 59
§3.5. Characters 64
§3.6. Idempotents and their Uses 81
§3.7. Subfields of the Complex Numbers 86
§3.8. Fields of Positive Characteristic 96
Chapter 4. Induced Representations and Applications 99
§4.1. Induced Representations 99
§4.2. Mackey's Theorem 120
§4.3. Permutation Representations 128
§4.4. M-groups 139
$\S 4.5$. Theorems of Artin and Brauer 142
§4.6. Degrees of Irreducible Representations 152
Chapter 5. Introduction to Modular Representations 155
Chapter 6. General Rings and Modules 161
§6.1. Jordan-Holder and Krull-Schmidt Theorems 161
§6.2. The Jacobson Radical 170
§6.3. Rings of Finite Length 172
§6.4. Finite-dimensional Algebras 181
Chapter 7. Modular Group Representations 187
§7.1. General Results 187
§7.2. Characters and Brauer Characters 193
§7.3. Examples 196
Appendix. Some Useful Results 203
Bibliography 209
Index 211

Preface

This book is an introduction to group representation theory. With the exception of this preface, it presupposes no prior knowledge of the subject, not even what a representation is. The reader with no prior knowledge should have a look at Chapter 1, which presents an introduction to the theory.

In this preface we discuss our approach and objectives, so here the reader must have some prior knowledge to understand what is going on.

This is a text on the representation theory of finite groups. The theory can be divided into two parts: ordinary (or semisimple) representation theory, the case where the characteristic of the field is 0 or prime to the order of the group, and modular (or nonsemisimple) representation theory, the case where the characteristic of the field divides the order of the group.

In each case, our approach is to present the basic ideas of the theory in a reasonably general context. Thus we do not prove the basic results purely for group representations, but rather for the appropriate sort of rings and modules, deriving the results for group representations from them. This is the "Algebra" part of the subtitle: we do some general algebra motivated by its applications to representation theory. Also, particularly in our treatment of the characteristic 0 case, we do not just treat the case of algebraically closed fields, but rather pay quite a bit of attention to the question of the field of definition of a representation. This is the "Arithmetic" part of the subtitle.

Let us now be more specific. We begin, in Chapter 1, with an introduction to the representation theory of finite groups. Chapter 2 is a treatment of the theory of semisimple rings and modules. We begin Chapter 3 with some examples, but then derive the basic theorems of ordinary representation theory as immediate consequences of the results of Chapter 2. Of course, this theory is not just a special case of the more general theory, so we then develop the additional methods we need in this case, especially characters, the main (and powerful) computational tool here.

One of the most powerful methods in representation theory is that of induction, to which we devote Chapter 4 . In the basics of induction, we are careful to adopt an approach that will generalize to the modular case. We conclude this chapter by proving Brauer's famous, and deep, theorem that all of the irreducible complex representations of a finite group of exponent u are defined over the cyclotomic field obtained by adjoining the u-th roots of unity to the field of rational numbers.

Next we turn to the modular theory, with a similar approach. We begin in Chapter 5 with a number of examples. Then in Chapter 6 we treat general rings and modules, and begin Chapter 7 by deriving the basic theorems of modular representation theory as immediate consequences of the results of Chapter 6 . We then further develop modular representation theory and fully analyze the situation for some small groups.

The appendix contains several background results that we use and with which the reader may not be familiar.

The scope of this book can perhaps best be described by the following analogy. We explore widely in the valley of ordinary representations, and we take the reader over the mountain pass leading to the valley of modular representations, to a point from which (s)he can survey this valley, but we do not attempt to widely explore it. We hope the reader will be sufficiently fascinated by the scenery to further explore both valleys on his/her own.

This is a text, and we do not claim to have any new results here. Many of the proofs are standard, but part of the fun of writing this book has been the opportunity to think deeply about this beautiful subject, so many of the proofs are the author's own. This does not mean they are necessarily new, as the author may simply have rediscovered known proofs for himself, but, on the other hand, it does not mean that they are all necessarily already known, either.

The author would like to thank Springer-Verlag and Bill Adkins for permission to use material from [AW]: W. A. Adkins and S. H. Weintraub,

Algebra: An Approach via Module Theory, Graduate Texts in Mathematics volume 136, ©Springer-Verlag 1992 (corrected second printing 1999). Indeed, the author first started thinking seriously about group representation theory while writing [AW], which has a chapter on it, and has continued thinking about this subject over the past decade. Thus, Section 7.1 and Chapter 8 of [AW] are subsumed here, in some places taken over unchanged, but in most places reworked and deepened.

We have deliberately kept the prerequisites for this book to a minimum. The reader will require a sound knowledge of linear algebra and a good familiarity with basic module theory. As a text on module theory we naturally recommend [AW]. In addition, the reader will need to be familiar with some basic homological algebra: exact sequences, Hom and tensor product ([AW, sections 3.3 and 7.2]), and the definition and properties of a projective module ([AW, section 3.5]). The reader will also need to be familiar with the basics of field theory and algebraic number theory.

Some words about terminology and notation are in order. Two modules (or representations) are called distinct if they are not isomorphic. $A \subset B$ means that A is a proper subset of B and $A \subseteq B$ means that A is a subset of B. Boldface capital letters are reserved for fields, with \mathbf{Q}, \mathbf{R}, and \mathbf{C} denoting the fields of rational, real, and complex numbers, respectively. The integers are denoted by \mathbb{Z}, and the cyclic group of order n by $\mathbb{Z} / n \mathbb{Z}$. All vectors are column vectors, but are not written that way for typographical reasons. Instead, $\mathbf{F}^{n}=\left\{\left[a_{1}, \ldots, a_{n}\right] \mid a_{i} \in \mathbf{F}\right\}$ (note the use of square brackets) denotes the space of column vectors with entries in \mathbf{F}. The symbol \square denotes the end of a proof; a proof consisting entirely of that symbol means the result follows easily (often immediately) from a previous result. Finally, we have adopted a conventional numbering system: Theorem a.b.c refers to Theorem b.c of Chapter a (or of the appendix, if a is A), and Theorem b.c refers to Theorem b.c of the current chapter.

This page intentionally left blank

This page intentionally left blank

Bibliography

[AW] Adkins, W. A., and Weintraub, S. H., Algebra: An Approach via Module Theory. Graduate Texts in Mathematics 136, SpringerVerlag, 1992 (corrected second printing, 1999).
[BT] Brauer, R., and Tate, J. On the characters of finite groups. Ann. of Math. 62 (1955) 1-7.
[CR] Curtis, C. W., and Reiner, I. Representation Theory of Finite Groups and Associative Algebras. Pure and Applied Mathematics, Vol. XI, Interscience Publishers, 1962.
[HK] Hoffman, K, and Kunze, R., Linear Algebra, second edition. Prentice Hall, 1971.
[La] Lam, T. Y. A First Course in Noncommutative Rings, second edition. Graduate Texts in Mathematics 131, Springer-Verlag, 2001.
[Ma] Matsumura, H. Commutative Ring Theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1986.
[Sa] Samuel, P. Algebraic theory of numbers, translated by A. Silberger. Houghton Mifflin, 1970.
[Se] Serre, J.-P. Linear Representations of Finite Groups, translated by L. L. Scott. Graduate Texts in Mathematics 42, Springer-Verlag, 1977 (corrected third printing, 1986).

This page intentionally left blank

Index

Artin, 144
augmentation ideal, 45
Brauer, 6, 137, 151, 190
Brauer and Tate, 142
Brauer character, 195
Brauer-Nesbitt, 194, 196
Burnside, 38, 58, 131, 185
Cauchy-Frobenius, 131
character(s), 64, 193
intertwining number of, 73
of induced representation, 111, 115
orthogonality of, 68,72
table, 70
class function(s), 71
ring of, 114
Clifford, 104
Dickson, 190
field
algebraically closed, 20, 31, 56
excellent, 56, 57, 58, 59
good, 42, 53
splitting field, 30, 32, 33, 182
universal field of definition, $31,32,182$
C, 56, 59
F $(\sqrt[u]{1}), 65,85$
Q, 37, 47, 86, 88, 144
$\overline{\mathbf{Q}}, 37,204$
$\mathbf{Q}(\sqrt[u]{1}), 6,65,151$
R, 64, 88, 93
Frame, 135
Frobenius, 57, 115, 117
Frobenius reciprocity, 108
Frobenius-Schur, 39, 59, 185
Frobenius-Schur indicator, 90, 93

Galois extension, 35
group(s)
abelian, 53
cyclic $(\mathbb{Z} / n \mathbb{Z}), 3,44,47,63,142,156$
dihedral $\left(D_{2 m}\right), 4,44,48,59,124,135$, 196
metabelian, 141
metacyclic, 141
M-group, 139, 141, 142
nilpotent, 140
p-group, 140, 142, 156, 187
solvable, 140
supersolvable, 140
symmetric $\left(S_{m}\right), 87,130$
$A_{4}, 61,80,109,124,137,198$
$A_{5}, 75,115,124,199$
$D_{8}, 80,87,94$
$Q_{8}, 5,60,64,80,87,94$
$S_{3}, 197$
$S_{4}, 62,199$
$S_{5}, 79,124$
$\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}, 156,157$
group elements
p-regular, 146, 189
p-singular, 146, 189

Heller and Reiner, 157
Higman, 192
Hopkins-Levitzki, 179
idempotent, 21, 81
inertia group, 104
Ito, 107

Jacobson radical, 170, 173, 188
Jordan-Holder, 166

```
Kasch, Kneser, and Kupich, 192
Krull-Schmidt, 169
Mackey, 120, 125
Maschke, 51, 191
module(s)
    absolutely irreducible, 29
    artinian, \(178,179,180\)
    composition series for, 161
    conjugate, 35
    correspond(ing), 27
    defined over \(\mathbf{F}, 27\)
    faithful, 38
    in the same block, 177,178
    indecomposable, 9
    irreducible, 7
    isotypic component of, 10
    length of, 12, 162
    linked, 177
    noetherian, \(178,179,180\)
    principal indecomposable, 174
    semisimple, 9
    simple, 7
    simple factorization of, 10
    type of, 12,168
Nakayama, 171
representation(s), 1, 5, 41
    character of induced, 111, 115
    conjugate, 46, 103
    conjugation, 135
    defined over \(\mathbf{F}, 45\)
    degree of, 2, 42
    degrees of, \(53,55,57,59,68,83,86,106\),
        110, 152
    equivalent, 1,42
    faithful, 46
    indecomposable, 2, 47
    induced, 46, 100, 117
    intertwining number of, 73
    irreducible, 2, 46
    isotypic, 106
    modular, 155, 187
    monomial, 45
    multiplicity of, 48
    number of distinct irreducible, 57, 190
    permutation, 43, 45, 128
    pullback, 46
    recognition principle for induced, 101
    regular, \(5,43,48,56\)
    restriction of, 99
    semisimple, 47
    trivial, \(3,43,48\)
```

ring
acceptable, 23, 24, 25, 177, 180
artinian, $178,179,180$
Bézout domain, 37, 204, 205
block decomposition of, 24, 177
block in, 24
Dedekind, 204
discrete valuation, 37
finite-dimensional algebra, 181, 183
indecomposable, 23
J-semisimple, 171
noetherian, 178, 179, 180
of finite length, $173,177,178$
Prüfer, 204, 206
semisimple, $14,19,25,171,175$
simple, 18,19
simple factorization of, 10
Schur, 6, 107, 152
Schur index, 84
Schur's lemma, 7
subgroup
elementary, 146
p-Sylow, 188, 192
Speiser, 96, 97, 194
Tate, 107
Wallace, 188
Wedderburn, 16, 203
Witt, 203

Titles in This Series

 200358 Cédric Villani, Topics in optimal transportation, 2003

54 Alexander Barvinok, A course in convexity, 2002
53 geometry and physics, 2002
51 Y. A. Abramovich and C. D. Aliprantis, Problems in operator theory, 2002
50 Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, 2002
49 John R. Harper, Secondary cohomology operations, 2002
48 Y. Eliashberg and N. Mishachev, Introduction to the h-principle, 2002
47 A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and quantum computation, 2002
46 Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, 2002
45 Inder K. Rana, An introduction to measure and integration, second edition, 2002
44 Jim Agler and John E. M ${ }^{\text {c Carthy, Pick interpolation and Hilbert function spaces, } 2002}$
43 N. V. Krylov, Introduction to the theory of random processes, 2002
42 Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, 2002
41 Georgi V. Smirnov, Introduction to the theory of differential inclusions, 2002
40 Robert E. Greene and Steven G. Krantz, Function theory of one complex variable, 2002
39 Larry C. Grove, Classical groups and geometric algebra, 2002
38 Elton P. Hsu, Stochastic analysis on manifolds, 2002
37 Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, 2001
36 Martin Schechter, Principles of functional analysis, second edition, 2002
35 James F. Davis and Paul Kirk, Lecture notes in algebraic topology, 2001
34 Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001
33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001
32 Robert G. Bartle, A modern theory of integration, 2001
31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001
J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001

29 Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001
25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000
24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000
23 Alberto Candel and Lawrence Conlon, Foliations I, 2000
22 Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 2000
21 John B. Conway, A course in operator theory, 2000

TITLES IN THIS SERIES

20 Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
19 Lawrence C. Evans, Partial differential equations, 1998
18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997
17 Henryk Iwaniec, Topics in classical automorphic forms, 1997
16 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997
15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997
14 Elliott H. Lieb and Michael Loss, Analysis, 1997
13 Paul C. Shields, The ergodic theory of discrete sample paths, 1996
12 N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996
11 Jacques Dixmier, Enveloping algebras, 1996 Printing
10 Barry Simon, Representations of finite and compact groups, 1996
9 Dino Lorenzini, An invitation to arithmetic geometry, 1996
8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
7 Gerald J. Janusz, Algebraic number fields, second edition, 1996
6 Jens Carsten Jantzen, Lectures on quantum groups, 1996
5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995
4 Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
3 William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, 1994
2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993
1 Ethan Akin, The general topology of dynamical systems, 1993

This book is an introduction to the representation theory of finite groups from an algebraic point of view, regarding representations as modules over the group algebra. The approach is to develop the requisite algebra in reasonable generality and then to specialize it to the case of group representations. Methods and results particular to group representations, such as characters and induced representations, are developed in depth. Arithmetic comes into play when considering the field of definition of a representation, especially for subfields of the complex numbers. The book has an extensive development of the semisimple case, where the characteristic of the field is zero or is prime to the order of the group, and builds the foundations of the modular case, where the characteristic of the field divides the order of the group.

The book assumes only the material of a standard graduate course in algebra. It is suitable as a text for a year-long graduate course. The subject is of interest to students of algebra, number theory and algebraic geometry. The systematic treatment presented here makes the book also valuable as a reference.

\sim
For additional information
and updates on this book, visit
www.ams.org/bookpages/gsm-59

ISBN 0-8218-3222-ロ

