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Preface 

This book is an introduction to group representation theory. Wi th the 
exception of this preface, it presupposes no prior knowledge of the subject, 
not even what a representation is. The reader with no prior knowledge 
should have a look at Chapter 1, which presents an introduction to the 
theory. 

In this preface we discuss our approach and objectives, so here the reader 
must have some prior knowledge to understand what is going on. 

This is a text on the representation theory of finite groups. The theory 
can be divided into two parts: ordinary (or semisimple) representation the
ory, the case where the characteristic of the field is 0 or prime to the order of 
the group, and modular (or nonsemisimple) representation theory, the case 
where the characteristic of the field divides the order of the group. 

In each case, our approach is to present the basic ideas of the theory in 
a reasonably general context. Thus we do not prove the basic results purely 
for group representations, but rather for the appropriate sort of rings and 
modules, deriving the results for group representations from them. This is 
the "Algebra" part of the subtitle: we do some general algebra motivated by 
its applications to representation theory. Also, particularly in our t reatment 
of the characteristic 0 case, we do not just treat the case of algebraically 
closed fields, but rather pay quite a bit of attention to the question of the 
field of definition of a representation. This is the "Arithmetic" part of the 
subtitle. 
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vm Preface 

Let us now be more specific. We begin, in Chapter 1, with an introduc
tion to the representation theory of finite groups. Chapter 2 is a treatment 
of the theory of semisimple rings and modules. We begin Chapter 3 with 
some examples, but then derive the basic theorems of ordinary represen
tation theory as immediate consequences of the results of Chapter 2. Of 
course, this theory is not just a special case of the more general theory, 
so we then develop the additional methods we need in this case, especially 
characters, the main (and powerful) computational tool here. 

One of the most powerful methods in representation theory is that of 
induction, to which we devote Chapter 4. In the basics of induction, we are 
careful to adopt an approach tha t will generalize to the modular case. We 
conclude this chapter by proving Brauer's famous, and deep, theorem that 
all of the irreducible complex representations of a finite group of exponent 
u are defined over the cyclotomic field obtained by adjoining the u-th roots 
of unity to the field of rational numbers. 

Next we turn to the modular theory, with a similar approach. We begin 
in Chapter 5 with a number of examples. Then in Chapter 6 we treat general 
rings and modules, and begin Chapter 7 by deriving the basic theorems of 
modular representation theory as immediate consequences of the results of 
Chapter 6. We then further develop modular representation theory and fully 
analyze the situation for some small groups. 

The appendix contains several background results that we use and with 
which the reader may not be familiar. 

The scope of this book can perhaps best be described by the following 
analogy. We explore widely in the valley of ordinary representations, and 
we take the reader over the mountain pass leading to the valley of modular 
representations, to a point from which (s)he can survey this valley, but we 
do not a t tempt to widely explore it. We hope the reader will be sufficiently 
fascinated by the scenery to further explore both valleys on his/her own. 

This is a text, and we do not claim to have any new results here. Many 
of the proofs are standard, but part of the fun of writing t l r s book has been 
the opportunity to think deeply about this beautiful subject, so many of the 
proofs are the author 's own. This does not mean they are necessarily new, 
as the author may simply have rediscovered known proofs for himself, but, 
on the other hand, it does not mean that they are all necessarily already 
known, either. 

The author would like to thank Springer-Verlag and Bill Adkins for per
mission to use material from [AW]: W. A. Adkins and S. H. Weintraub, 



Preface IX 

Algebra: An Approach via Module Theory, Graduate Texts in Mathematics 
volume 136, © Springer-Verlag 1992 (corrected second printing 1999). In
deed, the author first started thinking seriously about group representation 
theory while writing [AW], which has a chapter on it, and has continued 
thinking about this subject over the past decade. Thus, Section 7.1 and 
Chapter 8 of [AW] are subsumed here, in some places taken over unchanged, 
but in most places reworked and deepened. 

We have deliberately kept the prerequisites for this book to a minimum. 
The reader will require a sound knowledge of linear algebra and a good fa
miliarity with basic module theory. As a text on module theory we naturally 
recommend [AW]. In addition, the reader will need to be familiar with some 
basic homological algebra: exact sequences, Horn and tensor product ([AW, 
sections 3.3 and 7.2]), and the definition and properties of a projective mod
ule ([AW, section 3.5]). The reader will also need to be familiar with the 
basics of field theory and algebraic number theory. 

Some words about terminology and notation are in order. Two modules 
(or representations) are called distinct if they are not isomorphic. A C B 
means that A is a proper subset of B and A C B means that A is a subset of 
B. Boldface capital letters are reserved for fields, with Q, R, and C denoting 
the fields of rational, real, and complex numbers, respectively. The integers 
are denoted by Z, and the cyclic group of order n by Z/nZ. All vectors 
are column vectors, but are not written that way for typographical reasons. 
Instead, F n = {[ai , . . . , an] | ^ G F} (note the use of square brackets) 
denotes the space of column vectors with entries in F. The symbol • denotes 
the end of a proof; a proof consisting entirely of that symbol means the result 
follows easily (often immediately) from a previous result. Finally, we have 
adopted a conventional numbering system: Theorem a.b.c refers to Theorem 
b.c of Chapter a (or of the appendix, if a is A), and Theorem b.c refers to 
Theorem b.c of the current chapter. 
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