Foliations II
To our wives,
Juana and Jackie
Contents

Preface xi

Part 1. Analysis and Geometry on Foliated Spaces

Foreword to Part 1 3

Chapter 1. The C^*-Algebra of a Foliated Space 5

§1.1. Twisted Forms and Densities 6
§1.2. Functions on Non-Hausdorff Spaces 8
§1.3. The Graph of a Foliated Space 11
§1.4. The C^*-algebra of a Foliated Space 18
§1.5. The Basic Examples 27
§1.6. Quasi-invariant Currents 37
§1.7. Representations of the Foliation C^*-algebra 48
§1.8. Minimal Foliations and their C^*-algebras 54

Chapter 2. Harmonic Measures for Foliated Spaces 61

§2.1. Existence of Harmonic Measures 62
§2.2. The Diffusion Semigroup 68
§2.3. The Markov Process 80
§2.4. Characterizations of Harmonic Measures 86
§2.5. The Ergodic Theorem 96
§2.6. Ergodic Decomposition of Harmonic Measures 99
§2.7. Recurrence 112
Chapter 3. Generic Leaves 119

§3.1. The Main Results and Examples 119
§3.2. The Holonomy Graph 122
§3.3. Proof of the Theorems 128
§3.4. Generic Geometry of Leaves 131

Part 2. Characteristic Classes and Foliations 139

Chapter 4. The Euler Class of Circle Bundles 141

§4.1. Generalities about Bundles 142
§4.2. Cell Complexes 144
§4.3. The First Obstruction 148
§4.4. The Euler Class 155
§4.5. Foliated Circle Bundles 164
§4.6. Further Developments 174

Chapter 5. The Chern-Weil Construction 177

§5.1. The Chern-Weil Homomorphism 178
§5.2. The Structure of $I_n^*(\mathbb{K})$ 181
§5.3. Chern Classes and Pontryagin Classes 184

Chapter 6. Characteristic Classes and Integrability 187

§6.1. The Bott Vanishing Theorem 187
§6.2. The Godbillon-Vey Class in Arbitrary Codimension 192
§6.3. Construction of the Exotic Classes 194
§6.4. Haefliger Structures and Classifying Spaces 200

Chapter 7. The Godbillon-Vey Classes 209

§7.1. The Godbillon Class and Measure Theory 209
§7.2. Proper Foliations 232
§7.3. Codimension One 234
§7.4. Quasi-polynomial Leaves 239

Part 3. Foliated 3-Manifolds 251

Chapter 8. Constructing Foliations 253

§8.1. Orientable 3-Manifolds 254
§8.2.	Open Book Decompositions	261
§8.3.	Nonorientable 3-Manifolds	262
§8.4.	Raymond’s Theorem	265
§8.5.	Thurston’s Construction	274
Chapter 9.	Reebless Foliations	285
§9.1.	Statements of Results	286
§9.2.	Poincaré-Bendixson Theory and Vanishing Cycles	290
§9.3.	Novikov’s Exploding Disk	300
§9.4.	Completion of the Proofs of Novikov’s Theorems	307
§9.5.	The Roussarie-Thurston Theorems	312
Chapter 10.	Foliations and the Thurston Norm	325
§10.1.	Compact Leaves of Reebless Foliations	326
§10.2.	Knots, Links, and Genus	333
§10.3.	The Norm on Real Homology	340
§10.4.	The Unit Ball in the Thurston Norm	345
§10.5.	Foliations without Holonomy	355
Chapter 11.	Disk Decomposition and Foliations of Link Complements	361
§11.1.	A Basic Example	361
§11.2.	Sutured Manifolds	364
§11.3.	Operations on Sutured Manifolds	367
§11.4.	The Main Theorem	376
§11.5.	Applications	385
§11.6.	Higher Depth	397
Appendix A.	C^*-Algebras	399
§A.1.	Bounded Operators	399
§A.2.	Measures on Hausdorff Spaces	400
§A.3.	Hilbert Spaces	403
§A.4.	Topological Spaces and Algebras	406
§A.5.	C^*-Algebras	408
§A.6.	Representations of Algebras	410
§A.7.	The Algebra of Compact Operators	415
§A.8.	Representations of $C_0(X)$	418
§A.9.	Tensor Products	420
§A.10.	Von Neumann Algebras	422
Appendix B. Riemannian Geometry and Heat Diffusion 425
 §B.1. Geometric Concepts and Formulas 425
 §B.2. Estimates of Geometric Quantities 428
 §B.3. Basic Function Theory 432
 §B.4. Regularity Theorems 433
 §B.5. The Heat Equation 436
 §B.8. The Green Function 447
 §B.9. Dirichlet Problem and Harmonic Measure 449
 §B.10. Diffusion and Resolvent 453

Appendix C. Brownian Motion 461
 §C.1. Probabilistic Concepts 461
 §C.2. Construction of Brownian Motion 465
 §C.3. The Markov Process 469
 §C.4. Continuity of Brownian Paths 474
 §C.5. Stopping Times 478
 §C.6. Some Consequences of the Markov Property 481
 §C.7. The Discrete Dirichlet and Poisson Problems 483
 §C.8. Dynkin’s Formula 486
 §C.9. Local Estimates of Exit Times 492

Appendix D. Planar Foliations 497
 §D.1. The Space of Leaves 497
 §D.2. Basic Isotopies 501
 §D.3. The Hausdorff Case 506
 §D.4. Decomposing the Foliatiion 510
 §D.5. Construction of the Diffeomorphism 513

Bibliography 527

Index 537
Preface

For this second volume of *Foliations*, we have selected three special topics: analysis on foliated spaces, characteristic classes of foliations, and foliated 3-manifolds. Each of these is an example of deep interaction between foliation theory and some other highly developed area of mathematics. In all cases, our aim is to give useful, in-depth introductions.

In Part 1 we treat C^*-algebras of foliated spaces and generalize heat flow and Brownian motion in Riemannian manifolds to such spaces. The first of these topics is essential for the "noncommutative geometry" of these spaces, a deep theory originated and pursued by A. Connes. The second is due to L. Garnett. While the heat equation varies continuously from leaf to leaf, its solutions have an essentially global character, making them hard to compare on different leaves. We will show, however, that leafwise heat diffusion defines a continuous, 1-parameter semigroup of operators on the Banach space $C(M)$ and, following Garnett [77], we will construct probability measures on M that are invariant under this semiflow. These are called *harmonic measures*, and they lead to a powerful ergodic theory for foliated spaces. This theory has profound topological applications (cf. Theorem 3.1.4), but its analytic and probabilistic foundations have made access difficult for many topologists. For this reason, we have added two survey appendices, one on heat diffusion in Riemannian manifolds and one on the associated Brownian flow. For similar reasons, we have added an appendix on the basics of C^*-algebras. We hope that these will serve as helpful guides through the analytic foundations of Part 1.

Part 2 is devoted to characteristic classes and foliations. Following R. Bott [9], we give a Chern-Weil type construction of the exotic classes based on the Bott vanishing theorem (Theorem 6.1.1). The resulting theory
can be viewed either as a topic in algebraic topology, motivated by foliation theory, or as a deep application of algebraic topology to the study of foliations. We take the latter viewpoint, emphasizing qualitative aspects such as G. Duminy’s celebrated vanishing theorem for the Godbillon-Vey class (unpublished) and S. Hurder’s analogous theorems for the generalized Godbillon-Vey classes in higher codimension [102]. We begin Part 2 with a chapter on the “grandfather” of all characteristic classes, the Euler class of oriented circle bundles, giving complete proofs of the applications, due to J. Milnor [129] and J. Wood [189], concerning obstructions to the existence of foliations transverse to the fibers of circle bundles over surfaces.

In Part 3, we study compact 3-manifolds foliated by surfaces, a topic that has been popular since the advent of the Reeb foliation of S^3. The special methods of 3-manifold topology yield existence theorems and qualitative properties unique to dimension three. The theorem of S. P. Novikov [141] on the existence of Reeb components has the consequence that “Reebless foliations” carry important topological information about the ambient 3-manifold. Together with a theorem of W. Thurston [175] on compact leaves of Reebless foliations, this led to D. Gabai’s groundbreaking work in which taut foliations are used as powerful tools for studying 3-manifold topology. We develop this theory up to Gabai’s constructions of taut, finite depth foliations on certain sutured 3-manifolds, giving details only in the disk decomposable case (depth one). This will bring the reader to the threshold of the “modern age” of essential laminations. These laminations are generalizations simultaneously of taut foliations and incompressible surfaces, and are the object of much current research. Essential laminations, however, need a book of their own and we hope that one or more of the specialists will provide such.

Appendix D pertains to Part 3, being a detailed account of Palmeira’s theorem that the only simply connected n-manifold foliated by leaves diffeomorphic to \mathbb{R}^{n-1} is \mathbb{R}^n. In fact, if $n \geq 3$, the foliated manifold is diffeomorphic to $\mathbb{R}^2 \times \mathbb{R}^{n-2}$ in such a way that the foliation is the product of a foliation of \mathbb{R}^2 by the space \mathbb{R}^{n-2}. Although valid in all dimensions $n \geq 3$, this result has important applications to Reebless-foliated 3-manifolds.

The bibliography is not intended to be a comprehensive list of all publications on these areas of foliation theory. Only references explicitly cited in the text are included, with the result that many important papers and books are omitted (with apologies to the authors).

The three parts of this book can be read independently. One minor exception to this is that certain standard properties of the Euler class, proven in Part 2, are needed in Part 3. Of course, all parts depend in various ways
on material in Volume I. All references to that volume will be of the form [I,...].

Finally, the first named author expresses his sincere thanks and appreciation to the second for his invitation to join in this journey through the theory of foliations, and for seeing that it got to an end.
Bibliography

78. E. Ghys, Une variété qui n’est pas une feuille, Topology 24 (1985), 67–73.
Bibliography

Index

\sim_{-}, 499
\sim_{+}, 499

$A^*_f(M)$, 224
$A^*_f(M,\mathcal{J})$, 224
$A'(U)$, 9
absolutely continuous, 88
abutment, 125
abuts, 125
adequate neighborhood, 314
adjoint operator, see also operator(s)
admissible imbedding, see also imbedding
admissible surface, see also surface
Alcalde Cuesta, F., 286
Alexander, J., 261, 289
algebra, 406
anticommutative, 177
Banach, 406
involutive, 408
C^*, see also C^*-algebra
Chern, 178, 181, 184
graded commutative, 177
tensor product, 196
Pontryagin, 178, 181, 185
representations of, 410–415
containment of, 411
cyclic, 411
definition of, 410
direct integral of, 411
direct sum of, 411
faithful, 411
involutive, 410
irreducible, 412
nondegenerate, 410
topologically irreducible, 412
unitarily equivalent, 411
weak containment of, 413
truncated polynomial, 196
von Neumann, 52, 422

Álvarez Lópe, J. A., 131, 494
ambient isotopy, 502
Anosov diffeomorphism, 120
anticommutative algebra, see also algebra
approximate unit, 409

B^*_q, 126
$\mathcal{B}(H)$, 407
$\mathcal{B}(X,Y)$, 400
Ballantine ale rings, 337
Banach algebra, see also algebra
Banach space, 399
barycenter, 259
barycentric subdivision, see also subdivision
basic connection, see also connection
Bauer maximum principle, 106
bee, 483
Bishop’s comparison theorem, 430
Blank, S., 326
blow up nicely, 385
Blumenthal’s zero-one law, 473
Bogoliuboff, N., 67, 108
Borel
σ-field, 461
map, 124
measure, see also measure(s)
set, 123
transversal, 42, 47
Borromean rings, 337, 347
Bott connection, see also connection
Bott vanishing theorem, 187–192
statement, 188
Bott, R., 7, 139, 187
boundary of subcomplex, 126
bounded domain, see also domain
bounded geometry, 428
bounded operator, see also operator(s)
Bourbaki, N., 400
branch point, 499
Brownian
expectation, 478
motion, 461–496
construction, 465–469
process, 471
particle, 461, 474
paths, 474–477
bundle, 142–144
2-plane, 141
circle, 141–175
foliated, 164–173
dual, 156
normal, 188, 206
of densities, 7
pullback, 142
homotopy invariance of, 143
universal, 202

\(C(D) \), 425
\(C_0(D) \), 425
\(C_0(X) \), 402
\(C_0 \), 29
\(C_c(X) \), 35, 400
\(C_c^\infty(M) \), 8
\(C_c^0 \), 502
\(C^0(D) \), 425
\(C^0(\mathcal{D}) \), 425
\(C^k(D) \), 426

\(C^* \)-algebra, 408–410
definition of, 408
noncommutative, 5
nuclear, 421
of a foliated space, 3, 18–27
definition of, 24
full, 26
reduced, 24
of a minimal foliation, 54–59
positive linear functional on, 410
primitive, 58
simple, 413
\(C^* \)-norm, 408
Candel, A., 131
Cantwell, J., 134
Cantwell-Conlon, 121
Cayley graph, 122
Čech cohomology, 201
cell, 144
cell complex, see also complex
cellular
approximation theorem, 145
map, 145
center tangency, see also tangency
characteristic class, see also class
Cheng, S. Y., 445
Chern
algebra, see also algebra
class, see also class
Chern\(^*\)(\(E \)), 181
Chern-Weil construction, 139
Chern-Weil homomorphism, 178–181
definition of, 180
Choquet's theorem, 107
Choquet, G., 107
circle bundle, see also bundle
circle tangency, see also tangency
class
characteristic, 139
Chern-Weil construction of, 177–186
for vector bundles, 177–186
Chern, 141, 184
construction of, 184–186
first, 156
total, 185
Euler, 139, 155–164
definition of, 155
relative, 155
exotic, 139, 191
construction, 194–200
definition, 198
Godbillon, 210–212
definition of, 210
Godbillon-Vey, 139
arbitrary codimension, 192–194
definition of, 192
generalized, 199
Pontryagin, 184
construction of, 184–186
total, 185
secondary, 191
Whitney, 201
classifying space, 200–208
for vector bundles, 201–202
Haefliger, 139, 206–208
Milnor, 201–202
cobble, 509
cocycle
\(\varepsilon \)-tempered, 230
\(\Gamma^* \), 203–206
\(\mathcal{G}^* \), 200–201
Haefliger
definition of, 204
of a foliation, 204
holonomy, 122, 203
integrable, 221
measurable, 221
obstruction, 150–153
on a groupoid, 221
pull-back, 201
structure, 178
coherent, 200, 204
commutant, 422
compact operator, see also operator(s)
completely invariant harmonic measure, see also measure(s)

complex
- cell, 144–147
 - homology of, 144
 - regular, 146
 - skeleton of, 144
 - subcomplex of, 144
 - weakly regular, 146

Conlon, L., 134

connection
- basic, 189–190
- existence, 190
- Bott, 139, 189–190
- existence, 190
- form, 178

Connes, A., xi, 3, 5, 6, 10, 11, 52, 54, 422

containment of representations of an algebra, see also algebra

continuity of diffusion, 73

convergence
- strong, 400
- weak, 400

convolution
- on $\Gamma_{\infty}(G, C^\infty)$, 22
- on $\Gamma_{\infty}(G, D^{1/2})$
 - in the non-Hausdorff case, 21
 - in the Hausdorff case, 19

convolution of a family of operators, see also operator(s)

counter-orientation, 276, 280
counter-oriented triangulation, 280

Crainic, M., 8

crystalline subdivision, see also subdivision
current, 38
- equivalent, 38
- invariant, 40
- quasi-invariant, 37–48
- definition of, 40

curvature, 178
- form, 178

CW complex, see also complex
cycle
- vanishing, 285
- definition of, 287
- simple, 302
cyclic vector, 411
cyclic representation of an algebra, see also algebra
cylinder sets, 82
cylindrical collar, 517

DM, 269

∂M-incompressible, 313

Davidson, K. R., 399

Debiard, A., 494

decomposable operator, see also operator(s)

Dehn twist, 254

Dehn’s Lemma, 329

Dehn, M., 254, 329
density, 7
- α, 7
- half, 7

Hilbert space of, 8
- square integrable, 7

order of, 7
- positive, 7
density point, 111
diagonalizable operator, see also operator(s)

$Diff^\omega$, 502
diffused measure, see also measure(s)
diffusion operator, see also operator(s)
diffusion semigroup, 68–80
- definition of, 69

Dirac’s bra-ket, 416
direct integral of representations of an algebra, see also algebra
direct sum of representations of an algebra, see also algebra

Dirichlet problem, 449
discrete, 483
discrete homogeneous space, 132
discrete Poisson problem, 486
disk decomposable surface, see also surface
disk decomposable sutured manifold, see also sutured manifold
disk decomposition, 361–398
distribution, 433
distribution solution, 434
divergence, 426
divergence theorem, 427
- relative, 427

Dixmier, J., 34, 399, 422

Dixmier-Douady invariant, 34
domain, 425
- bounded, 425
- regular, 425

Douady, A., 34
double of M, 269
double points, 301
dual bundle, see also bundle
dual norm, see also norm

Duminy
decomposition, 235
- vanishing theorem for $gv(\mathcal{F})$, 139, 234

Duminy, G., 54, 131, 209, 210, 214, 294, 273

Durfee, A. H., 261

Dynkin’s formula, 486–492
- general version, 487
- simplest version, 486

Dynkin, E., 83, 453, 474, 486

ε-tempering, 239
edgepath, 125
Effros, E. G., 59
Ehresmann, C., 11
elliptic regularity theorem, 435
Embed', 502
end of a graph, 123
Epstein, D. B. A., 232, 274
Epstein-Millett filtration, 232
equivalent currents, see also current
ergodic, 121
ergodic component, 121
ergodic decomposition of harmonic measures,
 see also measure(s)
ergodic measure, see also measure(s)
ergodic theorem, 96, 98
essential loop, see also loop
Euler class, see also class
exceptional minimal sets, 265–274
generic leaf of, 131
exotic class, see also class
expectation, 462
conditional, 463
expected value, 462
exploding
 annulus, 321
 disk, 287, 300–307
 plateau, 300
extreme point, 103

F-flat, 297
F, 302
Fack, T., 5, 6, 54, 55, 59
faithful representation of an algebra, see also algebra
fibered face, 356
fibered ray, see also ray
field, 461
 σ-field, 461
 Borel, 461
 generated by S, 461
field of operators, see also operator(s)
Fillmore, P. A., 399
finite rank operator, see also operator(s)
first exit time, 478
first obstruction, see also obstruction
flat, 297
flat connection, 165
foliated circle bundle, see also bundle
foliated face, 356
foliated ray, see also ray
foliated space, 5
graph of, 11–18
definition of, 11
 transitive, 58
foliation cone, 356
foliation(s)
 constructions of, 253–283
planar, 497
 space of leaves of, 497–501
Reebless, 285–323
Riemannian, 191
taut, 322
 without holonomy, 355–359
Folland, G. B., 400
frog, 484
fundamental family of measurable vector fields,
 404
fundamental solution of the heat equation,
 437
G, 503
Gn, 503
G\A, 12
G\B, 12
Γc, 7
Γ\q-cocycle, see also cocycle
Γ\q-structure, 203
G\q-cocycle, see also cocycle
Gabai, D., 251, 323, 325, 361, 364, 501
Garnett, L., xi, 3, 74
Gaveau, B., 494
Gelfand-Fuks cohomology, 187
Gelfand-Naimark-Segal representation, 415
general position, 277
 loop, 301
 Roussarie, 314
Thurston, 322
genus of knots and links, 333–339
definition of, 335
Ghys’s Proposition Fondamentale, 118
Ghys, E., 3, 112, 113, 117, 119, 121, 134,
 135, 174
Godbillon class, see also class
Godbillon measure, 212–214
definition of, 214
Godbillon-Vey class, see also class
Godement resolution, 9
good Borel set, 117
Goodman, S., 287, 308
Gootman, E. C., 59
graded commutative algebra, see also algebra
 gradient, 426
 Green function, 448
 Green operator, see also operator(s)
 Green’s formula, 428
 Green-Gauss-Stokes-Ostrogradski formula, 427
 Gromov, M., 206
groupoid, 217
 of germs, 203
H(S\X), 222
H'(S\X), 222
$H^*(M;\mathcal{F})$, 210
$H(\Sigma_X)$, 222
$H'(\Sigma_X)$, 222
Haefliger classifying space, see also classifying space
Haefliger cocycle, see also cocycle
Haefliger structure, 200–208
definition of, 204
homotopy of, 205
of a foliation, 204
Haefliger, A., 203, 277, 285
Hahn, F., 59
Hahn-Banach theorem, 66
handlebody, 255
harmonic function, 432
harmonic measure, see also measure(s)
harmonic measure one, 108
harmonic measure zero, 108
Harnack principle, 451
Harnack’s theorem, 452
Hass, J., 323
heat equation, 436
heat kernel, 437
existence and uniqueness, 442, 444
Hector, G., 131, 274, 286
Heegaard splitting, 258
Herman number, 275
Herman, M., 274
Hilbert integral, 405
Hilbert space(s), 403
dimension of, 403
field of, 404
direct integral of, 405
measurable, 404
separable, 403
tensor product of, 404
Hilbert sum, 404
Hille, E., 69
Hille-Yosida theorem, 74
Hilsum, M., 37
Hirsch example, 95
Hirsch, M. W., 119
holonomy
covering, 11
graph, 122
group, 11
groupoid, 11–18
definition of, 11
pseudogroup, 122
representation, 11
holonomy cocycle, see also cocycle
homology of a cell complex, see also complex
homotopy extension theorem, 145
Hopf fibration, 157
Hopf, H., 119
Hurder, S., 54, 139, 192, 209, 214, 220, 225,
226, 229, 232, 239
imbedding
admissible, 313
reduced, 314
incompressible surface, see also surface
index of a vector field at a singularity, 161
index sum of a vector field, 161
index theorem
Atiyah-Singer, 6
foliation, 6
inductive limit topology, 401
inessential loop, see also loop
infinitesimal generator, 70, 456
infinitesimal holonomy, 214, 217
inflate, 282
injectivity radius, 428
integrable cocycle, see also cocycle
integral linear functional, 350
integral norm, see also norm
integration along the fiber, 195
interior of subcomplex, 126
intrinsic domain, 454
invariant current, see also current
involution, 408
on $\Gamma_i(G, \mathcal{T}^{1/2})$
in the Hausdorff case, 19
in the non-Hausdorff case, 21
involutive Banach algebra, see also algebra
involutive representation of an algebra, see also algebra
irreducible, 288
irreducible representation of an algebra, see also algebra
irregular point, 479
isometry of Hilbert spaces, 403
isotopy respecting \mathcal{F}', 315
Itô, K., 474
jiggle a triangulation, 276, 277
juncture, 387
$K_g(x)$, 125
$K_g(x)^c$, 125
$\mathcal{K}(H)$, 416
Kac’s recurrence theorem, 113
Kac, M., 113, 114
Kaplan, W., 500
Katok, A., 54, 232, 239
Kazez, W., 501
Kellum, M., 135
Kinney, J. R., 83, 474
Kirillov, A. A., 399
knot, 333
alternating, 392–397
complement, 334
Kolmogoroff, A. N., 474
Krein-Milman theorem, 106
Krieger, W., 54
Krylov, N., 67, 108

Langevin, R., 209
Laplace operator, see also operator(s)
Laplacian, 426
leafwise, 62
Laudenbach, F., 326
Lawson, H. B., 261
leaf
generic, 119, 128
π_1-injective, 287
totally recurrent, 122
leafwise Riemannian measure, see also measure(s)
leafwise Stokes’ theorem, 225
Lebesgue
current, 40
density theorem, 218
level, 520
level-preserving
diffeotopy, 502
embedding, 502
map, 502
Levitt, G., 174
Lévy, P., 474
Li, P., 445
Lickorish, W., 253, 254
link
alternating, 392–397
complement, 334
Whitehead, 337, 346, 370
Whitehead-like, 338
link complement, 363, 386
link exterior, 386
linking number, 346
longitude, 386
loop
essential, 256, 286
inessential, 286
nullhomotopic, 286
loop in general position, see also general position
Loop Theorem, 329
M^p, 302
Mackey, G. W., 35
Markov
process, 470
on a foliated space, 80–86
property, 471, 478
for functions, 471
strong, 480
Mather, J., 274
maximum principle, 432
boundary, 433
Mazet, E., 494
McKean, H. P., 474
meager, 128
measurable cocycle, see also cocycle
measurable space, 461
measure class, 219
measure zero (with respect to a current), 39
measure(s)
Borel, 401
diffused, 109
ergodic, 99, 121
harmonic, 61–120, 450
characterizations of, 86–96
completely invariant, 91
definition of, 63
ergodic decomposition of, 108
existence of, 67, 90
holonomy-invariant, 120
leafwise Riemannian, 63
Lebesgue, 120
mutually singular, 104
push-forward, 401
Radon, 62, 401
smooth, 88
visual, 91
Wiener, 461
meridian, 386
metric
on a graph, 122
on a leaf L, 123
Millett, K., 232
Milnor classifying space, see also classifying space
Milnor, J., 139, 141, 164, 202
Minakshisundaram, S., 439
modular function, 40
Moerdijk, I., 8
monotone class theorem, 464
Moore, C., 6, 52
Morita equivalence, 36
Morse tangency, see also tangency
Moussou, R., 192
Murasugi sum, 388–390
definition of, 388
Murray, F. J., 52
mutually singular measures, see also measure(s)
Natsume, T., 37
naturality, 186
Naimark, M. A., 399
negative saddle tangency, see also tangency
non-Hausdorff spaces
functions on, 8–11
noncommutative geometry, 6
nondegenerate representation of an algebra, see also algebra
nonwandering set, 112
norm
dual, 340, 345
integral, 350
Thurston, 325–359
of a homology class, 326
of a surface, 326
on real homology, 340–345
normal bundle, see also bundle
normal decomposition, 510
normal plug, 507
bases of, 507
wall of, 507
Novikov, S. P., 253, 285, 287, 288
nuclear C^*-algebra, see also C^*-algebra
nullhomotopic loop, see also loop
$\Omega(L)$, 92
$\Omega(M)$, 81
$\Omega(X)$, 461
obstruction
cochain, 151
cocycle, 153
relative, 155
first, 148–155
definition of, 151
open book decomposition, 261–262
definition of, 261
of nonorientable manifolds, 265
operator(s)
adjoint, 409
bounded, 399–400
between Hilbert spaces, 403
definition of, 399
extension of, 400
compact, 415–418
definition of, 416
decomposable, 406
diagonalizable, 406
diffusion, 453
family
convolution of, 73
strongly continuous, 72
field of, 405
measurable, 405
Green, 459
Laplace, 407
norm, 400
of finite rank, 416
projection, 423
resolvent, 459
ring of, 422
tensor product of, 404
topology, 400
unitary, 403
orthonormal system, 403
π_1-injective, 285
P_3, 461, 467
pair of pants, 346
Palais, R., 502
Palmeira, F., 286, 289, 497, 501
Papakyriakopoulos, C. D., 329
parallel normal fields, 189
parametrix, 439
Pasternack, J., 192
Pedersen, G. K., 399, 400
Pelletier, F., 192
Petersen, K., 114
Phillips, A., 206
Phillips, R. S., 69
pinched annulus, 296
Fixton, D., 398
planar foliation, see also foliation(s)
plumbing, 389
Poénaru, V., 206
Poincaré lemma, 195
Poincaré-Hopf theorem, 161
for surfaces with boundary, 163
Poincaré’s recurrence theorem, 114
Poincaré, H., 114
Poisson problem, 453
infinite domains, 490
probabilistic solution, 490
$\text{Pon}^*(E)$, 181
Pontryagin
algebra, see also algebra
class, see also class
positive linear functional, 410
positive saddle tangency, see also tangency
probability space, 462
product decomposition, 376
projection operator, see also operator(s)
properly imbedded surface, see also surface
property P, 388
property R, 386–388
definition of, 388
pseudo-analytic, 14
pseudogroup (holonomy), 122
pullback bundle, see also bundle
quantitative theory, 200
quasi-invariant current, see also current
quasi-isometry type, 131
coarse, 131
quasi-polynomial growth, 241
quasi-regular point, 108
quasi-regular set, 109
quasi-symmetric, 133
r-graph, 123
Radon measure, see also measure(s)
Radon-Nikodym theorem, 463
range map, 12
ray
fibered, 356
foliated, 355
Raymond, B., 253, 265
recurrence in foliated spaces, 112–118
reduced imbedding, see also imbedding
Reeb
component, 285
foliation, see also foliation(s)
modification, 253
stability (local), 127
Reeb, G., 253
Reebless foliations, see also foliation(s)
regular cell complex, see also complex
regular domain, see also domain
regular foliated atlas, 17
regular points, 112
regular representation of a group, 414
representable functor, 202, 334
representation
holonomy, 11
of the foliation C*-algebra, 48–54
of the graph, 48
regular, 48, 50
trivial, 48, 50
representation of an algebra, see also algebra
residual, 119
resolvent operator, see also operator(s)
Rieffel, M. A., 36
Riesz representation theorem, 402
ring of subsets, 461
Rosenberg, H., 286, 288
Rosenberg, J., 59
Roussarie general position, see also general position
Roussarie, R., 312, 314
Rudin, W., 400
σ-cylinder, 466
σ_y(x), 125
Σ_y, 147
saddle tangency, see also tangency
Saint-Venant equation, 490
Sauvageot, J.-L., 59
Schecter, C., 6
Schweitzer, P., 274, 286
secondary class, see also class
Seifert
algorithm, 391–392
circle, 391
surface, see also surface
semigroup of operators, 69
Sergeraert, F., 274
Sergiescu, V., 174
sheaf topology, 203
Siebenmann, L. C., 286
simple C*-algebra, see also C*-algebra
simple vanishing cycle, see also cycle
Skandalis, G., 5, 6, 37, 54, 55
skeleton of a cell complex, see also complex
smooth measure, see also measure(s)
Solodov, V., 286
source, 203
source map, 12
space of leaves, 5
spanning surface, see also surface
spinning, 253, 262
spiral ramps, 282
Stallings, J., 329
star of vertex, 126
state, 410
stochastic process, 470
stopping time, 478
hitting time, 479
strong convergence, see also convergence
strongly continuous family of operators, see also operator(s)
subcomplex, see also complex
subdivision
barycentric, 276, 278
crystalline, 276, 277
Sullivan, D., 192, 323
surface
admissible, 313
disk decomposable, 370
incompressible, 313
properly imbedded, 312
∂M-incompressible, 313
incompressible, 313
Seifert, 335, 365
spanning, 334
surgery, 254
suture, 364
sutured manifold, 361, 363–367
definition of, 364
disk decomposable, 369
hierarchy, 397
taut, 367
symbolic dynamics, 273
symmetric polynomial, 181
Takesaki, M., 399, 420, 422
Tamura, I., 261
tangency
center, 315
circle, 314
Morse, 290
saddle, 314
negative, 332
positive, 331
target, 203
Index

thickness, 235
thin, 234
three-link chain, 339, 348
Thurston ball, 345–355
Thurston cone, 356
Thurston general position, see also general position
Thurston norm, see also norm
on real homology, see also norm
Thurston, W., 174, 191, 207, 251, 253, 274, 312, 325
topologically irreducible representation of an algebra, see also algebra
Torpe, A. M., 37
total, 403
transitive point, 111
transversality, 277
trefoil knot, 335
Tsuboi, T., 191
Tu, L., 7
turbulization, 253
twisted
density, 6–8
form, 6–8
definition of, 6

unit, 407
unitarily equivalent representations of an algebra, see also algebra
unitary operator, see also operator(s)
universal bundle, see also bundle
unknot, 335

vanishing cycle, see also cycle
\(\text{Vect}^q(X),\) 201
visual measure, see also measure(s)
vol, 63
von Neumann algebra, see also algebra
von Neumann, J., 52

Wallace, A. H., 254
wandering
leaf, 112
point, 112
set, 112
Wang, X., 37
weak convergence, see also convergence
weakly regular cell complex, see also complex
weak* topology, 89
Weil, A., 68
Whitehead
double, 335
link, see also link
Whitehead-like link, see also link
Whitney class, see also class
Whitney duality, 185
Wiener measures, see also measure(s)
Wiener, N., 461, 474
Williams, D. P., 59
Winkelkemper, E., 11, 261
Wood, J., 139, 141, 165, 253, 262, 274
Wright, F., 114
Yau, S.-T., 445
Yosida, K., 69, 108, 399, 453
\(\mathbb{Z}_q^k\), 126, 128
\(\mathbb{Z}^{(r)}\), 123
\(\mathbb{Z}^{\times r}\), 123
Zeller-Meier, G., 59
Zieschang, H., 253
Titles in This Series

60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003
58 Cédric Villani, Topics in optimal transportation, 2003
57 Robert Plato, Concise numerical mathematics, 2003
56 E. B. Vinberg, A course in algebra, 2003
55 C. Herbert Clemens, A scrapbook of complex curve theory, second edition, 2003
54 Alexander Barvinok, A course in convexity, 2002
53 Henryk Iwaniec, Spectral methods of automorphic forms, 2002
52 Ilka Agricola and Thomas Friedrich, Global analysis: Differential forms in analysis, geometry and physics, 2002
51 Y. A. Abramovich and C. D. Aliprantis, Problems in operator theory, 2002
50 Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, 2002
49 John R. Harper, Secondary cohomology operations, 2002
48 Y. Eliashberg and N. Mishachev, Introduction to the h-principle, 2002
46 Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, 2002
44 Jim Agler and John E. McCarthy, Pick interpolation and Hilbert function spaces, 2002
43 N. V. Krylov, Introduction to the theory of random processes, 2002
42 Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, 2002
41 Georgi V. Smirnov, Introduction to the theory of differential inclusions, 2002
40 Robert E. Greene and Steven G. Krantz, Function theory of one complex variable, 2002
39 Larry C. Grove, Classical groups and geometric algebra, 2002
38 Elton P. Hsu, Stochastic analysis on manifolds, 2002
37 Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, 2001
35 James F. Davis and Paul Kirk, Lecture notes in algebraic topology, 2001
34 Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001
33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001
31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001
30 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001
29 Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001
25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000
24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
This is the second of two volumes on foliations (the first is Volume 23 of this series). In this volume, three specialized topics are treated: analysis on foliated spaces, characteristic classes of foliations, and foliated three-manifolds. Each of these topics represents deep interaction between foliation theory and another highly developed area of mathematics. In each case, the goal is to provide students and other interested people with a substantial introduction to the topic leading to further study using the extensive available literature.