# Cartan for Beginners: <br> Differential Geometry via Moving Frames and Exterior Differential Systems 

## Thomas A. Ivey

J. M. Landsberg

Graduate Studies<br>in Mathematics<br>Volume 61

# Cartan for Beginners: <br> Differential Geometry via Moving Frames and <br> Exterior Differential Systems 

# Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems 

Thomas A. Ivey

J.M. Landsberg

Graduate Studies
in Mathematics
Volume 61

## Editorial Board

Walter Craig<br>Nikolai Ivanov<br>Steven G. Krantz<br>David Saltman (Chair)

2000 Mathematics Subject Classification. Primary 53-01.

For additional information and updates on this book, visit
www.ams.org/bookpages/gsm-61

## Library of Congress Cataloging-in-Publication Data

Ivey, Thomas A. (Thomas Andrew), 1963-
Cartan for beginners : differential geometry via moving frames and exterior differential systems / Thomas A. Ivey, J. M. Landsberg.
p. cm. - (Graduate studies in mathematics, ISSN 1065-7339; v. 61)

Includes bibliographical references and index.
ISBN 0-8218-3375-8 (alk. paper)

1. Geometry, Differential. 2. Exterior differential systems. I. Landsberg, J. M. II. Title. III. Series.

QA641.I89 2003
$516.3^{\prime} 6$ - dc 22
2003059541

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(c) 2003 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government. Printed in the United States of America.
(0) The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10987654321080706050403

## Contents

Preface ..... ix
Chapter 1. Moving Frames and Exterior Differential Systems ..... 1
§1.1. Geometry of surfaces in $\mathbb{E}^{3}$ in coordinates ..... 2
§1.2. Differential equations in coordinates ..... 5
§1.3. Introduction to differential equations without coordinates ..... 8
§1.4. Introduction to geometry without coordinates: curves in $\mathbb{E}^{2}$ ..... 12
§1.5. Submanifolds of homogeneous spaces ..... 15
§1.6. The Maurer-Cartan form ..... 16
§1.7. Plane curves in other geometries ..... 20
$\S 1.8$. Curves in $\mathbb{E}^{3}$ ..... 23
§1.9. Exterior differential systems and jet spaces ..... 26
Chapter 2. Euclidean Geometry and Riemannian Geometry ..... 35
§2.1. Gauss and mean curvature via frames ..... 36
§2.2. Calculation of $H$ and $K$ for some examples ..... 39
§2.3. Darboux frames and applications ..... 42
§2.4. What do $H$ and $K$ tell us? ..... 43
§2.5. Invariants for $n$-dimensional submanifolds of $\mathbb{E}^{n+s}$ ..... 45
§2.6. Intrinsic and extrinsic geometry ..... 47
§2.7. Space forms: the sphere and hyperbolic space ..... 57
§2.8. Curves on surfaces ..... 58
§2.9. The Gauss-Bonnet and Poincaré-Hopf theorems ..... 61
§2.10. Non-orthonormal frames ..... 66
Chapter 3. Projective Geometry ..... 71
§3.1. Grassmannians ..... 72
§3.2. Frames and the projective second fundamental form ..... 76
§3.3. Algebraic varieties ..... 81
§3.4. Varieties with degenerate Gauss mappings ..... 89
§3.5. Higher-order differential invariants ..... 94
§3.6. Fundamental forms of some homogeneous varieties ..... 98
§3.7. Higher-order Fubini forms ..... 107
§3.8. Ruled and uniruled varieties ..... 113
§3.9. Varieties with vanishing Fubini cubic ..... 115
§3.10. Dual varieties ..... 118
§3.11. Associated varieties ..... 123
§3.12. More on varieties with degenerate Gauss maps ..... 125
§3.13. Secant and tangential varieties ..... 128
§3.14. Rank restriction theorems ..... 132
§3.15. Local study of smooth varieties with degenerate tangential varieties ..... 134
§3.16. Generalized Monge systems ..... 137
§3.17. Complete intersections ..... 139
Chapter 4. Cartan-Kähler I: Linear Algebra and Constant-Coefficient Homogeneous Systems ..... 143
§4.1. Tableaux ..... 144
§4.2. First example ..... 148
§4.3. Second example ..... 150
§4.4. Third example ..... 153
§4.5. The general case ..... 154
§4.6. The characteristic variety of a tableau ..... 157
Chapter 5. Cartan-Kähler II: The Cartan Algorithm for Linear Pfaffian Systems ..... 163
§5.1. Linear Pfaffian systems ..... 163
§5.2. First example ..... 165
§5.3. Second example: constant coefficient homogeneous systems ..... 166
§5.4. The local isometric embedding problem ..... 169
§5.5. The Cartan algorithm formalized: tableau, torsion and prolongation ..... 173
§5.6. Summary of Cartan's algorithm for linear Pfaffian systems ..... 177
§5.7. Additional remarks on the theory ..... 179
§5.8. Examples ..... 182
§5.9. Functions whose Hessians commute, with remarks on singular solutions ..... 189
§5.10. The Cartan-Janet Isometric Embedding Theorem ..... 191
§5.11. Isometric embeddings of space forms (mostly flat ones) ..... 194
§5.12. Calibrated submanifolds ..... 197
Chapter 6. Applications to PDE ..... 203
§6.1. Symmetries and Cauchy characteristics ..... 204
§6.2. Second-order PDE and Monge characteristics ..... 212
$\S 6.3$. Derived systems and the method of Darboux ..... 215
§6.4. Monge-Ampère systems and Weingarten surfaces ..... 222
§6.5. Integrable extensions and Bäcklund transformations ..... 231
Chapter 7. Cartan-Kähler III: The General Case ..... 243
§7.1. Integral elements and polar spaces ..... 244
§7.2. Example: Triply orthogonal systems ..... 251
§7.3. Statement and proof of Cartan-Kähler ..... 254
§7.4. Cartan's Test ..... 256
§7.5. More examples of Cartan's Test ..... 259
Chapter 8. Geometric Structures and Connections ..... 267
§8.1. $G$-structures ..... 267
§8.2. How to differentiate sections of vector bundles ..... 275
$\S 8.3$. Connections on $\mathcal{F}_{G}$ and differential invariants of $G$-structures ..... 278
§8.4. Induced vector bundles and connections on induced bundles ..... 283
§8.5. Holonomy ..... 286
§8.6. Extended example: Path geometry ..... 295
§8.7. Frobenius and generalized conformal structures ..... 308
Appendix A. Linear Algebra and Representation Theory ..... 311
§A.1. Dual spaces and tensor products ..... 311
§A.2. Matrix Lie groups ..... 316
§A.3. Complex vector spaces and complex structures ..... 318
§A.4. Lie algebras ..... 320
§A.5. Division algebras and the simple group $G_{2}$ ..... 323
§A.6. A smidgen of representation theory ..... 326
§A.7. Clifford algebras and spin groups ..... 330
Appendix B. Differential Forms ..... 335
§B.1. Differential forms and vector fields ..... 335
§B.2. Three definitions of the exterior derivative ..... 337
§B.3. Basic and semi-basic forms ..... 339
§B.4. Differential ideals ..... 340
Appendix C. Complex Structures and Complex Manifolds ..... 343
§C.1. Complex manifolds ..... 343
§C.2. The Cauchy-Riemann equations ..... 347
Appendix D. Initial Value Problems ..... 349
Hints and Answers to Selected Exercises ..... 355
Bibliography ..... 363
Index ..... 371

## Preface

In this book, we use moving frames and exterior differential systems to study geometry and partial differential equations. These ideas originated about a century ago in the works of several mathematicians, including Gaston Darboux, Edouard Goursat and, most importantly, Elie Cartan. Over the years these techniques have been refined and extended; major contributors to the subject are mentioned below, under "Further Reading".

The book has the following features: It concisely covers the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames. It includes results from projective differential geometry that update and expand the classic paper [69] of Griffiths and Harris. It provides an elementary introduction to the machinery of exterior differential systems (EDS), and an introduction to the basics of $G$-structures and the general theory of connections. Classical and recent geometric applications of these techniques are discussed throughout the text.

This book is intended to be used as a textbook for a graduate-level course; there are numerous exercises throughout. It is suitable for a oneyear course, although it has more material than can be covered in a year, and parts of it are suitable for one-semester course (see the end of this preface for some suggestions). The intended audience is both graduate students who have some familiarity with classical differential geometry and differentiable manifolds, and experts in areas such as PDE and algebraic geometry who want to learn how moving frame and EDS techniques apply to their fields.

In addition to the geometric applications presented here, EDS techniques are also applied in CR geometry (see, e.g., [98]), robotics, and control theory (see $[\mathbf{5 5}, \mathbf{5 6}, \mathbf{1 2 9}]$ ). This book prepares the reader for such areas, as well as
for more advanced texts on exterior differential systems, such as [20], and papers on recent advances in the theory, such as $[\mathbf{5 8}, \mathbf{1 1 7}]$.

Overview. Each section begins with geometric examples and problems. Techniques and definitions are introduced when they become useful to help solve the geometric questions under discussion. We generally keep the presentation elementary, although advanced topics are interspersed throughout the text.

In Chapter 1, we introduce moving frames via the geometry of curves in the Euclidean plane $\mathbb{E}^{2}$. We define the Maurer-Cartan form of a Lie group $G$ and explain its use in the study of submanifolds of $G$-homogeneous spaces. We give additional examples, including the equivalence of holomorphic mappings up to fractional linear transformation, where the machinery leads one naturally to the Schwarzian derivative.

We define exterior differential systems and jet spaces, and explain how to rephrase any system of partial differential equations as an EDS using jets. We state and prove the Frobenius system, leading up to it via an elementary example of an overdetermined system of PDE.

In Chapter 2, we cover traditional material - the geometry of surfaces in three-dimensional Euclidean space, submanifolds of higher-dimensional Euclidean space, and the rudiments of Riemannian geometry - all using moving frames. Our emphasis is on local geometry, although we include standard global theorems such as the rigidity of the sphere and the Gauss-Bonnet Theorem. Our presentation emphasizes finding and interpreting differential invariants to enable the reader to use the same techniques in other settings.

We begin Chapter 3 with a discussion of Grassmannians and the Plücker embedding. We present some well-known material (e.g., Fubini's theorem on the rigidity of the quadric) which is not readily available in other textbooks. We present several recent results, including the Zak and Landman theorems on the dual defect, and results of the second author on complete intersections, osculating hypersurfaces, uniruled varieties and varieties covered by lines. We keep the use of terminology and results from algebraic geometry to a minimum, but we believe we have included enough so that algebraic geometers will find this chapter useful.

Chapter 4 begins our multi-chapter discussion of the Cartan algorithm and Cartan-Kähler Theorem. In this chapter we study constant coefficient homogeneous systems of PDE and the linear algebra associated to the corresponding exterior differential systems. We define tableaux and involutivity of tableaux. One way to understand the Cartan-Kähler Theorem is as follows: given a system of PDE, if the linear algebra at the infinitesimal level
"works out right" (in a way explained precisely in the chapter), then existence of solutions follows.

In Chapter 5 we present the Cartan algorithm for linear Pfaffian systems, a very large class of exterior differential systems that includes systems of PDE rephrased as exterior differential systems. We give numerous examples, including many from Cartan's classic treatise [31], as well as the isometric immersion problem, problems related to calibrated submanifolds, and an example motivated by variation of Hodge structure.

In Chapter 6 we take a detour to discuss the classical theory of characteristics, Darboux's method for solving PDE, and Monge-Ampère equations in modern language. By studying the exterior differential systems associated to such equations, we recover the sine-Gordon representation of pseudospherical surfaces, the Weierstrass representation of minimal surfaces, and the one-parameter family of non-congruent isometric deformations of a surface of constant mean curvature. We also discuss integrable extensions and Bäcklund transformations of exterior differential systems, and the relationship between such transformations and Darboux integrability.

In Chapter 7, we present the general version of the Cartan-Kähler Theorem. Doing so involves a detailed study of the integral elements of an EDS. In particular, we arrive at the notion of a Kähler-regular flag of integral elements, which may be understood as the analogue of a sequence of well-posed Cauchy problems. After proving both the Cartan-Kähler Theorem and Cartan's test for regularity, we apply them to several examples of non-Pfaffian systems arising in submanifold geometry.

Finally, in Chapter 8 we give an introduction to geometric structures ( $G$-structures) and connections. We arrive at these notions at a leisurely pace, in order to develop the intuition as to why one needs them. Rather than attempt to describe the theory in complete generality, we present one extended example, path geometry in the plane, to give the reader an idea of the general theory. We conclude with a discussion of some recent generalizations of $G$-structures and their applications.

There are four appendices, covering background material for the main part of the book: linear algebra and rudiments of representation theory, differential forms and vector fields, complex and almost complex manifolds, and a brief discussion of initial value problems and the Cauchy-Kowalevski Theorem, of which the Cartan-Kähler Theorem is a generalization.

Layout. All theorems, propositions, remarks, examples, etc., are numbered together within each section; for example, Theorem 1.3.2 is the second numbered item in section 1.3. Equations are numbered sequentially within each chapter. We have included hints for selected exercises, those marked with the symbol © at the end, which is meant to be suggestive of a life preserver.

Further Reading on EDS. To our knowledge, there are only a small number of textbooks on exterior differential systems. The first is Cartan's classic text [31], which has an extraordinarily beautiful collection of examples, some of which are reproduced here. We learned the subject from our teacher Bryant and the book by Bryant, Chern, Griffiths, Gardner and Goldschmidt [20], which is an elaboration of an earlier monograph [19], and is at a more advanced level than this book. One text at a comparable level to this book, but more formal in approach, is [156]. The monograph [70], which is centered around the isometric embedding problem, is similar in spirit but covers less material. The memoir [155] is dedicated to extending the Cartan-Kähler Theorem to the $C^{\infty}$ setting for hyperbolic systems, but contains an exposition of the general theory. There is also a monograph by Kähler [89] and lectures by Kuranishi [97], as well the survey articles $[\mathbf{6 6}, \mathbf{9 0}]$. Some discussion of the theory may be found in the differential geometry texts [142] and [145].

We give references for other topics discussed in the book in the text.
History and Acknowledgements. This book started out about a decade ago. We thought we would write up notes from Robert Bryant's Tuesday night seminar, held in 1988-89 while we were graduate students, as well as some notes on exterior differential systems which would be more introductory than [20]. The seminar material is contained in $\S 8.6$ and parts of Chapter 6 . Chapter 2 is influenced by the many standard texts on the subject, especially [43] and [142], while Chapter 3 is influenced by the paper [69]. Several examples in Chapter 5 and Chapter 7 are from [31], and the examples of Darboux's method in Chapter 6 are from [63]. In each case, specific attributions are given in the text. Chapter 7 follows Chapter III of [20] with some variations. In particular, to our knowledge, Lemmas 7.1.10 and 7.1.13 are original. The presentation in $\S 8.5$ is influenced by [11], [94] and unpublished lectures of Bryant.

The first author has given graduate courses based on the material in Chapters 6 and 7 at the University of California, San Diego and at Case Western Reserve University. The second author has given year-long graduate courses using Chapters $1,2,4,5$, and 8 at the University of Pennsylvania and Université de Toulouse III, and a one-semester course based on Chapters 1, 2, 4 and 5 at Columbia University. He has also taught one-semester
undergraduate courses using Chapters 1 and 2 and the discussion of connections in Chapter 8 (supplemented by [141] and [142] for background material) at Toulouse and at Georgia Institute of Technology, as well as one-semester graduate courses on projective geometry from Chapters 1 and 3 (supplemented by some material from algebraic geometry), at Toulouse, Georgia Tech. and the University of Trieste. He also gave more advanced lectures based on Chapter 3 at Seoul National University, which were published as $[\mathbf{1 0 7}]$ and became a precursor to Chapter 3. Preliminary versions of Chapters 5 and 8 respectively appeared in $[\mathbf{1 0 4}, \mathbf{1 0 3}]$.

We would like to thank the students in the above classes for their feedback. We also thank Megan Dillon, Phillipe Eyssidieux, Daniel Fox, SungEun Koh, Emilia Mezzetti, Joseph Montgomery, Giorgio Ottaviani, Jens Piontkowski, Margaret Symington, Magdalena Toda, Sung-Ho Wang and Peter Vassiliou for comments on the earlier drafts of this book, and Annette Rohrs for help with the figures. The staff of the publications division of the AMS - in particular, Ralph Sizer, Tom Kacvinsky, and our editor, Ed Dunne - were of tremendous help in pulling the book together. We are grateful to our teacher Robert Bryant for introducing us to the subject. Lastly, this project would not have been possible without the support and patience of our families.

## Dependence of Chapters



## Suggested uses of this book:

- a year-long graduate course covering moving frames and exterior differential systems (chapters 1-8);
- a one-semester course on exterior differential systems and applications to partial differential equations (chapters 1 and 4-7);
- a one-semester course on the use of moving frames in algebraic geometry (chapter 3, preceded by part of chapter 1 );
- a one-semester beginning graduate course on differential geometry (chapters 1, 2 and 8).


## Bibliography

[1] L. Ahlfors, Complex Analysis, McGraw-Hill, 1966.
[2] D.N. Akhiezer, Lie group actions in complex analysis, Vieweg, 1995.
[3] M. Akivis, Webs and almost Grassmann structures, Soviet Math. Dokl. 21 (1980), 707709.
[4] M. Akivis, V. Goldberg, On the structure of submanifolds with degenerate Gauss maps, Geom. Dedicata 86 (2001), 205-226.
[5] I. Anderson, N. Kamran, The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane, Duke Math. J. 87 (1997), 265-319.
[6] I. Anderson, N. Kamran, P. Olver, Internal, External, and Generalized Symmetries, Adv. Math 100 (1993), 53-100.
[7] M. Audin, J. Lafontaine (eds.), Holomorphic curves in symplectic geometry, Birkhäuser, 1994.
[8] W. Barth, M. Larsen, On the homotopy groups of complex projective algebraic manifolds Math. Scand. 30 (1972), 88-94.
[9] R. Baston, M. Eastwood, The Penrose transform. Its interaction with representation theory, Oxford University Press, 1989.
[10] E. Berger, R. Bryant, P. Griffiths, The Gauss equations and rigidity of isometric embeddings, Duke Math. J. 50 (1983) 803-892.
[11] A.L. Besse, Einstein Manifolds, Springer, 1987.
[12] R. Bishop, There is more than one way to frame a curve, Am. Math. Monthly 82 (1975), 246-251.
[13] A. Bobenko, Exploring surfaces through methods from the theory of integrable systems: Lectures on the Bonnet Problem, preprint (1999), available at http://arXiv.org/math.DG/9909003
[14] R. Bott, L. Tu, Differential forms in algebraic topology, Springer, 1982.
[15] N. Bourbaki, Groupes et algèbres de Lie, Chap. 4-6, Hermann, 1968.
[16] R. Bryant, Conformal and Minimal Immersions of Compact Surfaces into the 4-sphere, J. Diff. Geom. 17 (1982), 455-473.
[17] -, Metrics with exceptional holonomy, Ann. of Math. 126 (1987), 525-576.
[18] —, Rigidity and quasi-rigidity of extremal cycles in Hermitian symmetric spaces, preprint available at arXiv: math.DG/0006186.
[19] R. Bryant, S.-S. Chern, P. Griffiths, Exterior Differential Systems, pp. 219-338 in Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Science Press, Beijing, 1982.
[20] R. Bryant, S.-S. Chern, R.B. Gardner, H. Goldschmidt, P. Griffiths, Exterior Differential Systems, MSRI Publications, Springer, 1990.
[21] R. Bryant, P. Griffiths, Characteristic Cohomology of Differential Systems (II): Conservation Laws for a Class of Parabolic Equations, Duke Math. J. 78 (1995), 531-676.
[22] R. Bryant, P. Griffiths, L. Hsu, Hyperbolic exterior differential systems and their conservation laws (1), Selecta Mathematica (N.S.) 1 (1995), 21-112.
[23] -, Toward a geometry of differential equations, pp. 1-76 in Geometry, topology, and physics, International Press, 1995.
[24] R. Bryant, S. Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989), 829-850.
[25] J. Carlson, D. Toledo, Generic Integral Manifolds for weight two period domains, Trans. $A M S$, to appear.
[26] E. Cartan, Sur la structure des groupes infinis de transformations, Ann. Sci. Ecole Norm. Sup. 26 (1909), 93-161.
[27] -, Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Ecole Norm. Sup. 27 (1910), 109-192.
[28] -, Sur les variétés de courbure constante d'un espace euclidien ou non euclidien, Bull. Soc. Math France 47 (1919) 125-160 and 48 (1920), 132-208; see also pp. 321-432 in Oeuvres Complètes Part 3, Gauthier-Villars, 1955.
[29] —, Sur les variétés à connexion projective, Bull. Soc. Math. Fr. 52 (1924), 205-241.
[30] - , Sur la théorie des systèmes en involution et ses applications à la relativité, Bull. Soc. Math. Fr. 59 (1931), 88-118; see also pp. 1199-1230 in Oeuvres Complètes, Part 2.
[31] —, Les Systèmes Extérieurs et leurs Applications Géométriques, Hermann, 1945.
[32] P. Chaput, Severi varieties, Math. Z. 240 (2002), 451-459.
[33] S.-S. Chern, Selected Papers Vols. 1-4, Springer, 1985/1989.
[34] —, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. Math 45 (1944), 747-752.
[35] -, Pseudo-groupes continus infinis, pp. 119-136 in Colloques Internationaux du Centre National de la Recherche Scientifique: Géométrie différentielle, C.N.R.S, 1953.
[36] -, Complex Manifolds without Potential Theory, Springer, 1979.
[37] —, Deformations of surfaces preserving principal curvatures, pp. 155-163 in Differential Geometry and Complex Analysis, Springer, 1984. (See also Selected Papers, vol. IV.)
[38] S.-S. Chern, R. Osserman, Remarks on the Riemannian metric of a minimal submanifold pp. 49-90 in Geometry Symposium, Utrecht 1980, Lecture Notes in Math. 894, Springer, 1981.
[39] S.-S. Chern, C.-L. Terng, An analogue of Bäcklund's theorem in affine geometry, Rocky Mountain Math J. 10 (1980), 105-124.
[40] J. Clelland, T. Ivey, Parametric Bäcklund Transformations I: Phenomenology, preprint available at http://arXiv.org/abs/math/0208035
[41] D. Cox, S. Katz, Mirror symmetry and algebraic geometry, AMS, 1999.
[42] G. Darboux, Leçons sur la Théorie Générale des Surfaces (3rd ed.), Chelsea, 1972.
[43] M. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.
[44] L. Ein, Varieties with small dual varieties, I, Inventiones Math. 86 (1986), 63-74.
[45] -, Varieties with small dual varieties, II, Duke Math. J. 52 (1985), 895-907.
[46] Ph. Ellia, D. Franco, On codimension two subvarieties of $\mathbf{P}^{5}$ and $\mathbf{P}^{6}$, J. Algebraic Geom. 11 (2002), 513-533.
[47] Y. Eliashberg, L. Traynor (eds.) Symplectic Geometry and Topology, AMS, 1999.
[48] L. Evans, Partial Differential Equations, AMS, 1998.
[49] A.R. Forsyth, Theory of Differential Equations (Part IV): Partial Differential Equations, Cambridge University Press, 1906; also, Dover Publications, 1959.
[50] G. Fubini, E. Cech, Géométrie projective différentielle des surfaces, Gauthier-Villars, 1931.
[51] W. Fulton, J. Hansen, A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings, Ann. of Math. (2) 110 (1979), 159-166.
[52] W. Fulton, J. Harris, Representation theory. A first course, Springer, 1991.
[53] R.B. Gardner, Invariants of Pfaffian Systems, Trans. A.M.S. 126 (1967), 514-533.
[54] -, The Method of Equivalence and Its Applications, SIAM, 1989.
[55] -, Differential geometric methods interfacing control theory, pp. 117-180 in Differential Geometric Control Theory, Birkhäuser, 1983.
[56] R.B. Gardner, W.F. Shadwick, The GS algorithm for exact linearization, IEEE Trans. Autom. Control 37 (1992), 224-230.
[57] J. Gasqui, Sur la résolubilité locale des équations d'Einstein, Compositio Math. 47 (1982), 43-69.
[58] -, Formal integrability of systems of partial differential equations, pp. 21-36 in Nonlinear equations in classical and quantum field theory, Lecture Notes in Phys. 226, Springer, 1985.
[59] I. Gel'fand, S. Fomin, Calculus of Variations, Prentice-Hall, 1963.
[60] I. Gel'fand, M. Kapranov, A. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Birkhäuser, 1994.
[61] H. Goldschmidt, Existence theorems for analytic linear partial differential equations, Ann. of Math. 86 (1967), 246-270.
[62] A.B. Goncharov, Generalized Conformal Structures on Manifolds, Selecta Math. Sov. 6 (1987), 307-340.
[63] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre, Gauthier-Villars, 1890.
[64] -, Recherches sur quelques équations aux dérivées partielles du second ordre, Annales de la Faculté de Toulouse, deuxième serie 1 (1899), 31-78.
[65] Mark L. Green, Generic initial ideals, pp. 119-186 in Six lectures on commutative algebra (J. Elias et al, eds.), Progr. Math. 166, Birkhäuser, 1998.
[66] P. Griffiths, Some aspects of exterior differential systems, pp. 151-173 in Complex geometry and Lie theory, Proc. Sympos. Pure Math. 53 (1991), AMS.
[67] —, Exterior Differential Systems and the Calculus of Variations, Birkhäuser, 1983.
[68] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, 1978.
[69] --, Algebraic geometry and local differential geometry, Ann. Sci. Ecole Norm. Sup. 12 (1979), 355-432.
[70] P. Griffiths, G. Jensen, Differential systems and isometric embeddings, Princeton University Press, 1987.
[71] V. Guillemin, The integral geometry of line complexes and a theorem of Gel'fand-Graev, pp. 135-149 in The mathematical heritage of Elie Cartan, Astérisque Numero Hors Serie (1985).
[72] J. Harris, Algebraic geometry, a first course, Springer, 1995.
[73] Robin Hartshorne, Varieties of small codimension in projective space, Bull. Amer. Math. Soc. 80 (1974), 1017-1032.
[74] F.R. Harvey, Spinors and Calibrations, Academic Press, 1990.
[75] F.R. Harvey, H.B. Lawson, Calibrated geometries, Acta Math. 148 (1982), 47-157.
[76] T. Hawkins, Emergence of the theory of Lie groups. An essay in the history of mathematics 1869-1926, Springer, 2000.
[77] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978.
[78] N. Hitchin, Complex manifolds and Einstein's equations, pp. 73-99 in Twistor geometry and nonlinear systems, Lecture Notes in Math. 970, Springer, 1982.
[79] W.V.D. Hodge, D. Pedoe, Methods of Algebraic Geometry Vol. 2, Cambridge University Press, 1954.
[80] J. Humphreys, Introduction to Lie algebras and representation theory, Springer, 1972.
[81] J.M. Hwang and N. Mok, Uniruled projective manifolds with irreducible reductive $G$ structures, J. reine angew. Math. 490 (1997), 55-64.
[82] J.M. Hwang and N. Mok, Rigidity of irreduicible Hermitian symmetric spaces of the compact type under Kahler deformation, Invent. Math. 131 (1998), 393-418.
[83] B. Ilic and J.M. Landsberg, On symmetric degeneracy loci, spaces of symmetric matrices of constant rank and dual varieties, Math. Ann. 314 (1999), 159-174.
[84] T. Ivey, Surfaces with orthogonal families of circles, Proc. AMS 123 (1995), 865-872.
[85] F. John, Partial Differential Equations (4th ed.), Springer, 1982.
[86] D. Joyce, Compact Riemannian 7-manifolds with holonomy $G_{2}$, I, II, J. Diff. Geom. 43 (1996), 291-375.
[87] D. Joyce, Compact 8-manifolds with holonomy Spin(7), Invent. Math. 123 (1996), 507552.
[88] M. Juráš, I. Anderson, Generalized Laplace invariants and the method of Darboux, Duke Math. J. 89 (1997), 351-375.
[89] E. Kähler, Einfürhung in die Theorie der Systeme von Differentialgleichungen, Teubner, 1934.
[90] N. Kamran, An elementary introduction to exterior differential systems, pp. 151-173 in Geometric approaches to differential equations, Cambridge University Press, 2000.
[91] S. Kleiman, Tangency and duality, pp. 163-225 in Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., vol. 6, Amer. Math. Soc., 1986.
[92] M. Kline, Mathematical Thought from Ancient to Modern Times, Oxford University Press, 1972.
[93] A. Knapp, Lie groups beyond an introduction, Birkhäuser, 1996.
[94] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vols. 1,2, Wiley, 1963/1969.
[95] S. Kobayashi, T. Ochiai, Holomorphic structures modeled after compact Hermitian symmetric spaces, pp. 207-222 in Manifolds and Lie groups, Birkhäuser, 1981.
[96] J.Krasil'shchick, A.M. Vinogradov (eds.), Symmetries and conservation laws for differential equations of mathematical physics, American Math. Society, 1999.
[97] M. Kuranishi, Lectures on exterior differential systems, Tata Institute, Bombay, 1962.
[98] M. Kuranishi, CR geometry and Cartan geometry, Forum Math. 7 (1995), 147-205.
[99] J.M. Landsberg, Minimal submanifolds defined by first-order systems of PDE, J. Diff. Geom. 36 (1992), 369-415.
[100] -, On second fundamental forms of projective varieties, Inventiones Math. 117 (1994), 303-315.
[101] -, On degenerate secant and tangential varieties and local differential geometry, Duke Mathematical Journal 85 (1996), 605-634.
[102] -, Differential-geometric characterizations of complete intersections, J. Diff. Geom. 44 (1996), 32-73.
[103] -, Introduction to $G$-structures via three examples, pp. 133-149 in Web theory and related topics, World Scientific, 2001,
[104] -, Exterior differential systems: a geometric approach to pde, pp. 77-101 in Topology and Geometry, Proc. Workshop Pure Math. vol. 17, Korean Academic Council, 1998.
[105] —, On the infinitesimal rigidity of homogeneous varieties, Compositio Math. 118 (1999), 189-201.
[106] -, Is a linear space contained in a submanifold? - On the number of derivatives needed to tell, J. reine angew. Math. 508 (1999), 53-60.
[107] -, Algebraic geometry and projective differential geometry, Lecture Notes Series, vol. 45., Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1999.
[108] -, Lines on algebraic varieties, to appear in J. reine angew. Math..
[109] —, Griffiths-Harris rigidity of compact Hermitian symmetric spaces, preprint.
[110] J.M. Landsberg, L. Manivel, On the projective geometry of homogeneous varieties, Commentari Math. Helv. 78 (2003), 65-100.
[111] - , Construction and classification of complex simple Lie algebras via projective geometry, Selecta Math. (N.S.) 8 (2002), 137-159.
[112] - , The projective geometry of Freudenthal's magic square, J. Algebra 239 (2001), 477-512.
[113] H.B. Lawson, M. Michelsohn, Spin geometry, Princeton University Press, 1989.
[114] R. Lazarsfeld, Positivity in algebraic geometry, preprint.
[115] M. van Leeuwen, LiE, a computer algebra package, available at http://young.sp2mi.univ-poitiers.fr/ marc/LiE/.
[116] S. L'vovsky, On Landsberg's criterion for complete intersections, Manuscripta Math. 88 (1995), 185-189.
[117] B. Malgrange, L'involutivité générique des systèmes différentiels analytiques, C. $R$. Acad. Sci. Paris, Ser. I 326 (1998), 863-866.
[118] R. Mayer, Coupled contact systems and rigidity of maximal dimensional variations of Hodge structure, Trans. AMS 352 (2000), 2121-2144.
[119] R. McLachlan, A Gallery of Constant-Negative-Curvature Surfaces, Math. Intelligencer 16 (1994), 31-37.
[120] M. Melko, I. Sterling, Integrable systems, harmonic maps and the classical theory of surfaces, pp. 129-144 in Harmonic Maps and Integrable Systems, Vieweg, 1994.
[121] J. Milnor, Topology from the differentiable viewpoint, U. Virginia Press, 1965.
[122] D. Mumford, Algebraic Geometry I: Complex projective varieties, Springer, 1976.
[123] R. Muñoz, Varieties with degenerate dual variety, Forum Math. 13 (2001), 757-779.
[124] I. Nakai, Web geometry and the equivalence problem of the first order partial differential equations, pp. 150-204 in Web theory and related topics, World Scientific, 2001.
[125] T. Ochiai, Geometry associated with semisimple flat homogeneous spaces. Trans. AMS 152 (1970), 159-193.
[126] C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Progress in Mathematics 3, Birkhauser, 1980.
[127] P. Olver, Applications of Lie Groups to Differential Equations (2nd ed.), Springer, 1993.
[128] - , Equivalence, Invariants, and Symmetry, Cambridge University Press, 1995.
[129] G. Pappas, J. Lygeros, D. Tilbury, S. Sastry, Exterior differential systems in control and robotics, pp. 271-372 in Essays on mathematical robotics, Springer, 1998.
[130] J. Piontkowski, Developable varieties of Gauss rank 2, Internat. J. Math. 13 (2002), 93-110.
[131] Z. Ran, On projective varieties of codimension 2 Invent. Math. 73 (1983), 333-336.
[132] C. Rogers, Bäcklund transformations in soliton theory, pp. 97-130 in Soliton theory: a survey of results (A. P. Fordy, ed.), St. Martin's Press, 1990.
[133] C. Rogers, W. Schief, Bäcklund and Darboux Transformations, Cambridge University Press, 2002.
[134] C. Rogers, W. Shadwick, Bäcklund Transformations and Their Applications, Academic Press, 1982.
[135] E. Sato, Uniform vector bundles on a projective space, J. Math. Soc. Japan 28 (1976), 123-132.
[136] B. Segre, Bertini forms and Hessian matrices, J. London Math. Soc. 26 (1951), 164176.
[137] C. Segre, Preliminari di una teoria delle varietà luoghi di spazi, Rend. Circ. Mat. Palermo XXX (1910), 87-121.
[138] W. Shadwick, The KdV Prolongation Algebra, J. Math. Phys. 21 (1980), 454-461.
[139] R. Sharpe, Differential geometry: Cartan's generalization of Klein's Erlangen program, Springer, 1997.
[140] G.F. Simmons, Differential Equations, with Applications and Historical Notes, McGraw-Hill, 1972.
[141] M. Spivak, Calculus on Manifolds, Benjamin, 1965.
[142] -, A Comprehensive Introduction to Differential Geometry (3rd ed.), Publish or Perish, 1999.
[143] O. Stormark, Lie's Structural Approach to PDE Systems, Encyclopedia of Mathematics and its Applications, v. 80, Cambridge University Press, 2000.
[144] V. Strassen, Relative bilinear complexity and matrix multiplication, J. Reine Angew. Math. 413 (1991), 127-180.
[145] S. Sternberg, Lectures on differential geometry, Chelsea, 1983.
[146] D.J. Struik, Lectures on Classical Differential Geometry (2nd ed.), Addison-Wesley, 1961; Dover, 1988.
[147] A. Terracini, Alcune questioni sugli spazi tangenti e osculatori ad una varieta, I, II, III, Atti della Societa dei Naturalisti e Matematici Torino 49 (1914), 214-247.
[148] E. Tevelev, Projectively Dual Varieties, preprint available at http://arXiv.org/math.AG/0112028
[149] P.J. Vassiliou, Darboux Integrability and Symmetry, Trans. AMS 353 (2001), 17051739.
[150] M. Wadati, H. Sanuki, and K. Konno, Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws Progr. Theoret. Phys. 53 (1975), 419-436.
[151] H. Wahlquist, F. Estabrook, Prolongation structures of nonlinear evolution equations. J. Math. Phys. 16 (1975), 1-7.
[152] - , Prolongation structures, connection theory and Bäcklund transformations, pp. 6483 in Nonlinear evolution equations solvable by the spectral transform, Res. Notes in Math., vol. 26, Pitman, 1978.
[153] F. Warner, Foundations of differentiable manifolds and Lie groups, Springer, 1983.
[154] K. Yamaguchi, Differential Systems Associated with Simple Graded Lie Algebras, pp. 413-494 in Progress in Differential Geometry, Adv. Stud. Pure Math., vol 22., Math. Soc. Japan, 1993.
[155] D. Yang, Involutive hyperbolic differential systems, A.M.S. Memoirs \# 370 (1987).
[156] K. Yang, Exterior differential systems and equivalence problems, Kluwer, 1992.
[157] F. Zak, Tangents and Secants of Algebraic Varieties, Translations of mathematical monographs vol. 127, AMS, 1993.
[158] M.Y. Zvyagin, Second order equations reducible to $z_{x y}=0$ by a Bäcklund transformation, Soviet Math. Dokl. 43 (1991) 30-34.

## Index

II, Euclidean second fundamental form, 46
$I I$, projective second fundamental form, 77
$\left|I I_{M, x}\right|, 80$
III, projective third fundamental form, 96
III ${ }^{v}, 129$
$\Gamma(E)$, smooth sections of $E, 335$
$\Gamma_{\alpha, i}^{\beta}, 277$
$\Delta r_{\alpha \beta \gamma}^{\mu}, 95$
$\Lambda^{2} V, 313$
$\Lambda^{k} V, 314$
$\Xi_{A}$, characteristic variety of a tableau, 157
$\Omega^{k}(M), \Omega^{*}(M), 336$
$\Omega^{k}(M, V), 338$
$\Omega^{(p, q)}(M), 345$
$\delta_{\sigma}(X)$, secant defect, 129
$\delta_{\tau}(X)$, tangential defect, 129
$\delta_{*}$, dual defect, 120
$\phi^{*}$, pullback by $\phi, 337$
$\phi_{*}$, pushforward by $\phi, 337$
$\kappa_{g}, 59$
$\kappa_{n}, 60$
$\tau(X)$, tangential variety, 86
$\tau(Y, X), 131$
$\tau_{g}, 60$
$A^{(1)}, 147$
$A^{(l)}, 147$
$\operatorname{Ann}(v), 129$
ASO (2), 12
ASO (3), 23
as space of frames, 24
Baseloc | $I I_{M, x} \mid, 80$
$C^{\infty}(M), 335$
$c_{k}$, codimension of polar space, 256
$C l(V, Q), 331$
$d$, exterior derivative, 337
$\underline{d}^{k}, 97$
det, 102
det, 315
$\mathbb{E}^{3}$, Euclidean three-space, 2
$E_{6}$, exceptional Lie group, 102
$\operatorname{End}(V), 312$
$\mathcal{F}(M), 49$
$\mathcal{F}^{1}$
Euclidean, 37
projective, 78
$F_{4}$, exceptional Lie group, 102
$F_{4}$, differential invariant, 107
$F_{k}, 108$
$\mathbb{F F}^{k}, 97$
$\left|\mathbb{F F}^{k}\right|, 97$
$\mathfrak{g}$, Lie algebra of Lie group $G, 17$
$G_{2}$, exceptional Lie group, 323
$G(k, V)$, Grassmannian, 72
$\mathbf{G}(n, m), 198$
$\mathbf{G}(n, T \Sigma), 177$
$G L(V), 316$
$G r(k, V)$, orthogonal Grassmannian, 75
$H^{0,2}(A), 175$
$H^{i, j}(A), 180$
$\mathcal{H}^{i, j}(\mathfrak{g}), 283$
$\operatorname{Hol}_{u}{ }_{u}, 287$
$\operatorname{Hom}(V, W), 312$
$\mathcal{I}$, differential ideal, 340
$\mathcal{I}^{k}, k$-th homogeneous component of $\mathcal{I}, 340$
$I^{(1)}$, derived system, 216
$(I, J)$, linear Pfaffian system, 164
$J(Y, Z)$, join of varieties, 86
$\mathcal{K}(V), 330$
$\mathcal{L}_{X}$, Lie derivative, 339
$\mathfrak{m}_{x}$, functions vanishing at $x, 335$
$O(V, Q)$, orthogonal group, 317
( $p, q$ )-forms, 345
[ $R_{\theta}$ ], 282
$S^{2} V, 313$
$S^{k} V, 314$
$s_{k}$
characters of a tableau, 154
characters of an EDS, 258
$\mathbb{S}_{m}$, spinor variety, 106
Singloc $\left|I I_{M, x}\right|, 80$
$S L(V), S L_{n}$, special linear group, 317
$S O(V, Q)$, special orthogonal group, 317
$S p(V, \omega)$, symplectic group, 317
$S U(n)$, special unitary group, 319
$\mathbb{T}(V), 273$
$T M$, tangent bundle, 335
$T^{*} M$, cotangent bundle, 335
$T_{x} M$, tangent space, 335
$T_{x}^{*} M$, cotangent space, 335
$U(n)$, unitary group, 319
$V_{\mathbb{C}}$, complexification of $V, 343$
$X_{\text {smooth }}, 82$
[ $X, Y$ ], 336
-, interior product, 315
$\nabla, 277$
$\otimes$, tensor product, 312
\#, 53
$\}$, linear span, 340
$\left\}_{\text {alg }}, 340\right.$
$\left\}_{\text {diff }}, 340\right.$
abuse of notation, 29, 72, 170
adjoint representation, 321
affine connection, 285
affine tangent space, 76
algebraic variety, 82
degree of, 82
dimension of, 82
general point of, 83
ideal of, 82
almost complex manifold, 274, 282, 344
almost complex structure, 344
almost symplectic manifold, 274
Ambrose-Singer Theorem, 290
apparent torsion, 165
arclength parameter, 14
associated hypersurface, 124
associated varieties, 123
associative submanifolds, 201, 265
associator, 325
asymptotic directions, 80
asymptotic line, 60, 226, 238
Bäcklund transformations, 235-241
Bäcklund's Theorem, 237
basic differential form, 339
Bertini Theorem, 112
higher-order, 112

Bertrand curve, 26
Bezout's Theorem, 82
Bianchi identities, 53-54
Bonnet surface, 44, 231
Burger's equation, 208, 232
calibrated submanifold, 198
calibration, 197
associative, 201
Cayley form, 202
coassociative, 201
special Lagrangian, 200
canonical system
on Grassmann bundle, 177
on space of jets, 28
Cartan geometry, 296
Cartan integer, 156, 179
Cartan Lemma, 314
Cartan system, 209
Cartan's algorithm for linear Pfaffian systems, 178
Cartan's five variables paper, 217
Cartan's Test, 256
Cartan-Dieudonné Theorem, 331
Cartan-Janet Theorem, 192
Cartan-Kähler Theorem, 254-256
for linear Pfaffian systems, 176
for tableaux, 156
Goldschmidt version, 181
catenoid, 43
Cauchy problem, 349
Cauchy-Kowalevski form, 350
Cauchy-Kowalevski Theorem, 243, 351
Cauchy-Riemann equations, 347
tableau, 144, 156
Cayley submanifold, 202
character of a tableau, 156
characteristic hyperplane, 181
characteristic systems (Monge), 213
characteristic variety, 157
dimension and degree of, 159
characteristics
Cauchy, 205, 259
quotient by, 210
confounded, 213
first-order, 214
method of, 207-208
Monge, 213
characters, 258
of linear Pfaffian system, 179
of tableau, 154
Chebyshev net, 227
Christoffel symbols, 277
Clifford algebras, 331
fundamental lemma of, 332
Clifford torus, 58
co-roots, 329
coassociative submanifold, 201
Codazzi equation
for Darboux frames, 43
matrix form, 49
codimension, 245
coisotropic hypersurface, 124
complete intersection, 140
complex characteristic variety, 158
complex contact structure, 348
complex manifold, 343, 344
complex structure, 318, 344
complexification
of a real vector space, 318
cone, 44
characterization of, 125
over a variety, 86
connection
affine, 285
on coframe bundle, 278-283
on induced vector bundles, 284
on vector bundle, 277
symmetric, 285
connection form, 279
conormal space, of submanifold in $\mathbb{P}^{N}, 77$
contact manifold, 33
contact system
on space of jets, 28
contact, order of, 83
cotangent
bundle, 335
space, 335
covariant differential operator, 54, 277
cubic form, 94
curvature
Gauss, 38
geometric interpretation of, 47
in coordinates, 4
mean, 38
geometric interpretation of, 68
in coordinates, 4
of curve in $\mathbb{E}^{2}, 14$
of curve in $\mathbb{E}^{3}, 25$
of $G$-structure, 280
Ricci, 53, 262
scalar, 53, 262, 266, 330
sectional, 53
traceless Ricci, 330
Weyl, 330
curvature-line coordinates, 188
curve
arclength parameter, 14
Bertrand, 26
regular, 13
speed of, 14
curve in $\mathbb{E}^{2}$
curvature, 14
osculating circle, 14
curve in $\mathbb{E}^{3}$
curvature, 25
differential invariants, 25-26
torsion, 25
cylinder, 44
Darboux
-integrable, 218, 239
method of, 217-222
semi-integrable, 222
Darboux frame, 42
Darboux's Theorem, 32
de Rham Splitting Theorem, 289
decomposable tensor, 312
derived flag, 216
derived system, 216
determinant
of linear endomorphism, 315
developable surface, 40
differential form, 336
basic, semi-basic, 339
closed, 338
homogeneous, 340
left-invariant, 17
vector-valued, 338
differential ideal, 340
differential invariant
Euclidean, 3
dual basis, 311
dual variety, 87,118
defect of, 120
reflexivity, 119
dual vector space, 311
Dupin
cyclides of, 361
theorem of, 253
$e$-structure, 304
embedded tangent space, 76
Engel structure, 217
equivalent
$G$-structures, 275
webs, 268
Euclidean group, 23
Euler characteristic, 62
exterior derivative, 337-338
exterior differential system, 29
hyperbolic, 214-215
linear Pfaffian, 164
Pfaffian, 341
symmetries, 204-205
with independence condition, 27
face of calibration, 199
first fundamental form (Riemannian), 46
first-order adapted frames (Euclidean), 45
flag
$A$-generic, 154
complete, 85
derived, 216
partial, 85
flag variety, 85,316
flat
$G$-structure, 275
3-web, 268
path geometry, 296
Riemannian manifold, 52
isometric immersions of, 194
surface, 41
flow of a vector field, 6
flowbox coordinates, 6
flowchart for Cartan's algorithm, 178
focal hypersurface, 89
focal surface, 237, 266
frame
Darboux, 42
frame bundle
general, 49
orthonormal, 50
Frenet equations, 25
Frobenius ideal, 11
Frobenius structure, 308
Frobenius system
tableau of, 146
Frobenius Theorem, 10-12, 30
proof, 30
Fubini cubic form, 94
Fubini forms, 94, 107
Fulton-Hansen Theorem, 130
fundamental form
effective calculation of, 97
$k$-th, 97
prolongation property of, 97
via spectral sequences, 98
$G$-structure, 267-275
1-flat, 280
2-flat, 281
curvature, 280, 282
definition, 274
flat, 275
prolongation, 281
$G / H$-structure of order two, 296
Gauss curvature
geometric interpretation of, 47
in coordinates, 4
via frames, 36-38
Gauss equation, 47
Gauss image, 77
characterization of, 93
Gauss map
algebraic, 55
Euclidean, 46
projective, 77
varieties with degenerate, 89
Gauss' theorema egregium, 48
Gauss-Bonnet formula, 64
Gauss-Bonnet theorem, 62
for compact hypersurfaces, 64
local, 60
Gauss-Bonnet-Chern Theorem, 65
general point, 83
generalized conformal structure, 309
generalized Monge system, 139
generic point, 83
geodesic, 59
of affine connection, 285
geodesic curvature, 59
geodesic torsion, 60
Grassmann bundle, 177
canonical system on, 177
Grassmannian, 72, 316
isotropic, 84
tangent space of, 73
half-spin representation, 107
Hartshorne's conjecture, 140
heat equation, 350
helicoid, 39
Hermitian form, 319
Hermitian inner product, 319
hexagonality, 271
higher associated hypersurface, 124
holomorphic map, 345
holonomy, 286-295
holonomy bundle, 287
holonomy group, 287
homogeneous space, 15
Hopf differential, 230
horizontal curve, 287
horizontal lift, 287
hyperbolic space, 58
isometric immersions of, 197
hyperplane section of a variety, 88
hypersurfaces in $\mathbb{E}^{N}$
fundamental theorem for, 55
ideal
algebraic, 340
differential, 340
Frobenius, 11
incidence correspondence, 88
independence condition, 27
index of a vector field, 61
index of relative nullity, 80
induced vector bundle, 283
initial data, 349
initial value problem, 349
integrable extension, 232
via conservation law, 233
integral
intermediate/general, 219
integral curve, 5
integral element, 27
Kähler-ordinary, 245
Kähler-regular, 249
ordinary, 256
integral manifold, 27, 29
interior product, 315
involutive
integral element, 256
linear Pfaffian system, 176
tableau, 155
isometric embedding, 169-173
isothermal coordinates, 57
existence of, 185
isotropic Grassmannian, 84
isotropy representation, 16
Jacobi identity, 320
jets, 27
join of varieties, 86
Kähler manifold, 199
KdV equation, 234, 236
prolongation algebra, 235
Killing form, 323
Laplace system
tableau for, 157
Laplace's equation, 223
Laplacian, 56
left action, 15
left-invariant
differential form, 17
vector field, 17,320
level, 155
Lie algebra, 320
of a Lie group, 17
semi-simple, 327
simple, 327
Lie bracket, 336
Lie derivative, 339
Lie group, 316
linear representation of, 316
matrix, 16, 316-318
Maurer-Cartan form of, 17
lift, 16
first-order adapted, 37
line congruence, 237
line of curvature, 60, 253
isothermal coordinates along, 188
linear map, 311
transpose/adjoint of, 312
linear normality
Zak's theorem on, 128
linear Pfaffian systems, 164

Cartan's algorithm for, 178
involutivity, 176
linear projection of variety, 88
linear syzygy, 111
Liouville's equation, 218, 237
locally ruled variety, 89
locally symmetric, 290
majorants, 150
manifold
contact, 33
restraining, 255
symplectic, 31
matrix Lie groups, 316-318
Maurer-Cartan equation, 18
Maurer-Cartan form
of a matrix Lie group, 17
of an arbitrary Lie group, 17
maximal torus, 327
mean curvature
geometric interpretation of, 68
in coordinates, 4
via frames, 36-38
mean curvature vector, 69
minimal hypersurfaces, 266
minimal submanifold, 197
minimal surface, 68, 228-229
Riemannian metric of, 186
minimizing submanifold, 197
minuscule variety, 104
modified KdV equation, 234
Monge's method, 224
Monge-Ampère
equation, 222
system, 223
moving frame, 4
adapted, 12
multilinear, 312
multiplicity of intersection, 83
musical isomorphism, 53
Newlander-Nirenberg Theorem, 345
Nijenhuis tensor, 346
non-characteristic initial data, 157
nondegenerate quadratic form, 322
normal bundle, 46, 66
normal curvature, 60
normal space, of submanifold in $\mathbb{P}^{N}, 77$
octonions, 324-326
orthogonal Grassmannian, 75
orthogonal group, 317
orthogonal involutive Lie algebra, 291
osculating circle, 14
osculating hypersurface, 109, 111
osculating quadric hypersurface, 109
parabolic subgroup, 84, 104
parallel surfaces, 225
parallel transport, 287
path geometry, 295-308
definition of, 295, 298
dual, 297
flat, 296
Pfaff's Theorem, 33
Pfaffian, 322
Pfaffian system, 341
linear, 164
Picard's Theorem, 5, 10
Poincaré-Hopf Theorem, 62
point transformation, 295
polar spaces, 246-248
principal curvatures, 39
principal framing, 42
principal symbol, 145
projective differential invariants in coordinates, 108
projective second fundamental form, 77
coordinate description of, 81
frame definition of, 79
projective structure, 286
prolongation, 147, 177, 214, 220
of a $G$-structure, 281
prolongation property, 97 strict, 105
prolongation structures, 233
pseudospherical surfaces, 226-227
Bäcklund transformation for, 237
of revolution, 227
pullback, 337
pushforward, 337
rank
of a Lie algebra, 327
of a Pfaffian system, 341
of a tensor, 313
rational homogeneous variety, 83
reductive
Lie group/Lie algebra, 327
refined third fundamental form, 129
regular curve, 13
regular second-order PDE, 174
relative tangent star, 131
representation
isotropy, 16
of Lie algebra, 320
of Lie group, 316
restraining manifold, 255
retracting space, 209
Ricci curvature, 53, 262
Riemann curvature tensor, 52-55, 273
Riemann invariant, 217
Riemann surface, 346
Riemannian geometry, 271-273
fundamental lemma, 50-51, 273
Riemannian manifold, 47
flat, 52
Riemannian metric, 46, 47
right action, 15
root, 328
root system, 328
ruled surface, 41
ruled variety, 113
$S$-structure, 309
scalar curvature, 53, 262, 266, 330
Schur's Lemma, 317
Schwarzian derivative, 22
secant defect, 129
secant variety, 86
second fundamental form
base locus of, 80
Euclidean, 46
projective, 77
singular locus of, 80
second-order PDE
characteristic variety, 182
classical notation, 174
tableau, 175
section
of vector bundle, 335
sectional curvature, 53
Segre product of varieties, 84
fundamental forms of, 101
Segre variety, 84, 159
fundamental forms of, 100
semi-basic form, 339
semi-Riemannian manifold, 274
semi-simple Lie algebra, 327
Severi variety, 102
fundamental form of, 103
Zak's theorem on, 128
signature
of quadratic form, 322
simple Lie algebra, 327
sine-Gordon equation, 223, 226, 235
singular solutions, 191
space form, 57
isometric immersions of, 194
special Lagrangian submanifolds, 200, 265
special linear group, 317
special orthogonal group, 317
special unitary group, 319
Spencer cohomology, 180
spin representation, 106, 107
spinor variety, 85,106
stabilizer type, 282
submanifold
associative, 265
Lagrangian, 185, 264
special Lagrangian, 200, 265

```
surface
    Bonnet, 44
    catenoid,43
    cone, 44
    constant mean curvature, 229-231
    cylinder, 44
    developable, 40
    flat,41
    focal, 237, 266
    helicoid, 39
    isothermal coordinates on, 57
    linear Weingarten, 183, 224, }26
    minimal, 68, 228
    of revolution, 41, 227
    parallel, 225
    pseudospherical, 226
    ruled, 41
    warp of, 4
    with degenerate Gauss image, 91
symbol mapping, 157
symbol relations, 145, 174
symmetric connection, 285
symmetric Lie algebra, 291
symmetric space, 290
symmetries, 241
symplectic form, 32, 185, 199, 212, 264, 317
symplectic group, 317
symplectic manifold, 31
tableau, 145
    determined, 158
    of linear Pfaffian system, 174
    of order p,147
tangent
    bundle, 335
    space, 335
tangent star, 86
tangential defect, }12
    critical, 135
tangential surface, 40
tangential variety, }8
    dimension of, 128
tautological EDS
    for torsion-free G-structures, 293
tautological form
    for coframe bundle, 49
    tensor product, 312
Terracini's Lemma, }8
third fundamental form
    projective, 96
torsion
    of connection, 279
    of curve in \mathbb{E}}\mp@subsup{\mathbb{E}}{}{3},2
    of G-structure, 280
    of linear Pfaffian system, 165, 175
transformation
    Bäcklund, 232, 236
```

Zak's theorem
on linear normality, 128
on Severi varieties, 128
on tangencies, 131

This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. The book presents thorough and modern treatments of both subjects, including their applications to classic and contemporary problems.

The book begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally, with motivating examples leading to definitions, theorems, and proofs.
Once the basics of the methods are established, applications and advanced topics are developed. One particularly notable application is to complex algebraic geometry, where important results from projective differential geometry are expanded and updated. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs, via Darboux's method, the method of characteristics, and Cartan's method of equivalence.

This text is suitable for a one-year graduate course in differential geometry. It has numerous exercises and examples throughout. The book will also be of use to experts in such areas as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.

