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Preface 

The notion of singularity is basic to mathematics. In elementary algebra 
singularity appears as a multiple root of a polynomial. In geometry a point 
in a space is non-singular if it has a tangent space whose dimension is the 
same as that of the space. Both notions of singularity can be detected 
through the vanishing of derivitives. 

Over an algebraically closed field, a variety is non-singular at a point 
if there exists a tangent space at the point which has the same dimension 
as the variety. More generally, a variety is non-singular at a point if its 
local ring is a regular local ring. A fundamental problem is to remove a 
singularity by simple algebraic mappings. That is, can a given variety be 
desingularized by a proper, birational morphism from a non-singular variety? 
This is always possible in all dimensions, over fields of characteristic zero. 
We give a complete proof of this in Chapter 6. 

We also treat positive characteristic, developing the basic tools needed 
for this study, and giving a proof of resolution of surface singularities in 
positive characteristic in Chapter 7. 

In Section 2.5 we discuss important open problems, such as resolution 
of singularities in positive characteristic and local monomialization of mor-
phisms. 

Chapter 8 gives a classification of valuations in algebraic function fields 
of surfaces, and a modernization of Zariski's original proof of local uni-
formization for surfaces in characteristic zero. 

This book has evolved out of lectures given at the University of Mis­
souri and at the Chennai Mathematics Institute, in Chennai, (also known 
as Madras), India. It can be used as part of a one year introductory sequence 
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vm Preface 

in algebraic geometry, and would provide an exciting direction after the ba­
sic notions of schemes and sheaves have been covered. A core course on 
resolution is covered in Chapters 2 through 6. The major ideas of resolution 
have been introduced by the end of Section 6.2, and after reading this far, 
a student will find the resolution theorems of Section 6.8 quite believable, 
and have a good feel for what goes into their proofs. 

Chapters 7 and 8 cover additional topics. These two chapters are inde­
pendent, and can be chosen as possible followups to the basic material in 
the first 5 chapters. Chapter 7 gives a proof of resolution of singularities 
for surfaces in positive characteristic, and Chapter 8 gives a proof of local 
uniformization and resolution of singularities for algebraic surfaces. This 
chapter provides an introduction to valuation theory in algebraic geometry, 
and to the problem of local uniformization. 

The appendix proves foundational results on the singular locus that we 
need. On a first reading, I recommend that the reader simply look up 
the statements as needed in reading the main body of the book. Versions 
of almost all of these statements are much easier over algebraically closed 
fields of characteristic zero, and most of the results can be found in this case 
in standard textbooks in algebraic geometry. 

I assume that the reader has some familiarity with algebraic geometry 
and commutative algebra, such as can be obtained from an introductory 
course on these subjects. This material is covered in books such as Atiyah 
and MacDonald [13] or the basic sections of Eisenbud's book [37], and 
the first two chapters of Hartshorne's book on algebraic geometry [47], or 
Eisenbud and Harris's book on schemes [38]. 

I thank Professors Seshadri and Ed Dunne for their encouragement to 
write this book, and Laura Ghezzi, Tai Ha, Krishna Hanamanthu, Olga 
Kashcheyeva and Emanoil Theodorescu for their helpful comments on pre­
liminary versions of the manuscript. 

For financial support during the preparation of this book I thank the 
National Science Foundation, the National Board of Higher Mathematics of 
India, the Mathematical Sciences Research Insititute and the University of 
Missouri. 

Steven Dale Cutkosky 
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