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Preface 

The goal of this textbook is to provide an introduction to the language 
and methods of functional analysis, including chapters on Hilbert 
spaces, operator theory, basic theorems and methods of abstract func­
tional analysis and a few applications of these methods to Banach 
algebras and the theory of unbounded self-adjoint operators. 

The text represents notes for a series of two courses (12 to 14 weeks 
each; 3 hours weekly and 1 hour of exercises and discussions for both 
courses): 

(i) Introduction to Hilbert spaces and operator theory (Chapters 1-7), 

(ii) Introduction to functional analysis (Chapters 8-11). 

I gave these courses for many years at Tel Aviv University and 
also, once in 1995, at the Ohio State University (OSU), Columbus. 
That one time at OSU was a very lucky time for me, because my then 
Ph.D. student Antonis Tsolomitis worked on my very rough notes of 
the lectures and suggested creating this book. He was indispensable 
in his role in our joint effort, and the book would not have come to 
publication without his agreement to join me in writing it. 

Another stroke of luck came my way with the huge wave of em­
igration of Russian mathematicians in the i99o's. Among them was 
Dr. Yuli Eidelman, who at the start of his career here had time to assist 
me in the courses. He prepared exercises and material suitable for 
discussions. So, the final textbook is the result of the efforts of all three 
of us, Tony, Yuli and myself. 

XI 
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A few words about functional analysis and some necessary back­
ground: one very important goal of mathematics is to develop a 
language, a so-called "mathematical language". Firstly, it is needed 
for the very precise exchange of thoughts, and secondly—and not 
less importantly—we develop the terminology which fixes our under­
standing and catches new mathematical observations and laws. This 
continuously developing terminology "compresses" achievements of 
the previous stage of development of mathematics into "spoken lan­
guage". Once deep theorems become a language and we no longer 
(need to) think of them as theorems, it helps us to "free" our minds in 
preparation for a new portion of mathematics. 

(For example: we say "a linear space of dimension n", but a deep 
theorem stands behind this sentence. The notion of "dimension" is a 
theorem which students study in a linear algebra course.) 

The most important role of functional analysis was to develop a 
mathematical language. Functional analysis became the language of 
twetnieth century mathematics (more precisely its part called analysis) 
and theoretical physics. Even articles on popular science and science 
fiction books use this language and talk about "operators" and their 
"spectrum". 

To teach students to speak in this language is the main goal of this 
textbook. Numerous theorems (sometimes very short in their proofs) 
should help us in the end to feel comfortable with new notions, to get 
used to them, to speak new words without painful efforts to recall what 
they mean. They should become a part of the reader's mathematical 
culture. 

We would like to emphasize that we took special care to be brief and 
not to overload the students (and other readers) with the enormous 
amount of information available on the subject. Over the years we have 
checked that the amount of mathematics presented in this course is 
absorbable in a year's study and provides the basis for future reading. 

Vitali Milman 
Tel Aviv, Israel 



Introduction 

As mentioned in the Preface, the text corresponds to two courses (12 to 

14 weeks each; 3 hours weekly and 1 hour of exercises and discussions 

for both courses): 

(i) Introduction to Hilbert spaces and operator theory (Chapters 1-7), 
(ii) Introduction to functional analysis (Chapters 8-11). 

These courses require only the knowledge from any first course in 
Linear Algebra. However, for the second course it would be useful if 
the reader had some knowledge of measure theory. 

The book does not contain any "additional" chapters. Material, 
although important but which cannot be condensed into these two 
courses in the time available, without overloading the reader's ability 
to digest new notions and facts, is not included. 

The reader may look at the bibliography for books that complement 
the material of this text. Moreover, one can see there other possibilities 
for presenting the same results. 

In Chapter 1 we introduce linear spaces and normed spaces and 
we give some first, but important, examples. The spaces Lv[a,b\ are 
introduced through the completion of the continuous functions with 
the Lp-norm in order to avoid requiring the knowledge of measure 
theory from the reader. 

In the second chapter, Hilbert spaces are introduced and we prove 
basic facts about them. Linear functional are also introduced in this 

Xlll 
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chapter, which closes with a natural example of a non-separable Hilbert 
space. 

Chapter 3 discusses the notion of the dual Banach spaces. The 
Hahn-Banach theorem is stated here without proof and with the stan­
dard corollaries, needed for the rest of the course. The Hahn-Banach 
theorem is proved in the second course, in Chapter 9. 

Chapter 4 introduces the bounded linear operators, the compact 
operators, the dual operators and the invertible operators. We also 
discuss a different kind of convergence in the space of bounded op­
erators. Here we state the open mapping theorem and we postpone 
its proof until Chapter 9 (the Banach-Steinhaus theorem is not stated 
before Chapter 9 since it can certainly be avoided until then). 

Chapter 5 is on spectral theory for the general operator. The clas­
sification of spectrum is discussed here as well as the development of 
Fredholm theory. 

In Chapters 6 and 7 we focus our attention on the spectral theory 
of self-adjoint operators. The spectral integral is also given here. 

Although Chapter 8, on the spectral theory of unitary operators, 
would fit more naturally into the first part of this course, we advise 
postponing dealing with it until Chapter 11, on unbounded symmetric 
operators. One reason is that the concepts of spectral theory and the 
spectral integral are not easy to absorb at first, and it is worthwhile 
returning later to basics to tackle them. Another reason is that the 
spectral theory of unbounded self-adjoint operators and the Cayley 
transform naturally begin with the understanding of unitary operators. 

Chapter 9 contains the general, more classical results which form 
the base and the methods of functional analysis. Besides the main 
theorems of the theory and the central notions of weak and weak* 
topology, we selected a number of "branch" results, with a twofold 
goal in mind. We want to demonstrate how the method works and we 
want to get used to the notion and language of functional analysis; and 
we also want to use this opportunity to introduce additional important 
notions and enlarge the picture. 

We selected the two remaining chapters of the course for the follow­
ing reasons. First, we want to show that, by adding natural structure 
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to the basic notion of Banach space, we quickly derive deep, rich and 
very concrete analytic consequences. So, Chapter 10 provides an in­
troduction to Gelfand's beautiful theory of Banach algebras. 

At this stage, the reader may get the feeling that the whole of func­
tional analysis is about "good", "well-organized" objects. To remove 
this misapprehension and to show that the methods of functional anal­
ysis can deal with less "good" objects, e.g., unbounded operators, we 
consider unbounded symmetric operators and present the spectral 
theory of self-adjoint (unbounded) operators in Chapter 11. 

There are many books written on this subject. Some of them are 
strictly textbooks, and some are more of a monograph type. We men­
tion some of them in the bibliography at the end of the book. We 
would like to mention especially the books [GGK03] by I. Gohberg, 
S. Goldberg and M.A. Kaashoek and [AKR78] by A.B. Antonevich, 
P.N. Knyazev and Ya.V. Radyno, which were helpfull for us when 
preparing some of the exercises. We recommend these books for addi­
tional reading. 

Y. Eidelman, Tel Aviv, Israel 

V. Milman, Tel Aviv, Israel 
A. Tsolomitis, Samos, Greece 
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Pythagorean theorem, 27 

Q 
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normed space, 14 
space, 5,16,19 

R 
radical, 181 
Ramsey theorem, 194 
rank of an operator, 65 
reducing subspace, 122 
reflexive space, 50 
regular point, j$, 173 
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residual spectrum, 76, 212 
Riesz representation, 40 
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scalar product, 25 
Schauder 
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second category set, 128 
self-adjoint 

element, 185 
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second category, 128 

shift operator, 58 

simple spectrum, 116 
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singular point, 174 
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spectral 

decomposition, 108, 217 

family, 109 

family of projections, 124 

integral, 110 

properties, 121 

theory, 75 

spectral decomposition, 108 

spectrum, 75, 211 
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strong convergence, 67 

stronger norm, 8 
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holomorphic function, 
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regular measure, 156 

sublinear function, 142 
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invariant, 87 
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tensor product, 66 

theorem 
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Cauchy, 173 
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second, 81 
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Gelfand, 171 
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Goldstein, 151 
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Krein-Milman, 153,154 

Liouville, 175 

Mercer, 95 

Polya, 138 

Ramsey, 194 

Wiener, 178 

total set, 48 

triangle inequality, 7 

U 
uniform convergence, 67 

uniformly bounded, 60 

unit 

ball, 14 
sphere, 14,48 

unitary operator, 121 
unitary operators, 116 

equivalent, 116, 224 

V 
Volterra operator, 82 

W 
weak 

convergence, 68 
topology, 148 

weak* topology, 148 
weakly 

continuous function, 161 

holomorphic function, 
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Weierstrafi, 30 
Wiener 

algebra, 169,178 
theorem, 178 

Z 
Zabreiko, 135 

Zorn's lemma, 154 
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