Functional Analysis

An Introduction

Yuli Eidelman
 Vitali Milman
 Antonis Tsolomitis

Graduate Studies
in Mathematics
Volume 66

Functional Analysis

An Introduction

This page intentionally left blank

Functional Analysis

An Introduction

Yuli Eidelman
Vitali Milman
Antonis Tsolomitis

Graduate Studies in Mathematics

Volume 66

Editorial Board
Walter Craig
Nikolai Ivanov
Steven G. Krantz
David Saltman (Chair)

2000 Mathematics Subject Classification. Primary 46-01, 47-01; Secondary 46Axx, 46Bxx, $46 \mathrm{Cxx}, 46 \mathrm{Hxx}, 47 \mathrm{Axx}, 47 \mathrm{Bxx}$.

For additional information and updates on this book, visit

www.ams.org/bookpages/gsm-66

```
Library of Congress Cataloging-in-Publication Data
Eidelman, Yuli, 1955-
    Functional analysis : an introduction / Yuli Eidelman, Vitali Milman, Antonis Tsolomitis.
        p.cm. - (Graduate studies in mathematics, ISSN 1065-7339 ; v. 66)
    Includes bibliographical references and indexes.
    ISBN 0-8218-3646-3 (alk. paper)
    1. Functional analysis. 2. Hilbert algebras. 3. Operator theory. I. Milman, Vitali D., 1939-
II. Tsolomitis, Antonis. III. Title. IV. Series.
```

QA320.E38 2004
515'.7-dc22
2004057393

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(c) 2004 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America.
(®) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

$$
10987654321 \quad 090807060504
$$

Contents

Preface $x i$
Introduction $x i i i$
Part I. Hilbert Spaces and Basic Operator Theory I
1 Linear spaces; normed spaces; first examples 3
1.1 Linear spaces 3
1.2 Normed spaces; first examples 7
1.2a Hölder's inequality 9
1.2b Minkowski's inequality 11
1.3 Topological and geometric notions 12
1.4 Quotient normed space 14
1.5 Completeness; completion 16
1.6 Exercises 21
2 Hilbert spaces 25
2.1 Basic notions; first examples 25
2.1a Cauchy-Schwartz inequality and the Hilbertian norm 26
2.1b Bessel's inequality 29
2.1c Complete systems 29
2.1d Gram-Schmidt orthogonalization procedure; or- thogonal bases 30
2.1e Parseval's identity 32
2.2 Projection; orthogonal decompositions 34
2.2a Separable case 34
$2.2 b \quad$ The distance from a point to a convex set 35
2.2c Orthogonal decomposition 35
2.3 Linear functionals 37
2.3a Linear functionals in a general linear space 37
2.3b Bounded linear functionals 38
2.3c Bounded linear functionals in a Hilbert space 40
2.3d An example of a non-separable Hilbert space 41
2.4 Exercises 41
3 The dual space 47
3.1 The Hahn-Banach theorem and its first consequences 473.1a Corollaries of the Hahn-Banach theorem 48
3.2 Examples of dual spaces 51
3.3 Exercises 52
4 Bounded linear operators 55
4.1 Completeness of the space of bounded linear operators 55
4.2 Examples of linear operators 57
4.3 Compact operators 59
4.3a Compact sets 59
4.3b The space of compact operators 62
4.4 Dual operators 63
4.5 Operators of finite rank 65
4.5a Compactness of the integral operator in L_{2} 66
4.6 Convergence in the space of bounded operators 67
4.7 Invertible operators 68
4.8 Exercises 69
5 Spectrum. Fredholm theory of compact operators 75
5.1 Classification of spectrum 75
5.2 Fredholm theory of compact operators 77
5.3 Exercises 83
6 Self-adjoint operators 87
6.1 General properties 87
6.2 Self-adjoint compact operators 89
6.2a Spectral theory 89
6.2b Minimax principle 92
6.2c Applications to integral operators 94
6.3 Order in the space of self-adjoint operators 96
6.3a Properties of the ordering 96
6.4 Projection operators 100
6.4a Properties of projections in linear spaces 100
6.4b Orthoprojections 101
6.5 Exercises 103
7 Functions of operators; spectral decomposition 105
7.1 Spectral decomposition 108
7.1a The main inequality 109
7.1b Construction of the spectral integral 110
7.2 Hilbert theorem 111
7.3 Spectral family and spectrum of self-adjoint operators 114
7.4 Simple spectrum 116
7.5 Exercises 117
Part II. Basics of Functional Analysis 119
8 Spectral theory of unitary operators 121
8.1 Spectral properties of unitary operators 121
8.2 Exercises 126

9 The fundamental theorems and the basic methods
 127

9.1 Auxiliary results 128
9.2 The Banach open mapping theorem 131
9.3 The closed graph theorem 132
9.4 The Banach-Steinhaus theorem 135
9.5 Bases in Banach spaces 139
9.6 Linear functionals; the Hahn-Banach theorem 142
9.7 Separation of convex sets 146
9.8 The Eberlain-Schmulian theorem 152
9.9 Extremal points; the Krein-Milman theorem 153
9.10 Exercises 159
10 Banach algebras 167
10.1 Preliminaries 167
10.2 Gelfand's theorem on maximal ideals 171
10.3 Analytic functions 172
10.4 Gelfand map; the space of maximal ideals 176
10.4a The space of maximal ideals 179
10.5 Radicals 181
10.6 Involutions; the Gelfand-Naimark theorem 184
10.7 Application to spectral theory 189
10.8 Application to a generalized limit and combinatorics 193
10.9 Exercises 196
11 Unbounded self-adjoint and symmetric operators in H 203
11.1 Basic notions and examples 203
11.2 More properties of symmetric operators 210
11.3 The spectrum $\sigma(A)$ 211
11.4 Elements of the "graph method" 215
11.5 Cayley transform; spectral decomposition 216
11.6 Symmetric and self-adjoint extensions of a symmetric operator 221
11.7 Exercises 225
A Solutions to exercises 227
A. 1 Solutions to the exercises of Chapter 1 227
A. 2 Solutions to the exercises of Chapter 2 235
A. 3 Solutions to the exercises of Chapter 3 250
A. 4 Solutions to the exercises of Chapter 4 254
A. 5 Solutions to the exercises of Chapter 5 263
A. 6 Solutions to the exercises of Chapter 6 270
A. 7 Solutions to the exercises of Chapter 7 277
A. 8 Solutions to the exercises of Chapter 8 279
A. 9 Solutions to the exercises of Chapter 9 282
A. 10 Solutions to the exercises of Chapter 10 296
A. 11 Solutions to the exercises of Chapter 11 309
Bibliography 311
Symbols index 313
Subject index 317

This page intentionally left blank

Preface

The goal of this textbook is to provide an introduction to the language and methods of functional analysis, including chapters on Hilbert spaces, operator theory, basic theorems and methods of abstract functional analysis and a few applications of these methods to Banach algebras and the theory of unbounded self-adjoint operators.

The text represents notes for a series of two courses (12 to 14 weeks each; 3 hours weekly and 1 hour of exercises and discussions for both courses):
(i) Introduction to Hilbert spaces and operator theory (Chapters 1-7),
(ii) Introduction to functional analysis (Chapters 8-11).

I gave these courses for many years at Tel Aviv University and also, once in 1995, at the Ohio State University (OSU), Columbus. That one time at OSU was a very lucky time for me, because my then Ph.D. student Antonis Tsolomitis worked on my very rough notes of the lectures and suggested creating this book. He was indispensable in his rôle in our joint effort, and the book would not have come to publication without his agreement to join me in writing it.

Another stroke of luck came my way with the huge wave of emigration of Russian mathematicians in the 1990's. Among them was Dr. Yuli Eidelman, who at the start of his career here had time to assist me in the courses. He prepared exercises and material suitable for discussions. So, the final textbook is the result of the efforts of all three of us, Tony, Yuli and myself.

A few words about functional analysis and some necessary background: one very important goal of mathematics is to develop a language, a so-called "mathematical language". Firstly, it is needed for the very precise exchange of thoughts, and secondly-and not less importantly-we develop the terminology which fixes our understanding and catches new mathematical observations and laws. This continuously developing terminology "compresses" achievements of the previous stage of development of mathematics into "spoken language". Once deep theorems become a language and we no longer (need to) think of them as theorems, it helps us to "free" our minds in preparation for a new portion of mathematics.
(For example: we say "a linear space of dimension n ", but a deep theorem stands behind this sentence. The notion of "dimension" is a theorem which students study in a linear algebra course.)

The most important rôle of functional analysis was to develop a mathematical language. Functional analysis became the language of twetnieth century mathematics (more precisely its part called analysis) and theoretical physics. Even articles on popular science and science fiction books use this language and talk about "operators" and their "spectrum".

To teach students to speak in this language is the main goal of this textbook. Numerous theorems (sometimes very short in their proofs) should help us in the end to feel comfortable with new notions, to get used to them, to speak new words without painful efforts to recall what they mean. They should become a part of the reader's mathematical culture.

We would like to emphasize that we took special care to be brief and not to overload the students (and other readers) with the enormous amount of information available on the subject. Over the years we have checked that the amount of mathematics presented in this course is absorbable in a year's study and provides the basis for future reading.

Vitali Milman
Tel Aviv, Israel

Introduction

As mentioned in the Preface, the text corresponds to two courses (12 to 14 weeks each; 3 hours weekly and 1 hour of exercises and discussions for both courses):
(i) Introduction to Hilbert spaces and operator theory (Chapters 1-7),
(ii) Introduction to functional analysis (Chapters 8-11).

These courses require only the knowledge from any first course in Linear Algebra. However, for the second course it would be useful if the reader had some knowledge of measure theory.

The book does not contain any "additional" chapters. Material, although important but which cannot be condensed into these two courses in the time available, without overloading the reader's ability to digest new notions and facts, is not included.

The reader may look at the bibliography for books that complement the material of this text. Moreover, one can see there other possibilities for presenting the same results.

In Chapter 1 we introduce linear spaces and normed spaces and we give some first, but important, examples. The spaces $L_{p}[a, b]$ are introduced through the completion of the continuous functions with the L_{p}-norm in order to avoid requiring the knowledge of measure theory from the reader.

In the second chapter, Hilbert spaces are introduced and we prove basic facts about them. Linear functionals are also introduced in this
chapter, which closes with a natural example of a non-separable Hilbert space.

Chapter 3 discusses the notion of the dual Banach spaces. The Hahn-Banach theorem is stated here without proof and with the standard corollaries, needed for the rest of the course. The Hahn-Banach theorem is proved in the second course, in Chapter 9.

Chapter 4 introduces the bounded linear operators, the compact operators, the dual operators and the invertible operators. We also discuss a different kind of convergence in the space of bounded operators. Here we state the open mapping theorem and we postpone its proof until Chapter 9 (the Banach-Steinhaus theorem is not stated before Chapter 9 since it can certainly be avoided until then).

Chapter 5 is on spectral theory for the general operator. The classification of spectrum is discussed here as well as the development of Fredholm theory.

In Chapters 6 and 7 we focus our attention on the spectral theory of self-adjoint operators. The spectral integral is also given here.

Although Chapter 8, on the spectral theory of unitary operators, would fit more naturally into the first part of this course, we advise postponing dealing with it until Chapter 11, on unbounded symmetric operators. One reason is that the concepts of spectral theory and the spectral integral are not easy to absorb at first, and it is worthwhile returning later to basics to tackle them. Another reason is that the spectral theory of unbounded self-adjoint operators and the Cayley transform naturally begin with the understanding of unitary operators.

Chapter 9 contains the general, more classical results which form the base and the methods of functional analysis. Besides the main theorems of the theory and the central notions of weak and weak* topology, we selected a number of "branch" results, with a twofold goal in mind. We want to demonstrate how the method works and we want to get used to the notion and language of functional analysis; and we also want to use this opportunity to introduce additional important notions and enlarge the picture.

We selected the two remaining chapters of the course for the following reasons. First, we want to show that, by adding natural structure
to the basic notion of Banach space, we quickly derive deep, rich and very concrete analytic consequences. So, Chapter 10 provides an introduction to Gelfand's beautiful theory of Banach algebras.

At this stage, the reader may get the feeling that the whole of functional analysis is about "good", "well-organized" objects. To remove this misapprehension and to show that the methods of functional analysis can deal with less "good" objects, e.g., unbounded operators, we consider unbounded symmetric operators and present the spectral theory of self-adjoint (unbounded) operators in Chapter 11.

There are many books written on this subject. Some of them are strictly textbooks, and some are more of a monograph type. We mention some of them in the bibliography at the end of the book. We would like to mention especially the books [GGK03] by I. Gohberg, S. Goldberg and M.A. Kaashoek and [AKR78] by A.B. Antonevich, P.N. Knyazev and Ya.V. Radyno, which were helpfull for us when preparing some of the exercises. We recommend these books for additional reading.

Y. Eidelman, Tel Aviv, Israel
V. Milman, Tel Aviv, Israel
A. Tsolomitis, Samos, Greece

This page intentionally left blank

Bibliography

[AkhGL] N.I. Akhiezer, I.M. Glazman, Theory of linear operators in Hilbert space, Translation: Merlynd Nestell, Dover, 1993.
[AKR78] A. B. Antonevich, P. N. Knyazev and Ya. V. Radyno, Problems and exercises on functional analysis, Vysheisha Shkola, Minsk, 1978 (Russian).
[Bol90] Béla Bollobás, Linear analysis, an introductoty course, Cambridge Mathematical Textbooks, 1990.
[BSU96] Y. M. Berezansky, Z. G. Sheftel and G. F. Us, Functional analysis, Birkhauser Verlag, Basel, 1996.
[Con90] John B. Conway, A course in functional analysis, second edition, Springer 1990, Graduate Texts in Mathematics, number 96.
[DS58-63] N. Danford and J. T. Schwartz, Linear operators, Interscience Publishers, New York, Part 1: 1958, Part 2: 1963.
[Edw94] R.E. Edwards, Functional analysis, theory and applications, Dover, 1994.
[GGK03] I. Gohberg, S. Goldberg and M. A. Kaashoek, Basic classes of linear operators, Birkhauser Verlag, Basel, 2003.
[KF70] A.N. Kolmogorov and S.V. Fomin, Introductory real analysis, Dover, 1970.
[Kre78] E. Kreyszig, Introductory functional analysis with applications, John Wiley \& Sons, 1978.
[LS85] L.A. Lusternik and V.J. Sobolev, Elements of functional analysis, Gordon and Breach Science Publishers, 1985.
[Nik92] N.K. Nikol'skij (Ed.), Functional analysis I, Encyclopedia of Mathematical Sciences, vol. 19, Springer-Verlag, 1992.
[Rud91] Walter Rudin, Functional analysis, second edition, McGrawHill, 1991.
[SteSh] E.M. Stein, R. Shakarchi, Fourier analysis, an introduction, Princeton University Press, 2003.
[Yos80] Kôsaku Yoshida, Functional analysis, sixth edition, SpringerVerlag, 1980, Grundlehren der Mathematischen Wissenschaften, number 123.
[Zim90] Robert J. Zimmer, Essential results of functional analysis, Chicago Lecture Notes in Mathematics, 1990.

Symbols index

Miscellaneous symbols
$\left(a_{n}\right) *\left(b_{n}\right)$, convolution of sequences, 169
*, involution, 185
$L \hookrightarrow H, L$ is a subspace of H, 34
$L \oplus M$, orthogonal sum of the subspaces L and $M, 36$
X^{*}, the dual space of $X, 47$
$X^{* *}$, the second dual space of X, 50
$\Delta_{A}(\lambda), 212$
\xrightarrow{w}, convergence in the weak topology, 68
$f \otimes y$, tensor product, 65
$x * y$, convolution of x with y, 169
$x \perp y, x$ is orthogonal to $y, 27$
$\langle x, y\rangle$, the inner product of x and $y, 25$
$[x]$, coset with representative x, 5
$\|\cdot\|^{*}$, the dual norm, 38
$\|K\|_{\text {op }}$, norm of the integral operator with kernel K, 57
$\|f\|_{p}$, the L_{p}-norm of f, i.e., the quantity $\left(\int_{a}^{b}|f|^{p}\right)^{1 / p}$, 16
$\|x\|$, norm of the vector $x, 7$
$\|x\|_{1}$, norm of the element x of ℓ_{1}, i.e., the number $\sum\left|x_{n}\right|$, 8
$\|x\|_{p}$, norm of the element x of ℓ_{p}, i.e., the number $\left(\sum\left|x_{n}\right|^{p}\right)^{1 / p}, 8$

A
\mathcal{A}, a Banach algebra, 167
\mathcal{A}, net, 61
\bar{A}, closure of the set $A, 13$
\sqrt{A}, the non-negative root of the positive operator A, 98
A^{*}, the dual operator of $A, 63$
\AA, the interior of the set $A, 128$
algspan, the algebraic span, 185
$\arg x$, the $\arg u m e n t$ of x, i.e., the quantity $x /|x|, 51$

C

c, set of convergent sequences, 4
c_{0}, set of null sequences, 4
c_{0}^{*}, the dual of $c_{0}, 51$
$C_{2}[a, b]$, continuous functions f on $[a, b]$ with norm $\|f\|=\left(\int_{a}^{b}|f|^{2}\right)^{1 / 2}, 27$
\mathbb{C}^{n}, complex n-dimensional space, 3
$C_{p}[a, b]$, the set of all continuous functions on $[a, b]$ equipped with the norm $\|f\|_{p}=$ $\left(\int_{a}^{b}|f|^{p}\right)^{1 / p}, 16,21$
$C_{\mathbb{R}}$, the space of all continuous and bounded functions on $\mathbb{R}, 83$

D

δ_{α}, the Dirac functional, 37
$\mathcal{D}(E)$, unit ball of the space E, 14
$\operatorname{dim} E, \operatorname{dimension}$ of the linear space $E, 5$
Δ_{λ}, the range of the operator $T-\lambda I, 77$
$D_{r}\left(x_{0}\right)$, open ball with radius r and center $x_{0}, 12$
$d(x, y)$, distance between the points x and $y, 7$

E

\hat{E}, the completion of $E, 19$
E^{\sharp}, the space of linear functionals on $E, 37$
ε-net, 61
E / E_{1}, quotient space, 6
E_{λ}, the spectral orthoprojection $e_{\lambda}(A)$ (of the operator A), 109
$e_{\lambda}(t)$, increasing family of step functions with the discontinuity at $\lambda, 108$
Extr K, the set of the extremal points of the set $K, 154$

F

F_{\perp}, (dual) annihilator, 49
F^{c}, complement of the set $F, 13$
$f_{n} \searrow f$, the sequence f_{n} decreases and converges to $f, 105$

G

$\Gamma(A)$, the graph of the operator A, 132

I
$\operatorname{Im} A$, image of the operator A, 4
$I[x, y]$, interval with endpoints x and $y, 13$

K

$\operatorname{ker} A$, kernel of the operator A, 4
$\stackrel{c}{K}$, the kernel of the set $K, 129$

L

L^{\perp}, the orthogonal complement of the subspace $L, 36$
ℓ_{1}, space of sequences $\left(x_{n}\right)$ with $\sum\left|x_{n}\right|$ finite, 8
$L_{2}[a, b]$, the completion of $C_{2}[a, b], 21,27$
$\ell_{2}(w)$, the ℓ_{2} space with weighted inner product by $w, 42$
$\ell_{2}(\mathbb{Z})$, the space of bi-directional sequences $\left(x_{n}\right)_{n \in \mathbb{Z}}$ with $\sum_{n \in \mathbb{Z}}\left|x_{n}\right|^{2}<\infty, 69$
L^{\perp}, the annihilator of $L, 49$
ℓ_{∞}, set of bounded sequences, 4
ℓ_{p}, space of all sequences $\left(x_{n}\right)$ with $\sum\left|x_{n}\right|{ }^{\text {finite, }} 8$
L_{p}^{*}, the dual of the space $L_{p}, 52$
ℓ_{p}^{*}, the dual space of $\ell_{p}, 51$
$L_{p}[a, b]$, the completion of $C_{p}[a, b], 21$
ℓ_{p}^{n}, the n-dimensional space with the $\|x\|_{p}$-norm, 11
$L(X, Y)$, the linear space of bounded operators from X to Y, 55
$L(X \mapsto Y)$, the linear space of bounded operators from X to Y, 55

M
\mathcal{M}, the space of all maximal ideals of a Banach algebra, 179
$\mathcal{M}(\mathcal{A})$, the space of all maximal ideals of the Banach algebra $\mathcal{A}, 179$

P

$P_{L} x$, the projection of x on the subspace $L, 34$
$p_{M}(x)$, the value at the vector x of the Minkowski functional of the set $M, 146$

Q
\mathbb{Q}, rational numbers, 17

R

\mathbb{R}, real numbers, 3
$\operatorname{rad}(\mathcal{A})$, the radical of the algebra $\mathcal{A}, 181$
\mathbb{R}^{n}, real n-dimensional space, 3
$R_{p}[a, b]$, the functions on $[a, b]$ whose p-th power is Riemann integrable, 16
$\rho(x, L)$, the distance from x to the subspace $L, 34$

S

s, set of all sequences, 4
s^{*}, set of sequences of finite support, 4
$\sigma(A)$, the spectrum of the operator $A, 75$
$\sigma_{c}(A)$, the continuous spectrum of the operator $A, 76$
$\sigma_{p}(A)$, the point spectrum of the operator $A, 75$
$\sigma_{r}(A)$, the residual spectrum of the operator $A, 76$
$\mathcal{S}(E)$, unit sphere of the space E, 14
$\operatorname{span} M$, linear span of the set M, 5

T
T_{λ}, abbreviation for the operator $T-\lambda I, 77$

W
$w(F)$, the weak topology generated by functionals in $F, 153$

X
$x+E$, coset with representative $x, 5$

Subject index

A

Alaoglu, 149
algebra
semisimple, 181
algebraic span, 185
almost periodic function, 188
analytic functions, 172
Arzelá, 60

B

Baire category, 128
Baire-Hausdorff, 128
Banach
algebra, 167
limit, 163
space, 17, 127
Banach-Steinhaus, 67,135, 136
band matrix, 70
basis, 140
of a normed space, 31
of space, 5
Bessel inequality, 29,31
biorthogonal
functionals, 139
system, 50
Birkhoff's theorem, 155
bounded
functional, 38
set, 14
variation, 161

C

category, 128
Cauchy
integral, 173
sequence, 16
Cauchy-Schwartz inequality, 10, 26
Cayley transform, 216
center of a set, 129
centrally symmetric, 14
closed
graph operator, 132,133
set, 12
closure, 13
closure of operator, 133
codimension, 6
compact operators, 59
compact set, 59
complete, 18
space, 17
system, 29, 30
completion, 19, 21, 117
conjugate, 184
continuous
functional, 38
spectrum, 76,212
convex, 14, 35, 144
set, 13
convolution of sequences, 169
cosets, 5

D

decomposition of the identity, 109
dense set, 13
dimension of space, 5
Dirac measure, 157
direct decomposition, 101
Dirichlet kernel, 139
distance to a set, 35
domain of operator, 203
dual
norm, 47
operator, 63
space, 47,51
E
Eberlain-Schmulian, 152
eigenvalue, 75,211
multiplicity, 76
eigenvector, 212
embedding operator, 60
equicontinuous, 60
equivalent norms, 8,52
essential involution, 188
extremal
point, 153, 154
set, 153

F

field, 171
finite
rank, 65
rank operators, 65
support sequence, 4
first category set, 128
Fisher, 93
Fourier transform, 121
Fredholm
first theorem, 81
second theorem, 81
theory, 77
third theorem, 82

G
Gelfand, 167,171
map, 176
theorem, 171
Gelfand-Mazur, 176
Gelfand-Naimark theorem, 186
generalized
Cauchy-Schwartz inequality, 96
nilpotent, 182
generator of simple spectrum, 116
Goldstein, 151
Gram-Schmidt, 30
graph
method, 215
of operator, 132

H

Haar system, 162
Hahn-Banach, 47, 142
Heine-Borel, 107
Hilbert, 3, 25
space, 27, 28
Hilbert space, 33
Hilbert-Courant, 93
Hilbert-Schmidt
first theorem, 90
second theorem, 94
hilbertian norm, 27
Hölder's inequality, 9
Hörmander, 134
I
ideal, 170
image, 4, 131
index of defect, 206
inequality
Cauchy-Schwartz, 10, 26
generalized, 96
Hölder, 9 integral form, 10
Minkowski, 11
integral form, 12
inner product, 25
integral representation, 173
interval, 13
invariant subspace, 87,90
inverse operator, 68
invertible
element of a Banach algebra, 170
operator, 68
involution, 184
essential, 188
isometry, 19, 116
into, 19
isomorphism, 4
J
James, 153

K

kernel, 4, 15, 130
function, 57
of a set, 129
of an operator, 57
Krein-Milman, 153, 154

L

limit along an ultrafilter, 193
linear
map, 3, 4
space, 3
span, 5
linear functional, 37
positive, 188
linearly
dependent
set, 5 vectors, 5
independent, 30 relative to subspace, 6
linearly independent vectors, 5
Livshič, 129
Loranian polynomial, 122
M
majorizing element, 172
maximal ideal, 171
measure
Dirac, 157
probability, 156
strongly regular, 156
Mercer's theorem, 95,96
minimal system, 139
minimax principle, 93
Minkowski's
functional, 146, 147
inequality, 11
multiplicity of the eigenvalue, 76

N
non-separable, 41
norm, 7
convergence, 67
equivalent, 8
stronger, 8
normed space, $7,8,14$
norming set, 164
nowhere dense, 128

O

open
ball, 12
radius, 12
map, 69
set, 12
operator, 55
compact, 59
domain, 203
graph of, 132
index of defect, 206
isometry, 116
of finite rank, 65
self-adjoint, 87, 204
symmetric, 87, 204
unitary, 116
unitary equivalent, 117, 224
order of self-adjoint operators, 96
orthogonal
complement, 36
decomposition, 34, 35
orthonormal system, 28
orthoprojection, 101
P
pairing, 64
Parallelogram Law, 27, 88
Parseval's identity, 32
perfectly convex set, 129
point spectrum, 75
Polya, 138
polydisc, 199
positive linear functional, 188
precompact
set, 59
space, 60
probability measure, 156
projection, 34
operators, 100
spectral family, 124
proper ideal, 170, 171
Pythagorean theorem, 27

Q

quotient
normed space, 14
space, 5, 16, 19
R
radical, 181
Ramsey theorem, 194
rank of an operator, 65
reducing subspace, 122
reflexive space, 50
regular point, 75, 173
relatively compact set, 59
residual spectrum, 76,212
Riesz representation, 40

S

scalar product, 25
Schauder
basis, 140
system, 162
Schauder basis, 140
second category set, 128
self-adjoint
element, 185
operator, 87, 204
semilinearity, 25
seminorm, 15
semisimple algebra, 181
separable space, 31
separation of convex sets, 147
set
center of, 129
compact, 59
first category, 128
kernel of, 129
perfectly convex, 129
precompact, 59
relatively compact, 59
second category, 128
shift operator, 58
simple spectrum, 116
generator, 116
singular point, 174
space
Banach, 17, 127
of bounded operators, 55
of maximal ideals, 176
reflexive, 50
spectral
decomposition, 108, 217
family, 109
family of projections, 124
integral, 110
properties, 121
theory, 75
spectral decomposition, 108
spectrum, 75, 211
spectrum point, 75
strong convergence, 67
stronger norm, 8
strongly
continuous function, 161
holomorphic function, 161
regular measure, 156
sublinear function, 142
subspace, 4
invariant, 87
symmetric
algebra, 185
extension, 204
kernels, 94
operator, 87,204

T

tensor product, 66
theorem
Alaoglu, 149
Banach-Steinhaus, 136
Cauchy, 173
Eberlain-Schmulian, 152
Fredholm
first, 81
second, 81
third, 82
Gelfand, 171
Gelfand-Naimark, 186
Goldstein, 151
Hörmander, 134
Hahn-Banach, 47, 142
James, 153
Krein-Milman, 153, 154
Liouville, 175
Mercer, 95
Polya, 138
Ramsey, 194
Wiener, 178
total set, 48
triangle inequality, 7
U
uniform convergence, 67 uniformly bounded, 60
unit
ball, 14
sphere, 14,48
unitary operator, 121
unitary operators, 116
equivalent, 116, 224

V

Volterra operator, 82 W
weak
convergence, 68
topology, 148
weak ${ }^{*}$ topology, 148
weakly
continuous function, 161
holomorphic function, 161
Weierstraß, 30
Wiener
algebra, 169,178
theorem, 178

Z

Zabreǐko, 135
Zorn's lemma, 154

Abstract

The book "Functional analysis, An introduction" was typeset using $L^{A} \mathrm{~T}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon}$. The indexes were generated with Makelndex and the bibliography with $\mathrm{BibT}_{\mathrm{E}} \mathrm{X8}$. The PostScript file was generated with dvips and for pdf conversions we used GhostScript 8.oo. The final Dvi file was 1.4 Mbytes. Editing was entirely done with Gnu-Emacs on Linux 2.4 on x86. The book was published by the $\mathcal{A}_{\mathcal{M}}$ in Autumn 2004.

This page intentionally left blank

Titles in This Series

66
Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis, Functional analysis, An introduction, 2004

65 S. Ramanan, Global calculus, 2004
64
63

61 Thomas A. Ivey and J. M. Landsberg, Cartan for beginners: Differential geometry via moving frames and exterior differential systems, 2003
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003

58

52 Ilka Agricola and Thomas Friedrich, Global analysis: Differential forms in analysis, geometry and physics, 2002
51 Y. A. Abramovich and C. D. Aliprantis, Problems in operator theory, 2002
50 Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, 2002
John R. Harper, Secondary cohomology operations, 2002
Y. Eliashberg and N. Mishachev, Introduction to the h-principle, 2002

47 A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and quantum computation, 2002
46 Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, 2002

39 Larry C. Grove, Classical groups and geometric algebra, 2002
38 Elton P. Hsu, Stochastic analysis on manifolds, 2002
37 Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, 2001
36 Martin Schechter, Principles of functional analysis, second edition, 2002
35 James F. Davis and Paul Kirk, Lecture notes in algebraic topology, 2001
34 Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001
33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001
32 Robert G. Bartle, A modern theory of integration, 2001
31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001
30 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001
29 Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001

TITLES IN THIS SERIES

25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000
24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000
23 Alberto Candel and Lawrence Conlon, Foliations I, 2000
22 Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 2000
21 John B. Conway, A course in operator theory, 2000
20 Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
19 Lawrence C. Evans, Partial differential equations, 1998
18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997
17 Henryk Iwaniec, Topics in classical automorphic forms, 1997
16 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997
15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997
14 Elliott H. Lieb and Michael Loss, Analysis, 1997
13 Paul C. Shields, The ergodic theory of discrete sample paths, 1996
12 N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996
11 Jacques Dixmier, Enveloping algebras, 1996 Printing
10 Barry Simon, Representations of finite and compact groups, 1996
9 Dino Lorenzini, An invitation to arithmetic geometry, 1996
8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
Gerald J. Janusz, Algebraic number fields, second edition, 1996
Jens Carsten Jantzen, Lectures on quantum groups, 1996
Rick Miranda, Algebraic curves and Riemann surfaces, 1995
Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, 1994
Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993
Ethan Akin, The general topology of dynamical systems, 1993

The goal of this textbook is to provide an introduction to the methods and language of functional analysis, including Hilbert spaces, Fredholm theory for compact operators, and spectral theory of self-adjoint operators. It also presents the basic theorems and methods of abstract functional analysis and a few applications of these methods to Banach algebras and the theory of unbounded self-adjoint operators.
The text corresponds to material for two semester courses (Part I and Part II, respectively), and it is as self-contained as possible. The only prerequisites for the first part are minimal amounts of linear algebra and calculus. However, for the second course (Part II), it is useful to have some knowledge of topology and measure theory. Each chapter is followed by numerous exercises, whose solutions are given at the end of the book.

