Introduction to Quadratic Forms over Fields
This page intentionally left blank
Introduction to Quadratic Forms over Fields

T.Y. Lam

Graduate Studies in Mathematics
Volume 67

American Mathematical Society
Providence, Rhode Island
Walter Craig
Nikolai Ivanov
Steven G. Krantz
David Saltman (Chair)

2000 Mathematics Subject Classification. Primary 11Exx; Secondary 15A63.

For additional information and updates on this book, visit
www.ams.org/bookpages/gsm-67

Library of Congress Cataloging-in-Publication Data
Lam, T. Y. (Tsit-Yuen), 1942–
Introduction to quadratic forms over fields / T.Y. Lam.
 p. cm. – (Graduate studies in mathematics, ISSN 1065-7339 ; v. 67)
Includes bibliographical references and index.
1. Forms, Quadratic I. Title. II. Series

QA243.L252 2004
512.7'4 2004062281

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2005 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
In Memory of My Parents

Lam Shiu Fan (1908–1969)
Lam Tsui Shau Hah (1908–1974)
This page intentionally left blank
Contents

Preface xi

Notes to the Reader xvii

Partial List of Notations xix

Chapter I. Foundations 1

§1. Quadratic Forms and Quadratic Spaces 1
§2. Diagonalization of Quadratic Forms 5
§3. Hyperbolic Plane and Hyperbolic Spaces 9
§4. Decomposition Theorem and Cancellation Theorem 12
§5. Witt’s Chain Equivalence Theorem 15
§6. Kronecker Product of Quadratic Spaces 17
§7. Generation of the Orthogonal Group by Reflections 18
 Exercises for Chapter I 22

Chapter II. Introduction to Witt Rings 27

§1. Definition of \(\widehat{W}(F) \) and \(W(F) \) 27
§2. Group of Square Classes 30
§3. Some Elementary Computations 33
§4. Presentation of Witt Rings 39
§5. Classification of Small Witt Rings 41
 Exercises for Chapter II 47

Chapter III. Quaternion Algebras and their Norm Forms 51

§1. Construction of Quaternion Algebras 51
§2. Quaternion Algebras as Quadratic Spaces 55
§3. Coverings of the Orthogonal Groups 63
§4. Linkage of Quaternion Algebras 67
§5. Characterizations of Quaternion Algebras 73
 Exercises for Chapter III 75

Chapter IV. The Brauer-Wall Group 79
§1. The Brauer Group 79
§2. Central Simple Graded Algebras (CSGA) 83
§3. Structure Theory of CSGA 90
§4. The Brauer-Wall Group 98
 Exercises for Chapter IV 102

Chapter V. Clifford Algebras 103
§1. Construction of Clifford Algebras 103
§2. Structure Theorems 108
§3. The Clifford Invariant, Witt Invariant, and Hasse Invariant 113
§4. Real Periodicity and Clifford Modules 122
§5. Composition of Quadratic Forms 127
§6. Steinberg Symbols and Milnor’s Group k_2F 132
 Exercises for Chapter V 140

Chapter VI. Local Fields and Global Fields 143
§1. Springer’s Theorem for C.D.V. Fields 143
§2. Quadratic Forms over Local Fields 150
 Appendix: Nonreal Fields with Four Square Classes 167
§3. Hasse-Minkowski Principle 169
§4. Witt Ring of \mathbb{Q} 174
§5. Hilbert Reciprocity and Quadratic Reciprocity 178
 Exercises for Chapter VI 183

Chapter VII. Quadratic Forms Under Algebraic Extensions 187
§1. Scharlau’s Transfer 187
§2. Simple Extensions and Springer’s Theorem 191
§3. Quadratic Extensions 196
§4. Scharlau’s Norm Principle 204
§5. Knebusch’s Norm Principle 206
Contents

§6. Galois Extensions and Trace Forms 209
§7. Quadratic Closures of Fields 218

Exercises for Chapter VII 226

Chapter VIII. Formally Real Fields, Real-Closed Fields, and Pythagorean Fields 231

§1. Structure of Formally Real Fields 231
§2. Characterizations of Real-Closed Fields 240

Appendix A: Uniqueness of Real-Closure 246
Appendix B: Another Artin-Schreier Theorem 250

§3. Pfister’s Local-Global Principle 252
§4. Pythagorean Fields 255

Appendix: Fields with 8 Square Classes and 2 Orderings 265

§5. Connections with Galois Theory 267
§6. Harrison Topology on X_F 271
§7. Prime Spectrum of $W(F)$ 277
§8. Applications to the Structure of $W(F)$ 281
§9. An Introduction to Preorderings 288

Exercises for Chapter VIII 292

Chapter IX. Quadratic Forms under Transcendental Extensions 299

§1. Cassels-Pfister Theorem 299
§2. Second and Third Representation Theorems 303
§3. Milnor’s Exact Sequence for $W(F(x))$ 306
§4. Scharlau’s Reciprocity Formula for $F(x)$ 309

Exercises for Chapter IX 313

Chapter X. Pfister Forms and Function Fields 315

§1. Chain P-Equivalence 316

Appendix: Round Forms 322

§2. Multiplicative Forms 323
§3. Introduction to Function Fields 328
§4. Basic Theorems on Function Fields 334
§5. Hauptsatz, Linkage, and Forms in I^nF 352
§6. Milnor’s Higher K-Groups 361

Exercises for Chapter X 372
Chapter XI. Field Invariants 375
§1. Sums of Squares 376
§2. The Level of a Field 379
§3. Pfister-Witt Annihilator Theorem 384
§4. The Property A_n 388
§5. Height and Pythagoras Number 394
§6. The u-Invariant of a Field 398
Appendix: The General u-Invariant 409
§7. The Size of $W(F)$, and \overline{C}-Fields 413
Exercises for Chapter XI 421

Chapter XII. Special Topics in Quadratic Forms 425
§1. Isomorphisms of Witt Rings 426
§2. Quadratic Forms of Low Dimension 431
Appendix: Forms with Isomorphic Function Fields 437
§3. Some Classification Theorems 439
§4. Witt Rings under Biquadratic Extensions 443
§5. Nonreal Fields with Eight Square Classes 447
§6. Kaplansky Radical and Hilbert Fields 450
§7. Construction of Some Pre-Hilbert Fields 456
§8. Axiomatic Schemes for Quadratic Forms 463
Exercises for Chapter XII 476

Chapter XIII. Special Topics on Invariants 479
§1. The u-Invariant of $\mathbb{C}((x,y))$ 480
§2. Fields of u-Invariant 6 484
§3. Fields of Pythagoras Number 6 and 7 495
§4. Levels of Commutative Rings 499
§5. Pythagoras Numbers of Commutative Rings 514
§6. Some Open Questions 526
Exercises for Chapter XIII 531

Bibliography 533

Index 543
Preface

The algebraic theory of quadratic forms over fields originated from a classical (1937) paper of Witt [Wi]. However, while quadratic form theory over local fields and global fields flourished steadily through the middle of the 20th century, Witt’s theory of quadratic forms over general fields seemed to have gone into dormancy. This situation changed dramatically with the appearance of Pfister’s work [Pf1, Pf2, Pf3] in 1965-66. In these seminal papers, Pfister introduced the powerful method of multiplicative forms in quadratic form theory, proved the first significant structural results on the Witt ring, and established a fundamental local-global principle for quadratic forms over a general field. Pfister’s contributions in 1965-66 not only revived the general quadratic form theory so ingeniously conceived by Witt in 1937, but also brought it into fruitful contact with the algebraic theory of formally real fields and real-closed fields invented in a different context by Artin and Schreier [AS] in 1927. In the early 1970s, Arason and Pfister succeeded in proving the “Hauptsatz” in quadratic form theory (a Krull intersection theorem for the ideal of even-dimensional forms in the Witt ring). Aside from its intrinsic importance, the Hauptsatz of Arason and Pfister in [AP1] also turned out to be a harbinger for the powerful use of the method of function fields of quadratic forms in the algebraic theory of Witt rings.

Against the above historical backdrop, I wrote my Benjamin book “The Algebraic Theory of Quadratic Forms” (hereafter referred to as “ATQF”) in 1972. Only five years beyond my Ph.D. and looking for something new to do in research, I was quickly caught up in the atmosphere of excitement then prevailing in the new field of the algebraic theory of quadratic forms. My decision to write “ATQF” was perhaps based in part on the ill-advised excuse that “to learn a new subject you write a book about it”. Looking
back, I certainly don't see anything that could have qualified me to author such a book other than a copious dosage of youthful invincibility. Anyway, my debut as a mathematical author took hardly more than a year. I still remember churning out chapter after chapter of the book in my mother's small apartment in West Vancouver when I had a prolonged visit with her in the summer of 1972; somehow, one tends to write very fast when one is very young!

In "ATQF" (which came out in 1973), I started with two chapters introducing Witt's algebraic theory of quadratic forms and the basic facts about Witt rings of fields (of characteristic not 2). This was followed by a self-contained exposition on quaternion algebras, Brauer-Wall groups, simple graded algebras, and Clifford algebras. A chapter on the rich quadratic form theory over local and global fields served as a reminder of (as well as an introduction to) the classical origins of the subject. The book then progressed into the treatments of quadratic forms under algebraic and transcendental field extensions, with an intermittent coverage of the quadratic form theory over formally real fields and pythagorean fields (highlighting Pfister's local-global principle and key structural results on the Witt ring). A penultimate chapter featured Pfister's theory of multiplicative forms and the Arason-Pfister Hauptsatz, culminating in a final chapter dealing with the quadratic form theoretic invariants of fields, such as the level, the Pythagoras number, and the u-invariant, etc. The book closed with a list of eight open problems.

The wonderful reception given to "ATQF" by the mathematical community came to me as a total surprise. A rather informal introduction to quadratic form theory based on my lecture courses at Berkeley turned out to be a welcome entry text for students learning the theory for the first time, and in the meantime, the research community in the theory of quadratic forms quickly accepted the book as a convenient reference for the basic results in the area. In retrospect, the success of the Benjamin book obviously owed little to its author, but was solely a result of the fortuitous circumstance that it just happened to have been the right book written at the right time.

Starting from the early 1970s, the algebraic theory of quadratic forms experienced a tremendous growth. A dramatic illustration of this growth is given in a special chart prepared by W. Scharlau in the bibliography section of his book [Sc4] (c. 1985), which showed a spectacular jump of hundreds of pages of published research in the theory of quadratic forms in the period 1970-1980. Throughout this decade (and thereafter), the theory of quadratic forms made contact with a large number of other research topics in algebra, including the theory of central simple algebras and their involutions, linear
algebraic groups, algebraic geometry (especially Chow groups), algebraic K-theory, Galois theory and Galois cohomology, the theory of ordered fields and valuated fields, axiomatic geometry, real commutative algebra, and semialgebraic geometry. These interactions with other fields have greatly enriched the scope of the research in the algebraic theory of quadratic forms, and have permanently established this theory as a significant and vibrant branch of modern abstract algebra.

While "ATQF" served its function well in the 1970s, it went out of print by the end of the decade. A second printing with revisions issued by Benjamin in 1980 kept the book in the market for a few more years, but "ATQF" finally succumbed to the fate of orphanhood as Benjamin later became defunct! No author can completely escape the unspeakable feeling that his/her book might have killed its publisher, but the practical effect of the demise of my publisher was clearly that "ATQF" would thereafter survive only in beaten up copies in private collections and university libraries.

This situation would have been tolerable if "ATQF" had outlived its use. However, although at least a few other books on the subject of quadratic forms have been written in the intermittent years, "ATQF" continued to be a textbook of choice for students in quadratic form theory, and a frequent reference for researchers in the field. This trend finally firm ed up my resolve to make the book available again to the mathematical community. My primary choice of a publisher was the American Mathematical Society, since the AMS has graciously honored the book with the award of a Leroy P. Steele Prize in Mathematical Exposition in 1982. Plans for reissuing the book went underway in 1998.

From the very start of the republication process, it was clear that "ATQF" could not, and should not, just reappear in its original form. Many new results and new viewpoints have been obtained in quadratic form theory; the 1980 version of the book would have simply looked as outdated as its typography produced then by an IBM Selectric typewriter. But, short of writing a brand new book on the subject, how could one even begin to transform a 20-year past into a relatively satisfying present?

After much vacillation, I decided that the best course of action is to keep the main organization of "ATQF" intact, but rewrite as many chapters in it as possible to accommodate the new results and new viewpoints in the field. Furthermore, two chapters of new material are added to the original text, making the book into one with thirteen chapters. As the result of these expansions, the book has more than doubled in size. To tell it apart from the Benjamin 1973/1980 versions, I have renamed the book "Introduction to Quadratic Forms over Fields". The main focus of the book is still on the algebraic theory of quadratic forms over fields of characteristic not 2;
discussions on the interactions of this theory with other parts of algebra are
deliberately kept to a minimum. By limiting the scope of the present book
in this way, I hope to have preserved the suitability of this book both as a
general reference work and as an introductory text to quadratic form theory.
The many exciting ongoing mathematical developments at the interface of
quadratic form theory and other branches of algebra (especially algebraic
geometry and various cohomology theories) certainly will merit a detailed
exposition in the near future, but such an ambitious project is better left to
the pen of a more capable author.

Once the boundaries for this book were set, the rewriting of “ATQF”
started in earnest in 1999. Needless to say, I fully recognized that being able
to rewrite a book after a passage of thirty years is a rare privilege granted
to very few authors. After all, how many can boast about publishing two
books on the very same subject in two different centuries? And mustn’t
there have been some fateful “principle of symmetry” at work that I started
the first book five years after my Ph.D., and now finish the second one about
five years before my retirement? With all of these poignant thoughts on my
mind, I returned to write about the subject of my youthful love! But sadly
enough, age has taken its toll. The young author who so gallantly churned
out chapter after chapter of “ATQF” in a Vancouver apartment has now
metamorphosed into a foot-dragging writer who took weeks to draft a single
section. With the century mark quietly slipping by, I bore hapless witness
to the harsh reality that the resuscitation of my 12-month maiden project
in 1972 slowly turned into a six-year arduous writing ordeal.

It was with a tremendous sense of satisfaction and joy that the rewriting
of “ATQF” was brought to a conclusion in September of this year. What lies
ahead is the finished product, under its new name. The two books spanned
much of my professional career, and were in large part the result of my
efforts in teaching, research, and mathematical exposition. I am delighted
that my maiden work in 1972 has now a second lease in life, and humbly
offer this new version of it for the use of the international mathematical
community in the years to come.

Needless to say, a book of this nature owes much to the work of others.
I hereby thank all the authors whose work I have used in my exposition,
implicitly or explicitly. This includes, but is by no means limited to, all
authors whose books and papers are cited in the bibliography at the end of
this book. Special thanks are due to Richard Elman and Adrian Wadsworth,
who were two of my principal collaborators in quadratic form theory. In
preparing this book for publication, I have also greatly profited from the
input and help from Detlev Hoffmann, David Leep, and Jan Mináč; for
their kind and generous assistance, I remain grateful. Incredibly, it was
Preface

almost forty years ago when I first took an introductory course in quadratic form theory at Columbia University from Professor Hyman Bass. I hope he is pleased to see that his teaching four decades ago has continued to have a substantial impact up to this very day.

It gives me special pleasure to acknowledge the role of the American Mathematical Society in making this book possible. I could not have found a better or more suitable place than the Society’s Graduate Studies in Mathematics series for my book to appear in. I thank Dr. Sergei Gelfand for acquiring my book for this series, and for having unflagging faith for six long years that I would one day finish my book. Without his frequent encouragement (and occasional prodding), I probably would have taken even more years. The production of the book at AMS Headquarters was handled in the utmost professional manner by Ralph Sizer and Mary Letourneau. To both of them, I express my heartfelt appreciation. Very sadly, however, the fact that Ralph did not live to see the completion of this book will remain the deepest regret of my authorship.

Last, first, and always, I owe the greatest debt to members of my family. Chee King has lovingly stood by my side for 34 years; I could not have asked for anything more. When “ATQF” was written, we were virtually newlyweds; as this book goes to press, we are the proud parents of four grown children. Juwen, Fumei, Juleen and Tsai Yu are the focus and joy of our lives; whatever I have accomplished (or can accomplish) is in large measure a result of their love, devotion, and unstinting support.

T.Y.L.

Berkeley, California
October, 2004
This page intentionally left blank
Notes to the Reader

The main text of this book consists of thirteen chapters, each containing a number of sections. The chapters are referred to in roman numerals, such as I, II, III, etc. A cross-reference such as XI.6 refers to Section 6 in Chapter XI. Within a given chapter, a reference such as 6.21 refers to the result (lemma, theorem, example, or remark) so labelled in Section 6 of that chapter, while, globally, X.5.6 refers to the result 5.6 in Chapter X. The running heads offer the quickest and most convenient way to tell what chapter and what section a particular page belongs to. This should make it very easy to find any result, such as X.5.6.

Each chapter concludes with a set of exercises that are consecutively numbered. “Exercise 10” refers to the exercise so numbered in a given chapter, whereas a reference such as XI.Exercise 10 refers to Exercise 10 at the end of Chapter XI. Many exercises belong rightfully to the folklore of the subject, while a number of others are adapted from original results published in the quadratic form literature. Some (by no means all) of the harder exercises come with hints toward their solutions.

Throughout the text, a good grounding in graduate level algebra is assumed. In particular, facts in field theory and Galois theory will be used rather freely. For the chapter on local fields and global fields (Ch. VI), some familiarity with number theory will be helpful, although it is not absolutely essential. In a couple of places (in discussing the Brauer group), we also assume Wedderburn’s classification theorem on finite-dimensional central simple algebras over a field. Results of this nature are usually well covered in a beginning course in graduate algebra.

The title of this book is a slight misnomer, in that we treat here only the theory of quadratic forms over fields of characteristic not 2. Ideally, a book
on quadratic forms over fields should cover the case of characteristic 2 as well, so that the theory would apply truly to all fields. However, there is an all-too-well-known predicament to this, which was perhaps best expressed through the following humorous limerick by an anonymous Irish poet:

A mathematician said "Who
Can quote me a theorem that’s true?
For the ones that I know
Are simply not so
When the characteristic is two!"

But, while this poet’s lament was solidly grounded and frequently echoed, the real truth is actually somewhere in between. Theorems on quadratic forms over fields of characteristic not 2 usually become problematic (and sometimes meaningless) when they are transferred verbatim to the characteristic 2 case. However, experience has shown that many such theorems do have complete, suitably formulated analogues for fields of characteristic 2. What one needs to do is to find such analogues, and to devise new proofs for them! Thus, each theorem would require extra work. For a book of this size with hundreds of results, the total amount of extra work needed to cover the characteristic 2 case would have been truly staggering.

With the preservation of his sanity uppermost on his mind, this senior-aged author has made his clear and unequivocal choice. Unless explicitly stated to the contrary, all fields over which quadratic forms are considered in this book will be assumed to have characteristic not equal to 2. Readers interested in learning the theory of quadratic forms in a wider setting (including the case of quadratic forms over rings) may consult some of the existing literature on the subject, such as the books of Baeza [Bae], Knus [Knu], and Milnor-Husemoller [MH].
Partial List of Notations

\(\mathbb{Z} \) \hspace{1em} the ring of integers
\(\mathbb{Q} \) \hspace{1em} the field of rational numbers
\(\mathbb{R} \) \hspace{1em} the field of real numbers
\(\mathbb{C} \) \hspace{1em} the field of complex numbers
\(\mathbb{Q}_p \) \hspace{1em} the field of \(p \)-adic numbers
\(\mathbb{F}_q \) \hspace{1em} the finite field of \(q \) elements
\(\mathbb{Z}/n\mathbb{Z} \) \hspace{1em} the ring (or the cyclic group) \(\mathbb{Z}/n\mathbb{Z} \)
\(\mathcal{H} \) \hspace{1em} Hamilton’s quaternion algebra
\(\mathbb{H} \) \hspace{1em} the hyperbolic plane
\(\hat{F} \) \hspace{1em} multiplicative group of the field \(F \)
\(\hat{F}/\hat{F}^2 \) \hspace{1em} square class group of \(F \)
\(Q(F) \) \hspace{1em} extended square class group of \(F \)
\(\sigma(F) \) \hspace{1em} sums of squares in \(F \)
\(\sigma(F) \) \hspace{1em} nonzero sums of squares in \(F \)
\(\overline{F} \) \hspace{1em} algebraic closure of \(F \)
\(\widetilde{F} \) \hspace{1em} quadratic closure of \(F \)
\(F_{py} \) \hspace{1em} pythagorean closure of \(F \)
\(F_p \) \hspace{1em} \(p \)-adic completion of a global field \(F \)
\(W(F) \) \hspace{1em} Witt ring of \(F \)
\(\hat{W}(F) \) \hspace{1em} Witt-Grothendieck ring of \(F \)
\(W_1(F) \) \hspace{1em} torsion subgroup of \(W(F) \)
\(W(K/F) \) \hspace{1em} kernel of \(W(F) \to W(K) \)
\(\text{Gal}(K/F) \) \hspace{1em} Galois group of \(K/F \)
\(\langle K \rangle \) \hspace{1em} trace form of an extension \(K/F \)
\(IF \) \hspace{1em} fundamental ideal of \(W(F) \)
\(I^nF \) \hspace{1em} \(n \) th power of \(IF \)
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BW(F)$</td>
<td>Brauer-Wall group of F</td>
</tr>
<tr>
<td>$B(F)$</td>
<td>Brauer group of F</td>
</tr>
<tr>
<td>$ZB(F)$</td>
<td>subgroup of elements of exponent ≤ 2 in $B(F)$</td>
</tr>
<tr>
<td>Quat(F)</td>
<td>subgroup of $B(F)$ generated by the quaternion algebras</td>
</tr>
<tr>
<td>$(a,b)_F$</td>
<td>quaternion algebra determined by $a, b \in \hat{F}$</td>
</tr>
<tr>
<td>K_nF</td>
<td>Milnor's K_n-group of F (also denoted by $K_n^M(F)$)</td>
</tr>
<tr>
<td>k_nF</td>
<td>the factor group $K_nF/2K_nF$</td>
</tr>
<tr>
<td>X_F</td>
<td>space of orderings on F</td>
</tr>
<tr>
<td>$C(X_F,Z)$</td>
<td>ring of continuous functions from X_F to Z</td>
</tr>
<tr>
<td>$s(F)$</td>
<td>level of F</td>
</tr>
<tr>
<td>$h(F)$</td>
<td>height of F</td>
</tr>
<tr>
<td>$u(F)$</td>
<td>u-invariant of F</td>
</tr>
<tr>
<td>$u_n(F)$</td>
<td>nth system u-invariant of F</td>
</tr>
<tr>
<td>$P(F)$</td>
<td>Pythagoras number of F</td>
</tr>
<tr>
<td>$R(F)$</td>
<td>Kaplansky radical of F</td>
</tr>
<tr>
<td>$F(t)$</td>
<td>rational function field over F</td>
</tr>
<tr>
<td>$F((t))$</td>
<td>Laurent series field over F</td>
</tr>
<tr>
<td>$\varphi \cong \psi$</td>
<td>φ is isometric to ψ</td>
</tr>
<tr>
<td>$\varphi \sim \psi$</td>
<td>φ is Witt-similar to ψ</td>
</tr>
<tr>
<td>$\varphi \perp \psi$</td>
<td>orthogonal sum of φ and ψ</td>
</tr>
<tr>
<td>$\varphi \otimes \psi$</td>
<td>tensor product of φ and ψ</td>
</tr>
<tr>
<td>$F[\varphi]$</td>
<td>(big) function field of φ</td>
</tr>
<tr>
<td>$F(\varphi)$</td>
<td>(small) function field of φ</td>
</tr>
<tr>
<td>$\varphi > \psi$</td>
<td>φ becomes isotropic over $F[\varphi]$</td>
</tr>
<tr>
<td>$\varphi \gg \psi$</td>
<td>φ becomes hyperbolic over $F[\varphi]$</td>
</tr>
<tr>
<td>$\langle a_1, \ldots, a_n \rangle$</td>
<td>the diagonal form $a_1 x_1^2 + \cdots + a_n x_n^2$</td>
</tr>
<tr>
<td>$\langle\langle a_1, \ldots, a_n \rangle$</td>
<td>the n-fold Pfister form $\langle 1, a_1 \rangle \otimes \cdots \otimes \langle 1, a_n \rangle$</td>
</tr>
<tr>
<td>φ'</td>
<td>pure subform of the Pfister form φ</td>
</tr>
<tr>
<td>$\dim q$</td>
<td>dimension of q</td>
</tr>
<tr>
<td>$\dim_{es} q$</td>
<td>essential dimension of q</td>
</tr>
<tr>
<td>$G_F(q)$</td>
<td>group of similarity factors of an F-form q</td>
</tr>
<tr>
<td>$D_F(q)$</td>
<td>set of nonzero values of an F-form q</td>
</tr>
<tr>
<td>$D_F(n)$</td>
<td>nonzero sums of n squares in F</td>
</tr>
<tr>
<td>$D_F(\infty)$</td>
<td>nonzero sums of squares in F (same as $\hat{\sigma}(F)$)</td>
</tr>
<tr>
<td>q_{an}</td>
<td>the anisotropic part of q</td>
</tr>
<tr>
<td>$c \cdot q$</td>
<td>the tensor product $\langle c \rangle \otimes q$</td>
</tr>
<tr>
<td>$r q$</td>
<td>$q \perp \cdots \perp q$ (r times)</td>
</tr>
<tr>
<td>$i(q)$</td>
<td>Witt index of q</td>
</tr>
<tr>
<td>$i_1(q)$</td>
<td>first Witt index of q</td>
</tr>
<tr>
<td>$C(q)$</td>
<td>Clifford algebra of q</td>
</tr>
<tr>
<td>$C_0(q)$</td>
<td>even Clifford algebra of q</td>
</tr>
<tr>
<td>$C^{p,q}$</td>
<td>Clifford algebra of $p(-1) \perp q(1)$</td>
</tr>
</tbody>
</table>
Partial List of Notations

\begin{itemize}
\item \(c(q) \) \quad Witt invariant of \(q \)
\item \(s(q) \) \quad Hasse invariant of \(q \)
\item \(w(q) \) \quad (second) Stiefel-Whitney invariant of \(q \) (in \(k_2F \))
\item \(w_{\pm}(q) \) \quad "signed" version of \(w(q) \)
\item \(\Gamma(q) \) \quad Clifford invariant of \(q \)
\item \(d(q) \) \quad determinant of \(q \) (also denoted by \(\det(q) \))
\item \(d_{\pm}(q) \) \quad signed determinant of \(q \)
\item \(\text{sgn}_\alpha(q) \) \quad signature of \(q \) with respect to an ordering \(\alpha \)
\item \(\text{sgn}(q) \) \quad total signature of \(q \)
\item \(\partial_i(q) \) \quad \(i \) th residue form of \(q \) \((i = 1, 2)\)
\item \(O(q) \) \quad orthogonal group of \(q \)
\item \(\text{SO}(q) \) \quad special orthogonal group of \(q \)
\item \(\text{len}_F(x) \) \quad the (sums-of-squares) length of \(x \in F \)
\item \(N(x) \) \quad norm of the quaternion \(x \)
\item \(T(x) \) \quad trace of the quaternion \(x \)
\item \(N_{K/F}(x) \) \quad field norm of \(x \in K \)
\item \(T_{K/F}(x) \) \quad field trace of \(x \in K \) (also denoted by \(\text{tr}_{K/F}(x) \))
\item \(s_*(U) \) \quad transfer of \(U \) with respect to the functional \(s \)
\item \(\text{Spec}(A) \) \quad prime spectrum of the commutative ring \(A \)
\item \(U(A) \) \quad group of units of the ring \(A \)
\item \(\mathbb{M}_n(A) \) \quad \(n \times n \) matrix ring over the ring \(A \)
\item \(\hat{\mathbb{M}}_n(A) \) \quad \(\mathbb{M}_n(A) \) with the checker-board grading
\item \(\text{GL}_n(A) \) \quad \(n \times n \) general linear group over the ring \(A \)
\item \((,)_p \) \quad \(p \)-adic Hilbert symbol
\item \((\mathbb{F}_q) \) \quad Legendre symbol of \(p \) and \(q \)
\end{itemize}
This page intentionally left blank
Bibliography

(As a disclaimer, we should make it absolutely clear that the following list is not at all a general bibliography on quadratic form theory. Rather, it contains only the papers that are cited in our text, plus a few others that are included for their general relevance. Many important papers in quadratic form theory published in the last 70 years are not included in this very incomplete bibliography.)

and id: global fields, n, discrete topologies n, a, and c:
J. algebraic K-theory algebras, of n-forms:
d, d:
conjecture, e, residue respect r in a, in a:
Pfister, quadratic number is complete in:
finite number:
forms of, i of and d:
ed equivalence:
Algebraic
formally y:
whose a, spectrum fields and the, theorems fields and, Forms:
fields, some a, Galois, quadratic, d:
a, fields with n, e, reciprocity of:
Witt d, total d, Arch under J Survey algebra forms c, n:
ex, extensions, n:
Algebr Amer, the fields, forms:
space n I Pfister the real J for Proc the over, over n:
Proc, Amer, Applie Math, 21(1973)
Math, 23(1972)
131(1973)
58(1991)

Bibliography

Bibliography

Bibliography

This page intentionally left blank
Index

2-adic field Q_2, 162, 164, 166, 226
2-extension, 220
3-adic field, 45
4-element fan, 262

A_4-extension, 195
abelian extension, 267
additive order of $\langle 1, -w \rangle$, 377
Albert form, 69
Albert form (anisotropicity of), 149, 150, 342, 348, 487
Albert form (similarity of), 436
Albert’s conjecture, 81, 138
Albert’s Theorem, 70
algebra norm, 38, 75
algebra trace, 25
algebraic K-theory of fields, 132, 361
algebraic automorphism, 259, 295
algebraic element (in Witt rings), 217
Amer-Brumer Theorem, 304
anisotropic form, 9
anisotropic forms (number of), 417
anisotropic part, 12
anisotropic space, 9
anisotropic system (of quadratic forms), 403
anisotropic vector, 9
annihilating polynomial (for forms), 286
antipodal involution, 506
archimedean ordering, 295
Arithmetic-Geometric Inequality, 519
Artin’s Theorem (on totally positive elements), 236
Artin’s work on Hilbert’s 17th Problem, 299, 520
Artin-Schreier Criterion, 236

Artin-Schreier Criterion (for semireal commutative rings), 502
Artin-Schreier Theorem, 250
automorphisms (of C), 249, 250
automorphisms (of R), 249
automorphisms (of an algebraically closed field), 250

bar involution on Clifford algebra, 141
bar involution on quaternion algebra, 55
Bass-Whitehead group, 132
Berman’s construction, 458
binary form, 15, 36, 38, 48, 60
biquaternion algebra, 60, 72, 149, 342, 437
biquaternion division algebra, 70, 485, 486
Boolean space, 271
Boolean space (of orderings), 277
Borsuk-Ulam Theorem, 504, 507
Borsuk-Ulam Theorem (for polynomial maps), 513
Brauer group, 79–81, 134, 139, 159, 200
Brauer-Noether exercise, 77
Brauer-Wall group, 99

C-field, 420
\mathbb{C}-field, 418
C_1-field, 481
c.d.v. field, 144
Cartan-Dieudonné Theorem, 18, 65, 108
Cassels’ Theorem, 299
Cassels-Ellison-Pfister Theorem, 398
Cassels-Pfister Theorem, 300
Cauchy sequence, 144
Cauchy-Schwarz Inequality, 377
Cayley-Dickson algebra, 316, 327
center, 52, 79
central graded algebra, 84
central simple algebra, 79
central simple algebra with involution, 138
central simple graded algebra, 84
centralizer, 79
CGA (central graded algebra), 84
chain equivalence, 16
chain P-equivalence, 317
Chain P-Equivalence Theorem, 321
checker-board grading, 88, 122
Chevalley's Theorem, 405
Chow group, 350, 360, 494
classification of forms, 36, 122
classification of forms (over finite fields), 36
classification of forms (over global fields),
170
classification of forms (over local fields),
162
classification of forms (over real-closed
fields), 34
classification of local fields, 151
classification of Witt rings, 47, 265, 447,
461
Classification Theorem (Elman-Lam), 440
Clifford algebra, 104
Clifford algebra of hyperbolic space, 107
Clifford invariant, 113, 441
Clifford invariant (over global fields), 173
Clifford module, 122
coindex (of a topological space), 506
colevel (of a topological space), 510
colevel (of an R-algebra), 510
Colevel Theorem, 511
common slot, 69
Common Slot Axiom (for a quaternionic
structure), 470
Common Slot Theorem, 73
commutative ring with prescribed
Pythagoras number, 515
complete discretely valued (or c.d.v.)
field, 144
composition formula (for Pfister form), 327
composition formula (for quaternionic
form), 327
composition formula (for sums of 8 and 16
squares), 328
composition of quadratic forms, 127
compositum of function fields, 333
conjugacy (in a quaternion algebra), 76
conjugate orderings, 238
constructible numbers, 41
constructible numbers (field of), 196, 221,
229
Cordes' Theorem (on C-fields), 417
CSA (central simple algebra), 79
CSGA (central simple graded algebra), 84
CSGA of even type, 92, 97
CSGA of odd type, 92, 97
cup product, 371
cyclic biquaternion algebra, 150
cyclic extension, 217, 267
cyclic Witt group, 49, 421
cyclotomic polynomial, 221
d.v. field, 143
Davenport-Cassels Theorem, 313
depolarization, 3
determinant, 8
diagonal form, 7
diagonalization, 48
diagonalization of forms, 35, 48
diagonalization of trace forms, 25, 214, 215,
217
digging holes in fields, 43
Digging Holes Lemma, 460
Diller-Dress Theorem, 269
discrete valuation ring (or DVR), 144
discretely valued (or d.v.) field, 143
Disquisitiones Mathematicae, 221, 222
dominance (of forms), 304
dyadic, 145, 151
Elementary Type Conjecture, 463, 527
Embedding Problem (in Galois theory), 267
equi-characteristic, 151
equivalence of forms, 1, 2
equivariant map, 506
essential dimension, 350
euclidean closure, 245, 246, 257
euclidean field, 34, 41, 49, 234, 235, 241,
252, 255, 292
euclidean field (characterizations of), 296
euclidean field (Going-Down), 270, 296
Euler-Lagrange-Gauss Theorem, 242
even Clifford algebra, 104
Exact Triangle Theorem, 199
excellent extension, 446, 476
F-place, 345
Fermat prime, 221
field (formally real) of u-invariant 6, 493
field discriminant, 215, 217, 229
field of p-adic numbers, 151
field of u-invariant 2n, 399
field of u-invariant 6, 401, 485
field of u-invariant 9, 410, 413, 480, 494
field of infinite u-invariant, 399
field of prescribed level, 382
field of real constructible numbers, 292
field with any prescribed Pythagoras
number, 480
field with even u-invariant, 401
field with prescribed even u-invariant, 493
field with Pythagoras number n, 499
Index

545

field with even u-invariant, 410
fields with Pythagoras number 6, 7, 496
finite field, 36, 37, 59, 139
finite field (higher K-groups), 365
finite Witt ring, 48, 380, 401, 417, 463
First Representation Theorem, 11
first residue form, 147
first residue homomorphism, 147
first Witt index, 349, 374
formally real field, 41–44, 231
formally real fields with 4 square classes, 42
formally real fields with 8 square classes, 47, 265, 267
forms under Galois extensions, 210, 212
Frobenius Reciprocity, 189
Frobenius’ Theorem, 81
function field, 77
function field (big) \(F[\varphi] \), 329
function field (formally real), 496
function field (homogeneous), 330
function field (of a 4-dimensional form), 432
function field (of a conic), 347
function field (of a Pfister form), 337, 338
function field (of a Pfister neighbor), 345, 346
function field (of a ternary form), 346
function field (of an isotropic form), 334
function field (small) \(F(\varphi) \), 330
function field in one variable, 145
function field of a conic, 331
function field of Witt rings), 188, 215
fundamental ideal, 28, 29, 316
fundamental ideal (powers of), 316
Fundamental Theorem of Algebra, 241
\(G \)-extension, 267
Galois cohomology, 139, 371
Gauss’ Lemma, 178
Gauss’ Theorem (on constructibility), 221
Gauss’ tombstone, 222
generic point, 334
generic zero field, 334
global field, 145, 170
Global Square Theorem, 171
Going-Down Theorem, 201
Going-Up Question, 218, 226
Going-Up Theorem, 392
golden ratio, 69
graded algebra, 83
graded center, 84
graded centralizer, 84
graded opposite algebra, 99
graded quadratic extension, 101
graded quaternion algebra, 87
graded tensor product, 84
graded-similar, 99
Gross-Fischer construction, 42, 203, 228
Gross-Fischer Theorem, 203
group extension (group ring construction), 461
group form, 6, 38, 49, 57, 322, 323
group ring, 24
half-neighbor, 374
Hamilton’s quaternion algebra, 51, 53, 55, 66
Harrison topology, 271
Harrison-Cordes Theorem, 429
Harrison-Lorenz-Leicht Theorem, 278
Hasse invariant, 118, 184, 186
Hasse-Minkowski Principle, 170
Hauptsatz, 352
Hauptsatz (in a \(Q \)-structure), 475
Hauptsatz (supplement to), 355
height (of \(k(t) \)), 398
height (of a field), 395
height (of a formally real field), 395
height (of a formally real number field), 397
height (of a nonreal field), 395
Hensel’s Lemma, 145, 161
hereditarily quadratically closed field, 225
hereditary group form, 324
Hermitian matrix, 55
Hilbert equation, 59
Hilbert field, 159, 455
Hilbert field (formally real), 456
Hilbert field (nonreal), 456
Hilbert Reciprocity Law, 180
Hilbert Reciprocity Law (uniqueness of), 183
Hilbert symbol, 59, 159
Hilbert symbol (nondegeneracy of), 160
Hilbert symbol (over \(Q_2 \)), 185
Hilbert’s 17th Problem, 237, 299, 520
Hilbert’s Criterion, 59
Hilbert’s Reciprocity Theorem, 312
Hilbert’s Theorem (on psd forms), 519
Hilbert’s Theorem (on ternary quartics), 519
Hilbert’s Theorem 90, 200, 227
Hoffmann’s Separation Theorem (on isotropy in function fields), 349
homogeneous element, 83
Hurwitz’s Theorem (on composition), 130
Hurwitz-Radon function, 126, 127, 130
hyperbolic plane, 10
hyperbolic space, 10
hyperplane reflection, 13, 64, 104
\(I^2F \) (characterization of), 32
\(I^2F \) torsionfree, 36, 388, 410
\(I^2F/I^3F \) (as related to \(k_3F \)), 135
\(I^3F \) (characterization of), 138
$I^3 F$ torsionfree, 172, 389, 401, 410, 440, 441
$I^n F$ torsionfree, 389
idempotents in $W(F)$, 281, 283
index (of a topological space), 510
inductive description of isometry, 24
inductive description of value sets, 24
inseparable extension, 25
invertible quaternion, 57
involution, 55, 74, 138
involution of the first kind, 138
involution of the second kind, 138
irreducible polynomial (over \mathbb{Q}), 196, 229
isometric forms, 4
isometry of binary forms, 15, 60
isometry of forms (in a Q-structure), 473
isometry of forms (in a quadratic form scheme), 466
isometry of quadratic spaces, 4
isometry of quaternion norm forms, 58
isometry of ternary forms, 120
isotropic form, 9
isotropic Pfister form, 319
isotropic space, 9
isotropic vector, 9
isotropy (of 10-dimensional forms), 435
isotropy (of 6-dimensional forms), 493
isotropy (of Albert forms), 434
isotropy of Albert form (in function fields), 348, 488, 491
isotropy of binary forms, 9
isotropy of forms (in a Q-structure), 475
isotropy of forms (over global fields), 171
isotropy of forms (over local fields), 158
isotropy of quaternary forms, 121
isotropy of ternary forms, 121, 185, 186
iterated Laurent series field, 261, 399, 401, 420
Jacobson radical of $W(F)$, 281
Jacobson's Theorem, 436
Jakubović-Rosenblum-Rovnyak Theorem, 520
$k(t)$, 38, 59
Kaplansky radical, 450
Kaplansky radical (under a quadratic extension), 476
Kaplansky's Conjecture, 401, 479
Kaplansky's Lemma, 413
Kaplansky's Theorem, 159, 183
Karpenko's Theorem (on first Witt index), 350
Karpenko-Merkurjev Theorem (on essential dimensions), 351
Knebusch's degree, 348
Knebusch's Norm Principle, 206, 209
Kneser's Lemma, 400
Kronecker product, 17
Krull valuation (of rank 1), 143
Krull's Intersection Property, 294, 352
Kula's construction, 459
Lagrange's Theorem, 6
Lagrange-Hilbert-Siegel Theorem, 378
Lagrangian, 23
Lam's Conjecture, 276
Lang's Homomorphism Theorem, 501, 520
Lang's Problem, 528
Laurent series field, 42, 144, 261
law of trichotomy, 233
Lee's construction, 461
Leep's Theorem (on the u-invariant), 402
Legendre symbol, 164, 181
Legendre's Theorem, 185
length (in a commutative ring), 514
length (of an element), 379
length of an element, 514
level (of Q_2), 381
level (of a cyclotomic field), 383
level (of a field), 379
level (of a global field), 381
level (of a local field), 381
level (of a nonreal number field), 383
level (of a quadratic extension), 383
level (of a real affine variety), 508
level (of fields with $|\hat{F}/\hat{F}^2| < \infty$), 527
Level Problem (for commutative rings), 503
Level Theorem (Dai-Lam), 508
linkage number, 356
linkage of Pfister forms, 356
Linkage Theorem (Elman-Lam), 368
linked \mathbb{C}-field, 422
linked field, 171, 186, 370, 374, 406
linked field (characterizations of), 342
Linked Field Theorem (Elman-Lam), 406
linked quaternion algebras, 69
local class field theory, 158
local field, 151
Local Square Theorem, 161
local Witt ring, 280
Local-Global Criterion (for finite level), 500
locally compact topological field, 151
main involution (for \mathbb{Z}_2-graded algebras), 93
Matsumoto's Theorem, 133
maximal ideal spectrum of $W(F)$, 279
maximal linear space (in a quadric), 381
maximal preordering, 290
Merkurjev's Theorem, 81, 115, 138, 371
Merkurjev's Theorem (on fields of u-invariant 6), 486
Milnor Conjectures, 366, 371, 372, 389, 530
Index

547

Milnor's K-groups, 132, 361, 362
Milnor's K-groups (for \mathbb{Q}), 365
Milnor's K-groups (for $F(x)$), 365
Milnor's K-groups (for finite fields), 139, 365
Milnor's K-groups (for global fields), 370
Milnor's K_2-group, 133
Milnor's K_2-group (for \mathbb{R}), 140
Milnor's K_2-group (for algebraically closed fields), 140
Milnor's exact sequence for $W(F(x))$, 306
minimal prime spectrum of $W(F)$, 279
minimal splitting field, 69
motivic cohomology, 372
Motzkin's polynomial, 398, 519, 532
multiplicative form, 324
multi quadratic extension, 443

n-fold Pfister form, 315, 316
n-fold Steinberg symbol, 363
nilradical of $W(F)$, 281
noetherian Witt ring, 32
non-linked field, 150
nonarchimedean, 244
nonarchimedean ordering, 238
noncyclic algebra, 72
noncyclic biquaternion algebra, 72, 150
nondyadic, 145
nondyadic local field, 152, 225
nonpythagorean field, 46, 282
nonreal, 231
nonreal field, 41, 47, 167, 227
nonreal field (k-theory of), 368
nonreal fields with 4 square classes, 169
nonreal fields with 8 square classes, 169, 447
nonsingular quadratic form, 4
norm, 38, 155, 184, 193, 205, 206, 208, 229, 390
norm of a quaternion, 55

odd degree extension, 194, 213, 240, 241, 293
opposite algebra, 80
ordered field, 232
ordering, 232
ordering (on commutative rings), 501
ordering (on function fields), 496
orderings on $\mathbb{R}(x)$, 239
orderings on $k(x)$, 238, 295
orderings on $\mathbb{Q}(x)$, 239, 240
orthogonal complement, 4
orthogonal group, 13, 22, 63, 108
orthogonal sum, 6
orthonormal basis (of trace form), 212, 214, 215, 229

p-adic field, 151
p-adic field \mathbb{Q}_p, 166
palindrome, 379
periodicity 8, 123
Pfister form, 38, 49, 57, 274, 315, 316
Pfister form (over a pythagorean field), 373
Pfister neighbor, 339, 340, 374, 438
Pfister neighbor (5-dimensional), 341
Pfister neighbor (of codimension 1), 341
Pfister neighbor (special), 341, 438
Pfister neighbors with isomorphic function fields, 438
Pfister's Level Theorem, 375, 379, 479
Pfister's Local-Global Principle, 253, 260
Pfister's Theorem (on multiplicative forms), 325
Pfister-Witt Annihilator Theorem, 384
positive cone, 232
positive semidefinite (ped) polynomial, 519
positive semidefinite quaternary quartic, 531
Pouarchet's work on $P(F(x))$, 397
power series ring, 145, 480
pre-Hilbert field, 453, 458
pre-Hilbert field (characterization of), 476
pre-Hilbert field (construction of), 457, 458
pre-Hilbert field (finite), 455
pre-Hilbert field (formally real), 454
pre-Hilbert field (nonreal), 453, 454
preordered field, 289
preordering, 289
preordering (as an intersection of orderings), 290
preordering (in a commutative ring), 501
presentation of Witt ring, 39
prime ideals in $W(F)$, 254, 277, 278
prime spectrum of $W(F)$, 278
profinite Galois group, 371
Property (A_n), 388
Property (A_n) (characterizations of), 389
Property (A_n) (Going-Down), 390
Property (A_n) (Going-Up), 392
pure quaternion, 53, 64, 77
pure subform, 317, 340, 423
Pure Subform Theorem, 318
Pythagoras number 2^k and $2^k + 1$, 396
Pythagoras number (of $\mathbb{Q}(x_1, \ldots, x_n)$), 529
Pythagoras number (of $\mathbb{R}(x_1, \ldots, x_n)$), 397, 398, 529
Pythagoras number (of $\mathbb{Z}[[x]]$), 525
Pythagoras number (of $\mathbb{Z}[x]$), 525
Pythagoras number (of $F(x)$), 397
Pythagoras number (of $k((t))$), 398
Pythagoras number (of a commutative algebra), 517
Pythagoras number (of a commutative ring), 514
Index

Milnor's K-groups, 132, 361, 362
Milnor's K-groups (for \mathbb{Q}), 365
Milnor's K-groups (for $F(x)$), 365
Milnor's K-groups (for finite fields), 139, 365
Milnor's K-groups (for global fields), 370
Milnor's K_2-group, 133
Milnor's K_2-group (for \mathbb{R}), 140
Milnor's K_2-group (for algebraically closed fields), 140
Milnor's exact sequence for $W(F(x))$, 306
minimal prime spectrum of $W(F)$, 279
minimal splitting field, 69
motivic cohomology, 372
Motzkin's polynomial, 398, 519, 532
multiplicative form, 324
multi quintic extension, 443

n-fold Pfister form, 315, 316
n-fold Steinberg symbol, 363
nilradical of $W(F)$, 281
noetherian Witt ring, 32
non-linked field, 150
nonarchimedean, 244
nonarchimedean ordering, 238
noncyclic algebra, 72
noncyclic biquaternion algebra, 72, 150
nondyadic, 145
nondyadic local field, 152, 225
nonpythagorean field, 46, 282
nonreal, 231
nonreal field, 41, 47, 167, 227
nonreal field (k-theory of), 368
nonreal fields with 4 square classes, 169
nonreal fields with 8 square classes, 169, 447
nonsingular quadratic form, 4
norm, 38, 155, 184, 193, 205, 206, 208, 229, 390
norm of a quaternion, 55

odd degree extension, 194, 213, 240, 241, 293
opposite algebra, 80
ordered field, 232
ordering, 232
ordering (on commutative rings), 501
ordering (on function fields), 496
orderings on $\mathbb{R}(x)$, 239
orderings on $k(x)$, 238, 295
orderings on $\mathbb{Q}(x)$, 239, 240
orthogonal complement, 4
orthogonal group, 13, 22, 63, 108
orthogonal sum, 6
orthonormal basis (of trace form), 212, 214, 215, 229
p-adic field, 151
p-adic field \mathbb{Q}_p, 166
palindrome, 379
periodicity 8, 123
Pfister form, 38, 49, 57, 274, 315, 316
Pfister form (over a pythagorean field), 373
Pfister neighbor, 339, 340, 374, 438
Pfister neighbor (5-dimensional), 341
Pfister neighbor (of codimension 1), 341
Pfister neighbor (special), 341, 438
Pfister neighbors with isomorphic function fields, 438
Pfister's Level Theorem, 375, 379, 479
Pfister's Local-Global Principle, 253, 260
Pfister's Theorem (on multiplicative forms), 325
Pfister-Witt Annihilator Theorem, 384
positive cone, 232
positive semidefinite (pd) polynomial, 519
positive semidefinite quaternary quartic, 531
Pouche's work on $P(F(x))$, 397
power series ring, 145, 480
pre-Hilbert field, 453, 458
pre-Hilbert field (characterization of), 476
pre-Hilbert field (construction of), 457, 458
pre-Hilbert field (finite), 455
pre-Hilbert field (formally real), 454
pre-Hilbert field (nonreal), 453, 454
preordered field, 289
preordering, 289
preordering (as an intersection of orderings), 290
preordering (in a commutative ring), 501
presentation of Witt ring, 39
prime ideals in $W(F)$, 254, 277, 278
prime spectrum of $W(F)$, 278
profinite Galois group, 371
Property (A_n), 388
Property (A_n) (characterizations of), 389
Property (A_n) (Going-Down), 390
Property (A_n) (Going-Up), 392
pure quaternion, 53, 64, 77
pure subform, 317, 340, 423
Pure Subform Theorem, 318
Pythagoras number 2^k and $2^k + 1$, 396
Pythagoras number (of $\mathbb{Q}(x_1, \ldots, x_n)$), 529
Pythagoras number (of $\mathbb{R}(x_1, \ldots, x_n)$), 397, 398, 529
Pythagoras number (of $\mathbb{Z}[[x]]$), 525
Pythagoras number (of $\mathbb{Z}[x]$), 525
Pythagoras number (of $F(x)$), 397
Pythagoras number (of $k(t)$), 398
Pythagoras number (of a commutative algebra), 517
Pythagoras number (of a commutative ring), 514
Pythagoras number (of a field), 44, 395
Pythagoras number (of a global field), 396
Pythagoras number (of affine curves), 523
Pythagoras number (of nonreal affine algebras), 526
Pythagoras number (of polynomial rings), 524
pythagorean closure (or hull), 257
pythagorean field, 42, 47, 227, 228, 234, 255, 269, 282
pythagorean field (characterizations of), 293
pythagorean field (with $|F/F^2| = 2^n$), 264
pythagorean field (with $|F/F^2| \leq 8$), 262
pythagorean SAP field, 264
pythagorean triple, 228

q-equivalence (of fields), 426
Q-structure, 469
quadratic n-system, 403
quadratic (form) equivalence (of fields), 426
quadratic closure, 219, 252
quadratic closure (of \mathbb{Q}), 196
quadratic closure (of a dyadic local field), 226
quadratic closure (of a nondyadic local field), 226
quadratic closure (of a number field), 222
quadratic equivalence, 421
quadratic extension, 197
quadratic form, 1
quadratic form (irreducibility of), 329
quadratic form scheme, 464
quadratic form scheme (from a quaternionic structure), 471
quadratic forms over \mathbb{C}-fields, 419
quadratic forms over a preordering, 291
quadratic invariant (of CSGA), 97
quadratic map, 2, 3
Quadratic Reciprocity, 62, 178, 181
Quadratic Reciprocity (first supplement), 181
Quadratic Reciprocity (second supplement), 181
quadratic space, 3
quadratic splitting field, 68
Quadratic Zariski Problem (for function fields of forms), 530
quadratically closed field, 33, 34, 49, 196, 235
quadratically closed field (Going-Down), 270
quartic extension, 195, 196, 217
quartic extension (of $\overline{\mathbb{Q}}$), 196, 229
Quat(F), 135, 159
quaternion algebra, 51
quaternion division algebra, 58, 63, 152, 156, 163
quaternionic conjugate, 55
quaternionic structure (or Q-structure), 469
Quillen’s K-groups, 132
Quillen’s K-groups (for finite fields), 140
Quillen’s algebraic K-theory, 493
r-linked Pfister forms, 357
radical, 5
rational quaternion algebra, 62, 76, 185
Real Nullstellensatz (Strong), 501
Real Nullstellensatz (Weak), 501
real projective space, 506
real-closed field, 236
real-closed field (K-groups of), 363
real-closed field (characterization of), 240, 241
real-closure, 242, 248, 249
real-closure (existence of), 242
real-closure (uniqueness of), 242, 246
reduced theory of quadratic forms, 292, 464
reduced Witt ring, 292
regular 17-gon (constructibility of), 221
regular n-gon (constructibility of), 221, 222
regular field extension, 331
regular function field, 332
regular pentagon (constructibility of), 221
regular quadratic form, 4
regular quadratic space, 4
representation criterion, 7
represented values, 5
represented values (of a Pfister form), 319
residually real valuation ring, 531
residue class field, 144
rings with prescribed level (Dai-Lam-Peng), 504
Rosenberg-Ware Theorem, 212
round form, 49, 322, 384
Round Form Theorem, 322

Scharlau’s Norm Principle, 205
Scharlau’s Reciprocity Formula for $F(x)$, 309, 310
Schur index (versus Witt index), 437
Schur’s Theorem, 131
second gap (for forms in $I^n F$), 359–361
Second Representation Theorem, 303, 313
second residue form, 147
second residue homomorphism, 147, 175, 306
semireal commutative ring, 499
semireal commutative ring (characterizations of), 502
semireal ideal, 500
semireal Prüfer domains, 531
separable extension, 25, 189, 212, 217
Index

Serre's work on preorderings, 291
Serre's work on trace forms, 217
SGA (simple graded algebra), 84
signature, 34, 48, 247
signature (of a trace form), 293
signed determinant, 30, 110, 229
signed determinant (of a trace form), 229
signed Hasse invariant, 119, 138
signed Stiefel-Whitney invariant, 136
similar central simple algebras, 80
similarity factors (group of), 204
similarity factors (of a Pfister form), 319
simple algebra, 52, 59, 74, 79
simple algebraic extension, 192, 193, 214
simple equivalence, 15
simple graded algebra (SGA), 84
simple \(p\)-equivalence, 317
skew-Hermitian matrix, 55, 66
Skolem-Noether Theorem, 82
small Witt rings, 41, 167, 169
special orthogonal group, 63, 66
special unitary group, 54, 66
spinor norm, 108
split quaternion algebra, 58, 59
split quaternion algebra (over \(\mathbb{Q}\)), 178, 185
split quaternion algebra (over global fields), 171
splitting field, 67, 77
Springer's Theorem (for nondyadic c.d.v. fields), 146
Springer's Theorem (for odd extensions), 194
square class group, 6, 36
square class group (under a Galois extension), 218
square class group (under a number field extension), 223
square class group (under a quadratic extension), 200
square class group (under an algebraic extension), 201, 218, 227
square class group (under an even extension), 228
stable birational equivalence, 530
stably isomorphic fields, 344
stably isomorphic function fields, 344
Steinberg property, 132
Steinberg symbol, 132
Steinberg symbol (higher fold), 363
Stiefel manifold, 506
Stiefel-Whitney invariant, 135, 141, 367
strongly multiplicative form, 324, 327
Stufe, 379
Subform Theorem, 305
Substitution Principle, 302
suicidal property (of a Pfister form), 339
sums of 2 squares, 38, 267
sums of \(2^n\) squares, 319, 328, 376, 377, 391
sums of 4-th powers, 302
sums of 3 squares, 174, 313, 383
sums of 4 squares, 6, 49, 327
sums of 4 squares (over global fields), 378
sums of squares, 208, 213, 214, 231, 233, 299, 376
superpythagorean field, 264
support (of an ordering in a ring), 501
Sylvester's Law of Inertia, 34
symmetric bilinear pairing, 3
system \(u\)-invariant, 403
system of quadratic forms, 403
system of quadratic forms (over a \(p\)-adic field), 406
system of quadratic forms (over a finite field), 405
system of quadratic forms (over a nonreal number field), 406
Tarski's Principle, 513
tensor algebra, 104
tensor product, 17
Third Representation Theorem, 305
topological level, 506
torsion in \(I^2 F\), 388
torsion in \(I^n F\), 389
torsion subgroup of \(W(F)\), 253, 276, 394, 395
total signature, 253
total signature (for a pythagorean field), 260
totally isotropic space, 9
totally isotropic subspace, 13, 23
totally positive element, 236
trace form, 25, 189, 213, 215
trace form (of a cyclic quartic extension), 217
trace form (of a Galois extension), 211
trace form (of a quadratic extension), 216
trace form (on a commutative \(\acute{e}tale\) algebra), 25
trace form (scaled), 189, 216
trace form (Witt invariant of), 217
trace of a quaternion, 55
transfer ideal, 191, 193, 194, 198
transfer map, 188
transfer map (for a Galois extension), 213
transfer map (for a quadratic extension), 199, 202, 216
Transfer Principle, 392
Tseng-Lang Theorem, 37, 376, 399
two-square identity, 38
\(u\)-invariant, 11, 149, 398
\(u\)-invariant (Elman-Lam filtration), 412
\(u\)-invariant (general), 409
u-invariant (of $Q_p(x)$), 529
u-invariant (of $F(t)$), 411
u-invariant (of $F(x)$), 528
u-invariant (of fields with $|F'/F^2| < \infty$), 528
u-invariant (under quadratic extensions), 402, 422
u-invariant (versus square class number), 400, 412
u-invariant of $C((x, y))$, 481
uniformizer, 144
unit group of $W(F)$, 285, 387
unit quaternions, 54, 77
units in reduced Witt rings, 286
units in Witt rings, 49, 281, 284
universal form, 10, 36, 38, 48, 158
universal form (over pythagorean fields), 293
universal Pfister form, 391
universal Steinberg symbol, 133
unramified quadratic extension, 154, 155, 159, 163, 184
Urysohn’s Lemma, 274
valuation ring, 143
value set, 6
van der Waerden’s Problem, 380, 479
Vishik’s Gap Theorem, 359
Voevodsky’s cohomology theories, 372
$|W(F)|$ bounded by level, 415
$|W(F)|$ bounded by $u(F)$ and square class number, 415
Wadsworth’s example, 348
Wadsworth’s Similarity Theorem, 347, 431
Wall’s formula, 120
Wantzel’s work (on constructibility), 222
Weak Hasse-Minkowski Principle, 170, 178, 182
weak preordering, 290, 292
Wedderburn’s Theorem, 59, 74, 76, 81
Weierstrass Division Theorem, 482
Weierstrass polynomial (of degree s), 482
Weierstrass Preparation Theorem, 483
Weierstrass’ Nullstellensatz, 297
Whaples’ Theorem, 269

Witt index, 12, 24, 357
Witt index (first) $i_1(x)$, 349
Witt index (higher), 349
Witt invariant, 117
Witt invariant (in relation to Hasse invariant), 119
Witt invariant (of trace forms), 217
Witt product, 462
Witt product (over a quadratic form scheme), 467
Witt ring, 28
Witt ring (abstract), 464
Witt ring (exponent of), 380
Witt ring (isomorphism of), 426
Witt ring (Krull dimension of), 280
Witt ring (of a C-field), 420
Witt ring kernel, 191, 195, 197, 199, 228, 229, 280, 300, 336, 338, 344, 345
Witt ring kernel (of a biquadratic extension), 444
Witt ring of Q, 175
Witt ring of Q_2 (characterizations of), 449
Witt ring of $F(x)$, 177, 306
Witt ring of a dyadic local field, 165
Witt ring of a global field, 172
Witt ring of a nondyadic local field, 152
Witt rings as group rings, 34, 147, 152, 262, 420
Witt rings of finite type, 463
Witt’s Cancellation Theorem, 12
Witt’s Cancellation Theorem (over a Q-structure), 473
Witt’s Chain Equivalence Theorem, 16
Witt’s Decomposition Theorem, 12
Witt’s Extension Theorem, 23
Witt’s Theorem (on function fields of ternary forms), 346
Witt-Grothendieck group, 152
Witt-Grothendieck ring, 28
Witt-similar, 29

Z_4-extension, 267, 269
Zariski topology, 277
Zariski’s Problem, 530
zero-divisors in $W(F)$, 281–283
zeros of systems of quadratic forms, 405
Titles in This Series

67 **T.Y. Lam**, Introduction to quadratic forms over fields, 2004
66 **Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis**, Functional analysis, An introduction, 2004
65 **S. Ramanan**, Global calculus, 2004
64 **A. A. Kirillov**, Lectures on the orbit method, 2004
63 **Steven Dale Cutkosky**, Resolution of singularities, 2004
62 **T. W. Körner**, A companion to analysis: A second first and first second course in analysis, 2004
60 **Alberto Candel and Lawrence Conlon**, Foliations II, 2003
59 **Steven H. Weintraub**, Representation theory of finite groups: algebra and arithmetic, 2003
58 **Cédric Villani**, Topics in optimal transportation, 2003
57 **Robert Plato**, Concise numerical mathematics, 2003
56 **E. B. Vinberg**, A course in algebra, 2003
54 **Alexander Barvinok**, A course in convexity, 2002
53 **Henryk Iwaniec**, Spectral methods of automorphic forms, 2002
52 **Ilka Agricola and Thomas Friedrich**, Global analysis: Differential forms in analysis, geometry and physics, 2002
51 **Y. A. Abramovich and C. D. Aliprantis**, Problems in operator theory, 2002
50 **Y. A. Abramovich and C. D. Aliprantis**, An invitation to operator theory, 2002
48 **Y. Eliashberg and N. Mishachev**, Introduction to the h-principle, 2002
46 **Joseph L. Taylor**, Several complex variables with connections to algebraic geometry and Lie groups, 2002
44 **Jim Agler and John E. McCarty**, Pick interpolation and Hilbert function spaces, 2002
43 **N. V. Krylov**, Introduction to the theory of random processes, 2002
42 **Jin Hong and Seok-Jin Kang**, Introduction to quantum groups and crystal bases, 2002
41 **Georgi V. Smirnov**, Introduction to the theory of differential inclusions, 2002
40 **Robert E. Greene and Steven G. Krantz**, Function theory of one complex variable, 2002
39 **Larry C. Grove**, Classical groups and geometric algebra, 2002
38 **Elton P. Hsu**, Stochastic analysis on manifolds, 2002
37 **Hershel M. Farkas and Irwin Kra**, Theta constants, Riemann surfaces and the modular group, 2001
35 **James F. Davis and Paul Kirk**, Lecture notes in algebraic topology, 2001
34 **Sigurdur Helgason**, Differential geometry, Lie groups, and symmetric spaces, 2001
33 **Dmitri Burago, Yuri Burago, and Sergei Ivanov**, A course in metric geometry, 2001
30 **J. C. McConnell and J. C. Robson**, Noncommutative Noetherian rings, 2001
TITLES IN THIS SERIES

29 Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001
25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000
24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000
23 Alberto Candela and Lawrence Conlon, Foliations I, 2000
21 John B. Conway, A course in operator theory, 2000
20 Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
19 Lawrence C. Evans, Partial differential equations, 1998
18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997
17 Henryk Iwaniec, Topics in classical automorphic forms, 1997
14 Elliott H. Lieb and Michael Loss, Analysis, 1997
12 N. V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, 1996
11 Jacques Dixmier, Enveloping algebras, 1996 Printing
10 Barry Simon, Representations of finite and compact groups, 1996
9 Dino Lorenzini, An invitation to arithmetic geometry, 1996
8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
7 Gerald J. Janusz, Algebraic number fields, second edition, 1996
6 Jens Carsten Jantzen, Lectures on quantum groups, 1996
5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995
4 Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993
1 Ethan Akin, The general topology of dynamical systems, 1993
A new version of the author's prize-winning *Algebraic Theory of Quadratic Forms* (Benjamin, 1973), this book gives a modern and self-contained introduction to the theory of quadratic forms over fields of characteristic not two. Starting with few prerequisites besides linear algebra, the author charts an expert course from Witt's classical theory of quadratic forms, quaternion and Clifford algebras, Artin-Schreier theory of formally real fields, and structural theorems on Witt rings, to the theory of Pfister forms, function fields, and field invariants. These main developments are seamlessly interwoven with excursions into Brauer-Wall groups, local and global fields, trace forms, Galois theory, and elementary algebraic K-theory, to create a uniquely original treatment of quadratic form theory over fields. Two new chapters totaling more than 100 pages have been added to the earlier incarnation of this book to take into account some of the newer results and more recent viewpoints in the area.

As is characteristic of this author's expository style, the presentation of the main material in this book is interspersed with a copious number of carefully chosen examples to illustrate the general theory. This feature, together with a rich stock of some 280 exercises for the thirteen chapters, greatly enhances the pedagogical value of this book, both as a graduate text and as a reference work for researchers in algebra, number theory, field theory, algebraic geometry, algebraic topology, and geometric topology.