Elements of Combinatorial and Differential Topology

V. V. Prasolov

Graduate Studies
 in Mathematics

Volume 74

Elements of
 Combinatorial and Differential Topology

This page intentionally left blank

Elements of
 Combinatorial and Differential Topology

V. V. Prasolov

Graduate Studies
in Mathematics
Volume 74

Editorial Board
Walter Craig
Nikolai Ivanov
Steven G. Krantz
David Saltman (Chair)

В. В. Прасолов
 Элементы комбинаторной и дифференциальной топологии

МЦНМО, Москва, 2004
Translated from the Russian by Olga Sipacheva

2000 Mathematics Subject Classification. Primary 57-01; Secondary 57 Mxx , 57 Rxx .
This work was originally published in Russian by МЦНМО under the title "Элементы комбинаторной и дифференциальной топологии" (c) 2004. The present translation was created under license for the American Mathematical Society and is published by permission.

> For additional information and updates on this book, visit www.ams.org/bookpages/gsm-74

Library of Congress Cataloging-in-Publication Data
Prasolov, V. V. (Viktor Vasil'evich)
[Elementy kombinatornoi i differentsial'noi topologii. English]
Elements of combinatorial and differential topology / V. V. Prasolov; [translated from the Russian by Olga Sipacheva].
p. cm. - (Graduate studies in mathematics, ISSN 1065-7339; v. 74)
Includes bibliographical references and index.
ISBN 0-8218-3809-1 (acid-free paper)
1. Combinatorial topology. 2. Differential topology. 3. Low-dimensional topology. 4. Topological manifolds. I. Title. II. Series.

QA612.P73 2006
$514^{\prime} .22-\mathrm{dc} 22$
2006042681

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2006 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America.
$@$ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Contents

Preface vii
Notation xi
Basic Definitions 1
Chapter 1. Graphs 5
§1. Topological and Geometric Properties of Graphs 5
§2. Homotopy Properties of Graphs 29
§3. Graph Invariants 47
Chapter 2. Topology in Euclidean Space 55
§1. Topology of Subsets of Euclidean Space 55
§2. Curves in the Plane 63
$\S 3$. The Brouwer Fixed Point Theorem and Sperner's Lemma 72
Chapter 3. Topological Spaces 87
§1. Elements of General Topology 87
§2. Simplicial Complexes 99
§3. CW-Complexes 117
$\S 4$. Constructions 130
Chapter 4. Two-Dimensional Surfaces, Coverings, Bundles, and Homotopy Groups 139
§1. Two-Dimensional Surfaces 139
§2. Coverings 149
§3. Graphs on Surfaces and Deleted Products of Graphs 157
§4. Fibrations and Homotopy Groups 161
Chapter 5. Manifolds 181
§1. Definition and Basic Properties 181
§2. Tangent Spaces 199
§3. Embeddings and Immersions 207
§4. The Degree of a Map 220
§5. Morse Theory 239
Chapter 6. Fundamental Groups 257
§1. CW-Complexes 257
§2. The Seifert-van Kampen Theorem 266
§3. Fundamental Groups of Complements of Algebraic Curves 279
Hints and Solutions 291
Bibliography 317
Index 325

Preface

Modern topology uses many different methods. In this book, we largely investigate the methods of combinatorial topology and the methods of differential topology; the former reduce studying topological spaces to investigation of their partitions into elementary sets, such as simplices, or covers by some simple sets, while the latter deal with smooth manifolds and smooth maps. Many topological problems can be solved by using any of the two approaches, combinatorial or differential; in such cases, we discuss both of them.

Topology has its historical origins in the work of Riemann; Riemann's investigation was continued by Betti and Poincaré. While studying multivalued analytic functions of a complex variable, Riemann realized that, rather than in the plane, multivalued functions should be considered on two-dimensional surfaces on which they are single-valued. In these considerations, two-dimensional surfaces arise by themselves and are defined intrinsically, independently of their particular embeddings in \mathbb{R}^{3}; they are obtained by gluing together overlapping plane domains. Then, Riemann introduced the notion of what is known as a (multidimensional) manifold (in the German literature, Riemann's term Mannigfaltigkeit is used). A manifold of dimension n, or n-manifold, is obtained by gluing together overlapping domains of the space \mathbb{R}^{n}. Later, it was recognized that to describe continuous maps of manifolds, it suffices to know only the structure of the open subsets of these manifolds. This was one of the most important reasons for introducing the notion of topological space; this is a set endowed with a topology, that is, a system of subsets (called open sets) with certain properties.

Chapter 1 considers the simplest topological objects, graphs (one-dimensional complexes). First, we discuss questions which border on geometry, such as planarity, the Euler formula, and Steinitz' theorem. Then, we consider fundamental groups and coverings, whose basic properties are well seen in graphs. This chapter is concluded with a detailed discussion of the polynomial invariants of graphs; there has been much interest in them recently, after the discovery of their relationship with knot invariants.

Chapter 2 is concerned with another fairly simple topological object, Euclidean space with standard topology. Subsets of Euclidean space may have very complicated topological structure; for this reason, only a few basic statements about the topology of Euclidean space and its subsets are included. One of the fundamental problems in topology is the classification of continuous maps between topological spaces (on the spaces certain constraints may be imposed; the classification is up to some equivalence). The simplest classifications of this kind are related to curves in the plane, i.e., maps of S^{1} to \mathbb{R}^{2}. First, we prove the Jordan theorem and the Whitney-Graustein classification theorem for smooth closed curves up to regular homotopy. Then, we prove the Brouwer fixed point theorem and Sperner's lemma by several different methods (in addition to the standard statement of Sperner's lemma, we give its refined version, which takes into account the orientations of simplices). We also prove the Kakutani fixed point theorem, which generalizes the theorem of Brouwer. The chapter is concluded by the Tietze theorem on extension of continuous maps, which is derived from Urysohn's lemma, and two theorems of Lebesgue, the open cover theorem, which is used in the rigorous proofs of many theorems from homotopy and homology theories, and the closed cover theorem, on which the definition of topological dimension is based.

Chapter 3 begins with elements of general topology; it gives the minimal necessary information constantly used in algebraic topology. We consider three properties (Hausdorffness, normality, and paracompactness) which substantially facilitate the study of topological spaces. Then, we consider two classes of topological spaces that are most important in algebraic topology (namely, simplicial complexes and CW-complexes), describe techniques for dealing with them (cellular and simplicial approximation), and prove that these spaces have the three properties mentioned above. We also introduce the notion of degree for maps of pseudomanifolds and apply it to prove the Borsuk-Ulam theorem, from which we derive many corollaries. The chapter is concluded with a description of some constructions of topological spaces, including joins, deleted joins, and symmetric products. We apply deleted joins to prove that certain n-dimensional simplicial complexes cannot be embedded in $\mathbb{R}^{2 n}$.

Chapter 4 covers very diverse topics, such as two-dimensional surfaces, coverings, local homeomorphisms, graphs on surfaces (including genera of graphs and graph coloring), bundles, and homotopy groups.

Chapter 5 turns to differential topology. We consider smooth manifolds and the application of smooth maps to topology. First, we introduce some basic tools (namely, smooth partitions of unity and Sard's theorem) and consider an example, the Grassmann manifolds, which plays an important role everywhere in topology. Then, we discuss notions related to tangent spaces, namely, vector fields and differential forms. After this, we prove existence theorems for embeddings and immersions (including closed embeddings of noncompact manifolds), which play an important role in the study of smooth manifolds. Moreover, we prove that a closed nonorientable n-manifold cannot be embedded in \mathbb{R}^{n+1} and determine what two-dimensional surfaces can be embedded in $\mathbb{R} P^{3}$. Further, we introduce a homotopy invariant, the degree of a smooth map, and apply it to define the index of a singular point of a vector field. We prove the Hopf theorem, which gives a homotopy classification of maps $M^{n} \rightarrow S^{n}$. We also describe a construction of Pontryagin which interprets $\pi_{n+k}\left(S^{n}\right)$ as the set of classes of cobordant framed k-manifolds in \mathbb{R}^{n+k}. We conclude this chapter with Morse theory, which relates the topological structure of a manifold to local properties of singular points of a nondegenerate function on this manifold. We give explicit examples of Morse functions on some manifolds, including Grassmann manifolds.

Chapter 6 is devoted to explicit calculations of fundamental groups for some spaces and to applications of fundamental groups. First, we prove a theorem about generators and relations determining the fundamental group of a CW-complex and give some applications of this theorem. Sometimes, it is more convenient to calculate fundamental groups by using exact sequences of bundles. Such is the case for, e.g., the fundamental group of $\mathrm{SO}(n)$. In many situations, the van Kampen theorem about the structure of the fundamental group of a union of two open sets is helpful. For example, it can be used to calculate the fundamental group of a knot complement. At the end of the chapter, we give another theorem of van Kampen, which gives a method for calculating the fundamental group of the complement of an algebraic curve in $\mathbb{C} P^{2}$. The corresponding calculations for particular curves are fairly complicated; plenty of interesting results have been obtained, but many things are not yet fully understood.

One of the main purposes of this book is to advance in the study of the properties of topological spaces (especially manifolds) as far as possible without employing complicated techniques. This distinguishes it from the majority of topology books.

The book is intended for readers familiar with the basic notions of geometry, linear algebra, and analysis. In particular, some knowledge of open, closed, and compact sets in Euclidean space is assumed.

The book contains many problems, which the reader is invited to think about. They are divided into three groups: (1) exercises; solving them should not cause any difficulties, so their solutions are not included; (2) problems; they are not so easy, and the solutions to most of them are given at the end of the book; (3) challenging problems (marked with an asterisk); each of these problems is the content of a whole scientific paper. They are formulated as problems not to overburden the main text of the book. The solutions to most of these problems are also given at the end of the book. The problems are based on the first- and second-year graduate topology courses taught by the author at the Independent University of Moscow in 2002.

This work was financially supported by the Russian Foundation for Basic Research (project no. 05-01-01012a).

Notation

- $X \approx Y$ means that the topological spaces X and Y are homeomorphic;
- $X \sim Y$ means that the topological spaces X and Y are homotopy equivalent;
- $f \simeq g$ means that the map f is homotopic to g;
- $|A|$ denotes the cardinality of the set A;
- int A denotes the interior of A;
- \bar{A} denotes the closure of A;
- ∂A denotes the boundary of A;
- id_{A} denotes the identity map on A;
- K_{n} denotes the complete graph on n vertices;
- $K_{n, m}$, see p. 7;
- D^{n} denotes the n-disk (or n-ball);
- S^{n} denotes the n-sphere;
- Δ^{n} denotes the n-simplex;
- I^{n} denotes the n-cube;
- P^{2} denotes the projective plane;
- T^{2} denotes the two-dimensional torus;
- $S^{2} \# n P^{2}$ and $n P^{2}$ denote the connected sum of n projective planes;
- $S^{2} \# n T^{2}$ and $n T^{2}$ denote the connected sum of $n 2$-tori (the sphere with n handles);
- K^{2} denotes the Klein bottle;
- $\|x-y\|$ denotes the distance between points $x, y \in \mathbb{R}^{n}$;
- $\|v\|$ denotes the length of the vector $v \in \mathbb{R}^{n}$;
- $d(x, y)$ denotes the distance between points x and y;
- inf denotes the greatest lower bound;
- $X \sqcup Y$ denotes the disjoint union of X and Y;
- $\operatorname{supp} f=\overline{\{x: f(x) \neq 0\}}$ denotes the support of the function f;
- $X * Y$ denotes the join of the spaces X and Y;
- $\mathrm{SP}^{n}(X)$ denotes the n-fold symmetric product of X;
- $f:(X, Y) \rightarrow\left(X_{1}, Y_{1}\right)$ denotes the map of pairs which takes $Y \subset X$ to $Y_{1} \subset X_{1}$;
- $\pi_{1}\left(X, x_{0}\right)$ denotes the fundamental group of the space X with base point $x_{0} \in X$;
- $\pi_{n}\left(X, x_{0}\right)$ denotes the n-dimensional homotopy group of the space X with base point $x_{0} \in X$;
- $\operatorname{deg} f$ denotes the degree of a map f;
- rank $f(x)$ denotes the rank of f at the point x;
- $G(n, k)$ denotes the Grassmann manifold;
- $\operatorname{GL}_{k}(\mathbb{R})$ denotes the group of $k \times k$ nonsingular matrices with real entries;
- $\mathrm{U}(n)$ denotes the group of unitary matrices of order n;
- $\mathrm{SU}(n)$ denotes the group of unitary matrices of order n with determinant 1 ;
- $\mathrm{O}(n)$ denotes the group of orthogonal matrices of order n;
- $\mathrm{SO}(n)$ denotes the group of orthogonal matrices of order n with determinant 1;
- $T_{x} M^{n}$ denotes the tangent space at the point $x \in M^{n}$;
- $T M^{n}$ denotes the tangent bundle;
- $\Omega_{\mathrm{fr}}^{k}(n+k)$ denotes the set of classes of framed cobordant k-manifolds in \mathbb{R}^{n+k}.

Bibliography

[1] M. Adachi, Embeddings and immersions. Amer. Math. Soc., Providence, RI, 1993.
[2] A. A. Albert, Non-associative algebras. Ann. Math. 43 (1942), 685-707.
[3] J. C. Alexander, Morse functions on Grassmannians. Illinois J. Math. 15 (1971), 672-681.
[4] P. S. Alexandroff, Über stetige Abbildungen kompakter Räume. Math. Ann. 96 (1927), 555-571.
[5] K. Appel and W. Haken, Every planar map is four colorable. I. Discharging. Illinois J. Math. 21 (1977), 429-490.
[6] , Every planar map is four colorable. Amer. Math. Soc., Providence, RI, 1989.
[7] K. Appel, W. Haken, and J. Koch, Every planar map is four colorable. II. Reducibility. Illinois J. Math. 21 (1977), 491-567.
[8] D. Archdeacon and J. Širáň, Characterizing planarity using theta graphs. J. Graph Theory 27 (1998), 17-20.
[9] V. I. Arnold, Lectures on partial differential equations. Fazis, Moscow, 1997; English transl., Springer-Verlag, Berlin, 2004.
[10] M. L. Balinski, On the graph structure of convex polyhedra in n-space. Pacific J. Math. 11 (1961), 431-434.
[11] T. F. Banchoff, Global geometry of polygons. I. The theorem of Fabricius-Bjerre, Proc. Amer. Math. Soc. 45 (1974), 237-241.
[12] E. G. Bajmóczy and I. Bárány, On a common generalization of Borsuk's theorem and Radon's theorem. Acta Math. Hungar. 34 (1979), 347-350.
[13] I. Bárány and L. Lovász, Borsuk's theorem and the number of facets of centrally symmetric polytopes. Acta Math. Hungar. 40 (1982), 323-329.
[14] D. W. Barnette and B. Grünbaum, On Steinitz's theorem concerning convex 3-polytopes and on some properties of planar graphs. The Many Facets of Graph Theory, Springer-Verlag, Berlin, 1969, pp. 27-40.
[15] P. Bohl, Über die Bewegung eines mechanischen Systems in der Nähe einer Gleichgewichtslage. J. Reine Angew. Math. 127 (1904), 179-276.
[16] J. A. Bondy and U. S. R. Murty, Graph theory with applications. Macmillan, London, 1976.
[17] K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre. Fund. Math. 20 (1933), 177-190.
[18] R. Bott, Two new combinatorial invariants for polyhedra. Portugaliae Math. 11 (1952), 35-40.
[19] R. Bott and L. W. Tu, Differential forms in algebraic topology. Springer-Verlag, New York, 1989.
[20] N. Bourbaki, Éléments de mathématique. Fasc. II. Livre III: Topologie générale. Hermann, Paris, 1965.
[21] G. E. Bredon and J. W. Wood, Non-orientable surfaces in orientable 3-manifolds. Invent. Math. 7 (1969), 83-110.
[22] J. R. Breitenbach, A criterion for the planarity of a graph. J. Graph Theory 10 (1986), 529-532.
[23] L. E. J. Brouwer, Über Abbildung von Mannigfaltigkeiten. Math. Ann. 71 (1912), 97-115.
[24] _, Über den natürlichen Dimensionsbegriff. J. Reine Angew. Math. 142 (1913), 146-152.
[25] A. B. Brown and S. S. Cairns, Strengthening of Sperner's lemma applied to homology theory. Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 113-114.
[26] S. S. Cairns, A simple triangulation method for smooth manifolds, Bull. Amer. Math. Soc. 67 (1961), 389-390.
[27] D. Cheniot, Le théorème de van Kampen sur le groupe fondamental du complémentaire d'une courbe algèbrique projective plane. Fonctions de plusieurs variables complexes (Sem. François Norguet, a la mémoire d'André Martineau), Lecture Notes in Math., vol. 409, Springer-Verlag, 'Berlin, 1974, pp. 394-417.
[28] D. I. A. Cohen, On the Sperner lemma. J. Combin. Theory 2 (1967), 585-587.
[29] J. H. Conway and C. McA. Gordon, Knots and links in spatial graphs. J. Graph Theory 7 (1983), 445-453.
[30] J. H. C. Creighton, An elementary proof of the classification of surfaces in the projective 3-space. Proc. Amer. Math. Soc. 72 (1978), 191-192.
[31] R. H. Crowell, On the van Kampen theorem. Pacific J. Math. 9 (1959) 43-50.
[32] J. Dieudonné, Une généralisation des espace compact. J. Math. Pures Appl. 23 (1944), 65-76.
[33] R. Engelking, Dimension theory. North-Holland, Amsterdam-Oxford-New York, 1978.
[34] Fr. Fabricius-Bjerre, On the double tangents of plane closed curves. Math. Scand. 11 (1962), 113-116.
[35] __ A proof of a relation between the numbers of singularities of a closed polygon. J. Geom. 13 (1979), 126-132.
[36] I. Fáry On straight line representation of planar graph. Acta Sci. Math. (Szeged) 11 (1948), 229-233.
[37] A. Fathi, Partitions of unity for countable covers. Amer. Math. Monthly. 104 (1997), 720-723.
[38] A. Flores, Über die Existenz n-dimensionaler Komplexe, die nicht in den $R_{2 n}$ topologisch einbettbar sind. Ergeb. Math. Kolloqu. 5 (1933), 17-24.
[39] \qquad , Über n-dimensionale Komplexe, die im $R_{2 n+1}$ absolut selbstverschlungen sind. Ergeb. Math. Kolloqu. 6 (1935), 4-6.
[40] A. T. Fomenko and D. B. Fuks, A Course in homotopic topology. Nauka, Moscow, 1989. (Russian)
[41] H. Freudenthal, Die Fundamentalgruppe der Mannigfaltigkeit der Tangentialrichtungen einer geschlossenen Fläche. Fund. Math. 50 (1962), 537-538.
[42] R. Fritsch and R. A. Piccini, Cellular structures in topology. Cambridge Univ. Press, Cambridge, 1990.
[43] K. Gȩba and A. Granas, A proof of the Borsuk antipodal theorem. J. Math. Anal. Appl. 96 (1983), 203-208.
[44] A. Gramain, Le théorème de van Kampen. Cahiers Top. Geom. Diff. Categoriques 33 (1992), 237-250.
[45] J. L. Gross and W. Tucker Thomas, Topological graph theory. Wiley, New York, 1987.
[46] B. Grünbaum Imbeddings of simplicial complexes. Comment. Math. Helv. 44 (1969), 502-513.
[47] B. Halpern, An inequality for double tangents. Proc. Amer. Math. Soc. 76 (1979), 133-139.
[48] Th. Hangan, A Morse function on Grassmann manifolds. J. Diff. Geom. 2 (1968), 363-367.
[49] G. Harris and C. Martin, The roots of a polynomial vary continuously as a function of the coefficients. Proc. Amer. Math. Soc. 100 (1987), 390-392.
[50] A. Hatcher, Algebraic topology. Cambridge Univ. Press, Cambridge, 2002.
[51] F. Hausdorff, Set theory. Chelsea, New York, 1957.
[52] P. J. Heawood, Map colour theorem. Quart. J. Math. 24 (1980), 332-338.
[53] M. W. Hirsch, A proof of the nonretractibility of a cell onto its boundary. Proc. Amer. Math. Soc. 4 (1963), 364-365.
[54] \qquad , Differential topology. Springer-Werlag, New York-Heidelberg, 1976.
[55] Chung-Wu Ho, A note on proper maps. Proc. Amer. Math. Soc. 51 (1975), 237-241.
[56] \qquad , When are immersions diffeomorphisms? Canad. Math. Bull. 24 (1981), 491-492.
[57] E. Hopf, Über die Drehung der Tangenten und sehnen ebener Kurven. Comp. Math. 2 (1935), 50-62.
[58] H. Hopf, Abbildungsklassen n-dimensionaler Mannigfaltigkeiten. Math. Ann. 96 (1927), 209-224.
[59] S.-T. Hu, Elements of general topology. Holden-Day, San Francisco, 1964.
[60] W. Hurewicz and H. Wallman, Dimension theory. Princeton Univ. Press, Princeton, NJ, 1941.
[61] K. Jänich, Topology. Springer-Verlag, New York, 1980.
[62] C. Jordan, Cours d'analyse de l'École Polytechnique, vol. 3 (Gauthier-Villars, Paris, 1887), pp. 587-594.
[63] S. Kakutani A generalization of Brouwer's fixed point theorem. Duke Math. J. 8 (1941), 457-459.
[64] , A proof that there exists a circumscribing cube around any bounded closed convex set in \mathbb{R}^{n}. Ann. Math. 43 (1942), 739-741.
[65] E. van Kampen, Komplexe in euklidischen Räumen. Abh. Math. Sem. Univ. Hamburg 9 (1932), 72-78, 152-153.
[66] , On the fundamental group of an algebraic curve. Amer. J. Math. 55 (1933), 255-260.
[67] , On the connection between the fundamental groups of some related spaces. Amer. J. Math. 55 (1933), 261-267.
[68] B. Kuratowski, C. Knaster, and C. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe. Fund. Math. 14 (1929), 132-137.
[69] G. W. Knutson, A note on the universal covering space of a surface. Amer. Math. Monthly 78 (1971), 505-509.
[70] R. Koch, Matrix invariants. Amer. Math. Monthly 91 (1984), 573-575.
[71] D. König, Theorie der endlichen und unendlichen Graphen. Leipzig, 1936.
[72] K. Kuratowski, Sur le problème des courbes gauches en topologie. Fund. Math. 15 (1930), 271-283.
[73] S.-N. Lee, A combinatorial Lefschetz fixed-point theorem. J. Combin. Theory, Ser. A. 61 (1992), 123-129.
[74] F. T. Leighton, Finite common coverings of graphs. J. Combin. Theory. Ser. B 33 (1982), 231-238.
[75] L. Lovász and A. Schrijver, A Borsuk theorem for antipodal links and spectral characterization of linklessly embeddable graphs. Proc. Amer. Math. Soc. 126 (1998), 1275-1285.
[76] L. A. Lyusternik and L. G. Shnirel'man, Topological methods in variational problems. Gosizdat, Moscow, 1930. (Russian)
[77] S. Mac Lane, A combinatorial condition for planar graphs. Fund. Math. 28 (1937), 22-32.
[78] H. Maehara, Why is P^{2} not embeddable in \mathbb{R}^{3} ?. Amer. Math. Monthly 100 (1993), 862-864.
[79] R. Maehara, The Jordan curve theorem via the Brouwer fixed point theorem. Amer. Math. Monthly 91 (1984), 641-643.
[80] Yu. Makarychev, A short proof of Kuratowski's graph planarity criterion. J. Graph Theory 25 (1997), 129-131.
[81] M. L. Marx, The Gauss realizability problem. Proc. Amer. Math. Soc. 22 (1969), 610-613.
[82] M. Mather, Paracompactness and partitions of unity. Thesis, Cambridge Univ., 1965.
[83] J. Mayer Le problème des régions voisines sur les surfaces closes orientables. J. Comb. Theory 5 (1969), 177-195.
[84] M. D. Meyerson and A. H. Wright, A new and constructive proof of the Borsuk-Ulam theorem. Proc. Amer. Math. Soc. 73 (1979), 134-136.
[85] J. Milnor, On manifolds homeomorphic to the 7-sphere. Ann. of Math. (2) 64. (1959), 399-405.
[86] _ Morse theory. Princeton Univ. Press, Princeton, NJ, 1963.
[87] J. Milnor and A. Wallace, Topology from the differentiable viewpoint. Differential topology. Princeton Univ. Press, Princeton, NJ, 1968.
[88] J. Milnor Analytic proof of the "hairy ball theorem" and the Brouwer fixed point theorem. Amer. Math. Monthly. 85 (1978), 521-524.
[89] E. M. Moise, Geometric topology in dimension 2 and 3. Springer-Verlag, New York, 1977.
[90] H. R. Morton, Symmetric products of the circle. Proc. Cambridge Phil. Soc. 63 (1967), 349-352.
[91] G. L. Naber, Topological methods in Euclidean spaces. Cambridge Univ. Press, Cambridge, 1980.
[92] C. St. J. A. Nash-Williams and W. T. Tutte, More proofs of Menger's theorem. J. Graph Theory 1 (1977), 13-17.
[93] S. Negami, Polynomial invariants of graphs. Trans. Amer. Math. Soc. 299 (1987), 601-622.
[94] M. Oka, Some plane curves whose complements have non-abelian fundamental groups. Math. Ann. 218 (1975), 55-65
[95] T. Ozawa, On Halpern's conjecture for closed plane curves. Proc. Amer. Math. Soc. 92 (1984), 554-560.
[96] T. D. Parsons, On planar graphs. Amer. Math. Monthly. 78 (1971), 176-178.
[97] J. Petro, Real division algebras of dimension >1 contains \mathbb{C}. Amer. Math. Monthly 94 (1987), 445-449.
[98] H. Poincaré, Sur les courbes définies par les équations différentielles. IV. J. Math. Pures Appl. 2 (1886), 151-217.
[99] M. M. Postnikov, Lectures on algebraic topology: Homotopy theory of $C W$ complexes. Nauka, Moscow, 1985.
[100] V. V. Prasolov, Problems and theorems in linear algebra. Amer. Math. Soc., Providence, RI, 1994.
[101] , Intuitive topology. Amer. Math. Soc., Providence, RI, 1995.
[102] V. V. Prasolov and A. B. Sossinsky, Knots, links, braids and 3-manifolds. Amer. Math. Soc., Providence, RI, 1997.
[103] V. V. Prasolov and V. M. Tikhomirov, Geometry. Amer. Math. Soc., Providence, RI, 2001.
[104] V. V. Prasolov, Polynomials. Springer-Verlag, Berlin-Heidelberg-New York, 2004.
[105] M. Prüfer, Complementary pivoting and the Hopf degree theorem. J. Math. Anal. Appl. 84 (1981), 133-149.
[106] G. Ringel, Das Geschlecht des vollständiger paaren Graphen. Abh. Math. Semin. Univ. Hamburg. 28 (1965), 139-150.
[107] G. Ringel and J. W. T. Youngs, Solution of the Heawood map-coloring problem. Proc. Nat. Acad. Sci. USA 60 (1968), 438-445.
[108] \qquad , Remarks on the Heawood conjecture. Proof Techniques in Graph Theory. Academic Press, New York, 1969, pp. 133-138.
[109] H. Robbins, Some complements to Brouwer's fixed point theorem. Israel J. Math. 5 (1967), 225-226.
[110] N. Seymour, D. D. Robertson, P. D. Sanders, and R. Thomas, The four-colour theorem. J. Comb. Theory, Ser. B 70 (1997), 2-44.
[111] C. A. Rogers, A less strange version of Milnor's proof of Brouwer's fixed-point theorem. Amer. Math. Monthly 87 (1980), 525-527.
[112] V. A. Rokhlin and D. B. Fuks, Beginner's course in topology: Geometric chapters. Nauka, Moscow, 1977; English transl., Springer-Verlag, Berlin, 1984.
[113] J. J. Rotman, An introduction to algebraic topology. Springer-Verlag, New York, 1988.
[114] M. E. Rudin, A new proof that metric spaces are paracompact. Proc. Amer. Math. Soc. 20 (1969), 603.
[115] H. Sachs, On a spatial analogue of Kuratowski's theorem on planar graphs-an open problem. Graph theory (Łagów, 1981). Lecture Notes in Math., vol. 1018, Springer-Verlag, Berlin-New York, pp. 231-240.
[116] H. Samelson, Orientability of hypersurfaces in \mathbb{R}^{n}. Proc. Amer. Math. Soc. 22 (1969), 301-302.
[117] A. Sard, The measure of the critical points of differentiable maps. Bull. Amer. Math. Soc. 48 (1942), 883-890.
[118] K. S. Sarkaria, A generalized Kneser conjecture. J. Comb. Theory. Ser. B 49 (1990), 236-240.
[119] __ A one-dimensional Whitney trick and Kuratowski's graph planarity criterion. Israel J. Math. 73 (1991), 79-89.
[120] H. Seifert, Konstruktion dreidimensionaler geschlossener Räume. Ber. Sächs. Akad. Wiss. 83 (1931), 26-66.
[121] E. Sperner, Neuer Beweis für die Invarianz der Dimensionzahl und des Gebietes. Abh. Math. Semin. Hamburg. Univ. 6 (1928), 265-272.
[122] E. Steinitz, Polyeder und Raumeinteilungen. Enzyklopadie der mathemaischen Wissenschaften mit Einschluss ihrer Anwendungen, Band 3: Geometrie, Teil 3, Heft 12. Teubner, Leipzig, 1922, pp. 1-139.
[123] A. H. Stone, Paracompactness and product spaces. Bull. Amer. Math. Soc. 54 (1948), 977-982.
[124] C. Thomassen, Kuratowski's theorem. J. Graph Theory. 5 (1981), 225-241.
[125] _, The Jordan-Schönflies theorem and the `classification of surfaces. Amer. Math. Monthly 99 (1992), 116-130.
[126] A. W. Tucker, Some topological properties of disk and sphere. Proc. First Canadian Math. Congress, Montreal, 1945. University of Toronto Press, Toronto, 1946, pp. 285-309.
[127] W. T. Tutte, A contribution to the theory of chromatic polynomials. Canad. J. Math. 6 (1954), 80-91.
[128] H. Tverberg, A proof of the Jordan curve theorem. Bull. London Math. Soc. 12 (1980), 34-38.
[129] P. S. Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen. Math. Ann. 94 (1925), 262-295.
[130] C. L. Van, Topological degree and the Sperner lemma. J. Optimiz. Theory Appl. 37 (1982), 371-377.
[131] V. A. Vassiliev, Introduction to topology. Amer. Math. Soc., Providence, RI, 2001.
[132] O. Veblen, Theory of plane curves in nonmetrical analysis situs. Trans. Amer . Math. Soc. 6 (1905), 83-98.
[133] A. P. Veselov and I. A. Dynnikov, Integrable gradient flows and Morse theory. Algebra i Analiz. 8 (1996), no. 3, 78-103; English transl., St. Petersburg Math. J. 8 (1997), no. 3, 429-446.
[134] B. L. van der Waerden, Algebra. Ungar, New York, 1970.
[135] E. B. Vinberg, A course in algebra. Amer. Math. Soc., Providence, RI, 2003.
[136] K. Wagner, Bemerkungen zum Vierfarbenproblem. Jahresber. Deutsch. Math. Verein. 46 (1936), 26-32.
[137] Zh. Wang, On Bott polynomials. J. Knot Theory Ramifications 3 (1994), 537-546.
[138] G. N. Watson, A problem in analysis situs. Proc. London Math. Soc. 15 (1916), 227-242.
[139] A. Weil, Sur le théorèmes de de Rham. Comment. Math. Helv. 26 (1952), 119-145.
[140] B. Weiss, A combinatorial proof of the Borsuk-Ulam antipodal point theorem. Israel J. Math. 66 (1989), 364-368.
[141] J. H. C. Whitehead, Combinatorial homotopy. I. Bull. Amer. Math. Soc. 55 (1949), 213-245.
[142] H. Whitney, Nonseparable and planar graphs. Trans. Amer. Math. Soc. 34 (1932), 339-362.
[143] , The coloring of graphs. Ann. Math. 33 (1932), 687-718.
[144] _, A set of topological invariants for graphs. Amer. J. Math. 55 (1933), 231-235.
[145] , Differentiable manifolds. Ann. Math. 45 (1936), 645-680.
[146] __ On regular closed curves in the plane. Comp. Math. 4 (1937), 276-284.
[147] W. T. Wu, On critical sections of convex bodies. Sci. Sinica 14 (1965), 1721-1728.
[148] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve. Amer. J. Math. 51 (1929), 305-328.
[149] _ Algebraic surfaces. Springer-Verlag, Berlin, 1935.
[150] , On the Poincaré group of rational plane curves. Amer. J. Math. 58 (1936), 607-619.

This page intentionally left blank

Index

0 -cell of a graph, 5
1-cell of a graph, 5
abstract simplicial complex, 102
action of a group, 87
admissible map, 101
Alexander horned sphere, 277
Alexandroff theorem, 61
algebra
Clifford, 265
division, 204
algebraic curve
plane, 279
reducible, 279
amalgam, 268
antipodal
map, 113
points, 113
theorem, 113
approximation
cellular, 126
simplicial, 104
atlas, 182
orientation, 206
attaching via a map, 117
automorphism group of a covering, 38
automorphism of a covering, 38

Balinski theorem, 22
barycentric
coordinates, 81
subdivision, 81,99
second, 82
base
of a bundle, 162
of a covering, 35
of a topology, 1
point, 30
Borsuk lemma, 164
Borsuk-Ulam theorem, 113, 154
Bott-Whitney polynomial, 51
boundary
of a manifold, 183
of a pseudomanifold, 109
boundary point, 183
bridge, 54
Brouwer
dimension invariance theorem, 60
fixed point theorem, 72
bundle :
locally trivial, 162
tangent, 202

Cantor set, 61
cell
closed, 119
open, 119
open Schubert, 196
rectilinear, 100
cellular
approximation, 126
construction, 130
map, 126
cellular approximation theorem, 126
characteristic
Euler, 144
map of a cell, 119
chart, 181
chromatic polynomial, 48
Clifford algebra, 265
closed
cell, 119
manifold, 184
pseudomanifold, 109
set, 1
two-dimensional surface, 139
closure, 1
cobordant manifold, 235
combinatorial Lefschetz formula, 106
commutator subgroup, 260
compact space, 3
complete
graph, 7
set of labels, 80
subcomplex, 103
completely labeled simplex, 80
complex
homogeneous, 109
one-dimensional, 5
rectilinear, 100
simplicial, 99
abstract, 102
finite, 99
strongly connected, 109
unramified, 109
complex Grassmann manifold, 195
complex projective space, 120
component
path-connected, 29
cone, 130
connected
component, 3
graph, 5
space, 3
construction
cellular, 130
Pontryagin, 236
simplicial, 130
continuous map, 2
contractible
cover, 108
space, 29
convex polyhedron, 100
coordinates
barycentric, 81
homogeneous, 120
Plücker, 194
cotangent space, 205
cover
contractible, 108
locally finite, 94
covering, 34
n-fold, 35
map, 163
orientation, 207
regular, 36
universal, 43, 150
covering homotopy theorem, 163
covering space, 35
universal, 43
critical
point, 190
nondegenerate, 239
value, 190
cross, 274
curve
algebraic
plane, 279
reducible, 279
integral, 245
Jordan, 63
regularly homotopic, 67
CW-complex, 118
n-dimensional, 119
nontriangulable, 122
cycle, 5
cylinder, 130
of a map, 179
deformation retract, 178
degree
of a covering, 35
of a map, 111, 221
modulo 2, 224
of a smooth closed curve, 66
of a smooth map, 224
of a vertex, 5
of an algebraic curve, 279
deleted
join, ${ }^{1} 131$
product, 161
derivative of a function
in the direction of a vector field, 200
diagonal, 210
diagram of a knot, 274
diameter of a set, 59
dichromatic polynomial, 53
diffeomorphic manifolds, 185
diffeomorphism, 185
differential
form, 205
of a map, 201, 202
dimension
of a simplicial complex, 99
topological, 59
discrete
space, 3
topology, 3
distance, 3
between sets, 55
from a point to a set, 55
Hausdorff, 56
division algebra, 204
dual graph, 12
edge
multiple, 5
of a graph, 5
embedding, 128, 185
Plücker, 194
Euler
characteristic, 144
formula
for convex polyhedra, 14
for planar graphs, 15
exact sequence, 169
for a fibration, 168, 177
for a pair, 176
face of a planar graph, 13, 15
Feldbau theorem, 162
fiber
of a bundle, 162
of a covering, 35
fibration, 162
Hopf, 171, 174
induced, 164
trivial, 162
field
line element, 235
vector, 202
gradient, 243
finite simplicial complex, 99
five-color theorem, 16
fixed point, 72
Brouwer theorem, 72
four-color theorem, 16
framed cobordant manifold, 235
framed manifold, 235
free group, 40
Fubini theorem, 189
fundamental group, 32
general position, 103
generic points, 103
genus
of a graph, 158
of a surface, 149
gradient vector field, 243
graph, 5
k-connected, 20
complete, 7
connected, 5
deleted product, 161
dual, 12
planar, 5
maximal, 13
graph invariant, 47
polynomial, 47
Grassmann manifold
complex, 195
oriented, 195
real, 195
group
defined by generators and relations, 44
free, 40
fundamental, 32
homotopy, 166
of a knot, 273
spinor, 265
topological, 87
Hausdorff
distance, 56
space, 87
Heawood theorem, 159
Helly theorem, 301
Hessian matrix, 239
homeomorphic spaces, 2
homeomorphism, 2
local, 155
homogeneous
complex, 109
coordinates, 120
homotopic
maps, 29
relative spheroids, 174
homotopy, 29
equivalent spaces, 29
group, 166
smooth, 221
Hopf
fibration, 171, 174
theorem,' 231
horned sphere, 277
image of a homomorphism, 169
immersion, 185
one-to-one, 215
incident
vertex and edge, 5
vertex and face, 26
index
of a critical point, 239
of a quadratic form, 239
of a singular point, 225
induced
fibration, 164
topology, 2
induction transfinite, 96
integral curve, 245
interior, 1
point of a manifold, 183
internally disjoint path, 20
intersection number of two graphs, 7
invariant
graph, 47
polynomial, 47
topological, 52

Tutte, 53
inverse function
theorem, 183
isolated singular point, 225
isomorphic graphs, 47
isotopic diffeomorphisms, 223
join, 131
deleted, 131
Jordan
curve, 63
curve theorem, 63, 77
piecewise linear, 6
König theorem, 157
Kakutani theorem, 84, 264
kernel of a homomorphism, 169
knot, 273
diagram, 274
group, 273
polygonal, 273
smooth, 273
toric, 277
trivial, 273
Kuratowski theorem, 8
Lebesgue
number, 59
theorem
on closed covers, 59
on open covers, 59
Lefschetz formula, 106
lemma
Borsuk, 164
Morse, 239
on homogeneity of manifolds, 223
Sperner's, 81, 106, 113
Tucker's, 115
Urysohn's, 56, 91
lens space, 237
lifting
of a map, 163
of a path, 35
line element field, 235
link, 280
trivial, 281
local
coordinate system, 181
homeomorphism, 155
locally compact space, 90
locally contractible space, 123
locally finite cover, 94
locally trivial fiber bundle, 162
loop, 5, 32
Lyusternik-Shnirelman theorem, 115
manifold, 182
closed, 184
cobordant, 235
diffeomorphic, 185
framed, 235
framed cobordant, 235
orientable, 205
orientation covering, 207
smooth, 182
topological, 181
with boundary, 182
map
admissible, 101
antipodal, 113
cellular, 126
characteristic, 119
continuous, 2
covering, 163
homotopic, 29
null-homotopic, 29
odd, 113
projection, 162
proper, 155
simplicial, 101, 110
smooth, 185
transversal, 218
upper semicontinuous, 84
maximal
planar graph, 13
tree, 32
Menger-Whitney theorem, 21
metric
Riemennian, 204
space, 3
metrizable space, 3
Morse
function, 239
regular, 243
lemma, 239
multiple edge, 5
negative orientation, 109
neighborhood of a point, 1
neighboring Schubert symbols, 254
nerve of a cover, 108
nondegenerate
critical point, 239
singular point of a vector field, 227
nondiscrete topology, 87
nontriangulable CW-complex, 122
normal space, 91
null-homotopic map, 29
number
Lebesgue, 59
Whitney, 69
odd map, 113
one-dimensional complex, 5
one-point compactification, 90
one-to-one immersion, 215
open
cell, 119
Schubert cell, 196
set, 1
orbit, 87
space, 88
order of a cover, 59
orientable
manifold, 205
pseudomanifold, 110
surface, 148
orientation
atlas, 206
covering, 207
covering manifold, 207
negative, 109
of a simplex, 109
positive, 109
oriented
Grassmann manifold, 195
pseudomanifold, 110
origin of a local coordinate system, 181
paracompact space, 94
partition of unity, 93
smooth, 187
path-connected space, 29
Peano theorem, 62
piecewise linear Jordan theorem, 6
Plücker
coordinates, 194
embedding, 194
relations, 195
planar graph, 5
maximal, 13
plane algebraic curve, 279
Poincaré-Hopf theorem, 228
point
base, 30
boundary, 183
critical, 190
nondegenerate, 239
fixed, 72
interior of a manifold, 183
regular, 190
singular
isolated, 225
nondegenerate, 227
of a vector field, 202, 225
of an algebraic curve, 279
points
antipodal, 113
generic, 103
in general position, 103
polygonal knot, 273
polynomial
Bott-Whitney, 51
chromatic, 48
dichromatic, 53
graph invariant, 47
invariant, 47
Tutte, 54
Pontryagin
construction, 236
theorem, 236
positive orientation, 109
product
deleted, 161
symmetric, 135
topology, 4
wedge, 30
projection map, 162
proper map, 155
pseudomanifold, 109
closed, 109
orientable, 110
oriented, 110
quotient space, 4
Radon theorem, 117
rank
of a free group, 40
of a smooth map, 185
real Grassmann manifold, 195
real projective space, 120
realization
of an abstract simplicial complex, 102
rectilinear
cell, 100
cell complex, 100
reducible
algebraic curve, 279
refinement of a cover, 94
regular
covering, 36
Morse function, 243
point, 190
space, 95
value, 111
regularly homotopic curves, 67
relative spheroid, 174
homotopic, 174
retract, 72
deformation, 178
retraction, 72
Riemannian metric, 204
Sard's theorem, 190
Schubert symbol, 196
neighboring, 254
second countable space, 2
Seifert-van Kampen theorem, 269
self-intersection number of a graph, 8
semicontinuity upper, 84
set
Cantor, 61
closed, 1
of labels complete, 80
of measure zero, 188
open, 1
well-ordered, 96
simplicial
approximation, 104
theorem, 105
complex, 99
construction, 130
map, 101, 110
simplicial complex
abstract, 102
finite, 99
simply connected space, 33
singular point
isolated, 225
of a vector field, 202, 225
nondegenerate, 227
of an algebraic curve, 279
skeleton
of a complex, 100
of a CW-complex, 119
smooth
homotopy, 221
knot, 273
manifold, 182
map, 185
partition of unity, 187
structure, 181
space
n-simple, 168
compact, 3 locally, 90
connected, 3
contractible, 29
locally, 123
cotangent, 205
covering, 35
discrete, 3
Hausdorff, 87
lens, 237
locally
compact, 90
contractible, 123
metric, 3
metrizable, 3
normal, 91
of orbits, 88
paracompact, 94
path-connected, 29
projective
complex, 120
real, 120
regular, 95
second countable, 2
simply connected, 33
tangent, 201
topological, 1
spaces
homeomorphic, 2
homotopy equivalent, 29
Sperner's lemma, 81, 106, 113
sphere
Alexander horned, 277
spheroid, 166
relative, 174
spinor group, 265
star
of a point, 104
of a simplex, 104
Steinitz' theorem, 23
Stone theorem, 93, 98
strongly connected complex, 109
subcomplex, 120
complete, 103
subdivision
barycentric, 99
second, 82
of a rectilinear cell complex, 100
subgraph, 8
submanifold, 184
submersion, 185
support of a function, 93
surface
orientable, 148
two-dimensional
closed, 139
with boundary, 140
without boundary, 139
suspension, 110, 130
symmetric product, 135
tangent
bundle, 202
space, 201
vector, 199
theorem
Alexandroff, 61
antipodal, 113
Balinski, 22
Borsuk-Ulam, 113, 154
Brouwer
on fixed point, 72
on dimension invariance, 60
cellular approximation, 126
Feldbau, 162
five-color, 16
four-color, 16
Fubini, 189
Heawood, 159
Helly, 301
Hopf, 231
Jordan curve, 63, 77
piecewise linear, 6
König, 157
Kakutani, 84, 264
Kuratowski, 8
Lebesgue
on closed covers, 59
on open covers, 59
Lyusternik-Shnirelman, 115
Menger-Whitney, 21
on covering homotopy, 163
on inverse function, 183
on simplicial approximation, 105
on tubular neighborhoods, 228
Peano, 62
Poincaré-Hopf, 228
Pontryagin, 236
Radon, 117
Sard's, 190
Seifert-van Kampen, 269
Steinitz', 23
Stone, 93, 98
Tietze, 57, 92
van Kampen, 269
Whitehead, 179
Zermelo's, 96
Tietze theorem, 57, 92
topological
dimension, 59
group, 87
invariant, 52
manifold, 181
space, 1
topology
discrete, 3
induced, 2
induced by a metric, 3
nondiscrete, 87
product, 4
trivial, 87
toric knot, 277
total space of a bundle, 162
trajectory of a vector field, 226
transfinite induction, 96
transversal map, 218
tree, 15
maximal, 32
trefoil, 275
triangle inequality, 3
triangulation, 80,210
of a topological space, 141
trivial
fibration, 162
knot, 273
link, 281
topology, 87
tubular neighborhood theorem, 228
Tucker's lemma, 115
Tutte
invariant, 53
polynomial, 54
two-dimensional surface
closed, 139
with boundary, 140
without boundary, 139
universal
covering, 43, 150
covering space, 43
unramified complex, 109
upper semicontinuity, 84
upper semicontinuous map, 84
Urysohn's lemma, 56, 91
value
critical, 190
regular, 111
van Kampen theorem, 269
vector
field, 202
gradient, 243
tangent, 199
vertex of a graph, 5
wedge, 30
product, 30
well-ordered set, 96
Whitehead theorem, 179
Whitney number, 69
Zeeman example, 153
Zermelo's theorem, 96

This page intentionally left blank

Titles in This Series

74 V. V. Prasolov, Elements of combinatorial and differential topology, 2006
73 Louis Halle Rowen, Graduate algebra: Commutative view, 2006
72 R. J. Williams, Introduction the the mathematics of finance, 2006
70 Seán Dineen, Probability theory in finance, 2005
69 Sebastián Montiel and Antonio Ros, Curves and surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems, 2005
67 T.Y. Lam, Introduction to quadratic forms over fields, 2004
66 Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis, Functional analysis, An introduction, 2004
65 S. Ramanan, Global calculus, 2004
64 A. A. Kirillov, Lectures on the orbit method, 2004
63 Steven Dale Cutkosky, Resolution of singularities, 2004
62 T. W. Körner, A companion to analysis: A second first and first second course in analysis, 2004
61 Thomas A. Ivey and J. M. Landsberg, Cartan for beginners: Differential geometry via moving frames and exterior differential systems, 2003
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003
58 Cédric Villani, Topics in optimal transportation, 2003
57 Robert Plato, Concise numerical mathematics, 2003
56 E. B. Vinberg, A course in algebra, 2003
55 C. Herbert Clemens, A scrapbook of complex curve theory, second edition, 2003
54 Alexander Barvinok, A course in convexity, 2002
53 Henryk Iwaniec, Spectral methods of automorphic forms, 2002
52 Ilka Agricola and Thomas Friedrich, Global analysis: Differential forms in analysis, geometry and physics, 2002
51 Y. A. Abramovich and C. D. Aliprantis, Problems in' operator theory, 2002
50 Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, 2002
49 John R. Harper, Secondary cohomology operations, 2002
48 Y. Eliashberg and N. Mishachev, Introduction to the h-principle, 2002
47 A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and quantum computation, 2002
46 Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, 2002
5 Inder K. Rana, An introduction to measure and integration, second edition, 2002
44 Jim Agler and John E. M ${ }^{\text {c Carthy, Pick interpolation and Hilbert function spaces, } 2002}$
43 N. V. Krylov, Introduction to the theory of random processes, 2002
42 Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, 2002
41 Georgi V. Smirnov, Introduction to the theory of differential inclusions, 2002
40 Robert E. Greene and Steven G. Krantz, Function theory of one complex variable, third edition, 2006
39 Larry C. Grove, Classical groups and geometric algebra, 2002
38 Elton P. Hsu, Stochastic analysis on manifolds, 2002
37 Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, 2001
36 Martin Schechter, Principles of functional analysis, second edition, 2002

35 James F. Davis and Paul Kirk, Lecture notes in algebraic topology, 2001
34 Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001
33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001
32 Robert G. Bartle, A modern theory of integration, 2001
31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001

30 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001
29 Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001
25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000
24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000
23 Alberto Candel and Lawrence Conlon, Foliations I, 2000
22 Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 2000
21 John B. Conway, A course in operator theory, 2000
20 Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
19 Lawrence C. Evans, Partial differential equations, 1998
18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997
17 Henryk Iwaniec, Topics in classical automorphic forms, 1997
16 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997
15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997
14 Elliott H. Lieb and Michael Loss, Analysis, 1997
13 Paul C. Shields, The ergodic theory of discrete sample paths, 1996
12 N. V. Krylov, Lectures on elliptic and parabolic equatiọns in Hölder spaces, 1996
11 Jacques Dixmier, Enveloping algebras, 1996 Printing
10 Barry Simon, Representations of finite and compact groups, 1996
9 Dino Lorenzini, An invitation to arithmetic geometry, 1996
8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
Gerald J. Janusz, Algebraic number fields, second edition, 1996
Jens Carsten Jantzen, Lectures on quantum groups, 1996
Rick Miranda, Algebraic curves and Riemann surfaces, 1995
Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994
3 William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, 1994
2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993
1 Ethan Akin, The general topology of dynamical systems, 1993

Modern topology uses very diverse methods. This book is devoted largely to methods of combinatorial topology, which
 reduce the study of topological spaces to investigations of their partitions into elementary sets, and to methods of differential topology, which deal with smooth manifolds and smooth maps. Many topological problems can be solved by using either of these two kinds of methods, combinatorial or differential. In such cases, both approaches are discussed.
One of the main goals of this book is to advance as far as possible in the study of the properties of topological spaces (especially manifolds) without employing complicated techniques. This distinguishes it from the majority of other books on topology.
The book contains many problems; almost all of them are supplied with hints or complete solutions.

ISBN $0-8218$-3809-1

GSM/74

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-74

