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Preface 

Modern topology uses many different methods. In this book, we largely 
investigate the methods of combinatorial topology and the methods of dif­
ferential topology; the former reduce studying topological spaces to investi­
gation of their partitions into elementary sets, such as simplices, or covers by 
some simple sets, while the latter deal with smooth manifolds and smooth 
maps. Many topological problems can be solved by using any of the two 
approaches, combinatorial or differential; in such cases, we discuss both of 
them. 

Topology has its historical origins in the work of Riemann; Riemann's 
investigation was continued by Betti and Poincaxe. While studying mul­
tivalued analytic functions of a complex variable, Riemann realized that, 
rather than in the plane, multivalued functions should be considered on 
two-dimensional surfaces on which they are single-valued. In these con­
siderations, two-dimensional surfaces arise by themselves and are defined 
intrinsically, independently of their particular embeddings in E3; they are 
obtained by gluing together overlapping plane domains. Then, Riemann 
introduced the notion of what is known as a (multidimensional) manifold 
(in the German literature, Riemann's term Mannigfaltigkeit is used). A 
manifold of dimension n, or n-manifold, is obtained by gluing together over­
lapping domains of the space Mn. Later, it was recognized that to describe 
continuous maps of manifolds, it suffices to know only the structure of the 
open subsets of these manifolds. This was one of the most important rea­
sons for introducing the notion of topological space; this is a set endowed 
with a topology, that is, a system of subsets (called open sets) with certain 
properties. 
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vm Preface 

Chapter 1 considers the simplest topological objects, graphs (one-dimen­
sional complexes). First, we discuss questions which border on geometry, 
such as planarity, the Euler formula, and Steinitz' theorem. Then, we con­
sider fundamental groups and coverings, whose basic properties are well seen 
in graphs. This chapter is concluded with a detailed discussion of the poly­
nomial invariants of graphs; there has been much interest in them recently, 
after the discovery of their relationship with knot invariants. 

Chapter 2 is concerned with another fairly simple topological object, 
Euclidean space with standard topology. Subsets of Euclidean space may 
have very complicated topological structure; for this reason, only a few 
basic statements about the topology of Euclidean space and its subsets 
are included. One of the fundamental problems in topology is the classi­
fication of continuous maps between topological spaces (on the spaces cer­
tain constraints may be imposed; the classification is up to some equiva­
lence) . The simplest classifications of this kind are related to curves in the 
plane, i.e., maps of S1 to M?. First, we prove the Jordan theorem and the 
Whitney-Graustein classification theorem for smooth closed curves up to 
regular homotopy. Then, we prove the Brouwer fixed point theorem and 
Sperner's lemma by several different methods (in addition to the standard 
statement of Sperner's lemma, we give its refined version, which takes into 
account the orientations of simplices). We also prove the Kakutani fixed 
point theorem, which generalizes the theorem of Brouwer. The chapter is 
concluded by the Tietze theorem on extension of continuous maps, which 
is derived from Urysohn's lemma, and two theorems of Lebesgue, the open 
cover theorem, which is used in the rigorous proofs of many theorems from 
homotopy and homology theories, and the closed cover theorem, on which 
the definition of topological dimension is based. 

Chapter 3 begins with elements of general topology; it gives the minimal 
necessary information constantly used in algebraic topology. We consider 
three properties (Hausdorffness, normality, and paracompactness) which 
substantially facilitate the study of topological spaces. Then, we consider 
two classes of topological spaces that are most important in algebraic topol­
ogy (namely, simplicial complexes and CW-complexes), describe techniques 
for dealing with them (cellular and simplicial approximation), and prove that 
these spaces have the three properties mentioned above. We also introduce 
the notion of degree for maps of pseudomanifolds and apply it to prove the 
Borsuk-Ulam theorem, from which we derive many corollaries. The chapter 
is concluded with a description of some constructions of topological spaces, 
including joins, deleted joins, and symmetric products. We apply deleted 
joins to prove that certain n-dimensional simplicial complexes cannot be 
embedded in R2n. 



Preface IX 

Chapter 4 covers very diverse topics, such as two-dimensional surfaces, 
coverings, local homeomorphisms, graphs on surfaces (including genera of 
graphs and graph coloring), bundles, and homotopy groups. 

Chapter 5 turns to differential topology. We consider smooth manifolds 
and the application of smooth maps to topology. First, we introduce some 
basic tools (namely, smooth partitions of unity and Sard's theorem) and con­
sider an example, the Grassmann manifolds, which plays an important role 
everywhere in topology. Then, we discuss notions related to tangent spaces, 
namely, vector fields and differential forms. After this, we prove existence 
theorems for embeddings and immersions (including closed embeddings of 
noncompact manifolds), which play an important role in the study of smooth 
manifolds. Moreover, we prove that a closed nonorientable n-manifold can­
not be embedded in R n + 1 and determine what two-dimensional surfaces 
can be embedded in MP3. Further, we introduce a homotopy invariant, 
the degree of a smooth map, and apply it to define the index of a singular 
point of a vector field. We prove the Hopf theorem, which gives a homotopy 
classification of maps Mn —> Sn. We also describe a construction of Pon-
tryagin which interprets 7rn+/c(S

fn) as the set of classes of cobordant framed 
fc-manifolds in JRn+/\ We conclude this chapter with Morse theory, which 
relates the topological structure of a manifold to local properties of singular 
points of a nondegenerate function on this manifold. We give explicit exam­
ples of Morse functions on some manifolds, including Grassmann manifolds. 

Chapter 6 is devoted to explicit calculations of fundamental groups for 
some spaces and to applications of fundamental groups. First, we prove a 
theorem about generators and relations determining the fundamental group 
of a CW-complex and give some applications of this theorem. Sometimes, it 
is more convenient to calculate fundamental groups by using exact sequences 
of bundles. Such is the case for, e.g., the fundamental group of SO(n). 
In many situations, the van Kampen theorem about the structure of the 
fundamental group of a union of two open sets is helpful. For example, it 
can be used to calculate the fundamental group of a knot complement. At 
the end of the chapter, we give another theorem of van Kampen, which gives 
a method for calculating the fundamental group of the complement of an 
algebraic curve in CP 2 . The corresponding calculations for particular curves 
are fairly complicated; plenty of interesting results have been obtained, but 
many things are not yet fully understood. 

One of the main purposes of this book is to advance in the study of 
the properties of topological spaces (especially manifolds) as far as possible 
without employing complicated techniques. This distinguishes it from the 
majority of topology books. 



X Preface 

The book is intended for readers familiar with the basic notions of geom­
etry, linear algebra, and analysis. In particular, some knowledge of open, 
closed, and compact sets in Euclidean space is assumed. 

The book contains many problems, which the reader is invited to think 
about. They are divided into three groups: (1) exercises; solving them 
should not cause any difficulties, so their solutions are not included; (2) prob­
lems; they are not so easy, and the solutions to most of them are given at 
the end of the book; (3) challenging problems (marked with an asterisk); 
each of these problems is the content of a whole scientific paper. They are 
formulated as problems not to overburden the main text of the book. The 
solutions to most of these problems are also given at the end of the book. 
The problems are based on the first- and second-year graduate topology 
courses taught by the author at the Independent University of Moscow in 
2002. 

This work was financially supported by the Russian Foundation for Basic 
Research (project no. 05-01-01012a). 



Notation 

• X « Y means that the topological spaces X and Y are homeomor-
phic; 

• X ~ Y means that the topological spaces X and Y are homotopy 
equivalent; 

• f ~ g means that the map / is homotopic to g\ 

• \A\ denotes the cardinality of the set A\ 

• int A denotes the interior of A; 

• A denotes the closure of A; 

• dA denotes the boundary of A; 

• id^ denotes the identity map on A; 

• Kn denotes the complete graph on n vertices; 

• -^n,7n5 see p. (\ 

• Dn denotes the n-disk (or n-ball); 

• Sn denotes the n-sphere; 

• An denotes the n-simplex; 

• In denotes the n-cube; 

• P2 denotes the projective plane; 

• T2 denotes the two-dimensional torus; 

• S2#nP2 and nP2 denote the connected sum of n projective planes; 

• S2#nT2 and nT2 denote the connected sum of n 2-tori (the sphere 
with n handles); 

• K2 denotes the Klein bottle; 

XI 



Notation 

\\x — y\\ denotes the distance between points x, y G W1; 

\\v\\ denotes the length of the vector v G Mn; 

d(x,y) denotes the distance between points x and y; 

inf denotes the greatest lower bound; 

X UY denotes the disjoint union of X and Y; 

s u p p / = {x : f(x) 7̂  0} denotes the support of the function / ; 

X * Y denotes the join of the spaces X and Y; 

S P n ( X ) denotes the n-fold symmetric product of X; 

f: (X, Y) —• (Xi , Y I ) denotes the map of pairs which takes Y C X 
to Yx C X i ; 

7ri(X, XQ) denotes the fundamental group of the space X with base 
point XQ G X ; 

7Tn(X, xo) denotes the n-dimensional homotopy group of the space 
X with base point XQ G X; 

degf denotes the degree of a map / ; 

r a n k / ( x ) denotes the rank of / at the point x; 

G(n, k) denotes the Grassmann manifold; 

GLfc(R) denotes the group of k x k nonsingular matrices with real 
entries; 

U(n) denotes the group of unitary matrices of order n; 

SU(n) denotes the group of unitary matrices of order n with de­
terminant 1; 

O(n) denotes the group of orthogonal matrices of order n; 

SO(n) denotes the group of orthogonal matrices of order n with 
determinant 1; 

TxM
n denotes the tangent space at the point x G Mn; 

TMn denotes the tangent bundle; 

Qfr(n-\-k) denotes the set of classes of framed cobordant ^-manifolds 
in Rn+k. 
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