Pseudo-differential Operators and the Nash–Moser Theorem
This page intentionally left blank
This work was originally published in French by EDP Science, Paris, under the title “Opérateurs pseudo-différentiels et théorème de Nash-Moser” © 1991 InterEditions and Editions de CNRS. The present translation was created under license for the American Mathematical Society and is published by permission.

Translated by Stephen S. Wilson

2000 Mathematics Subject Classification. Primary 35–02; Secondary 35Sxx, 47G30, 47N20.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-82

Library of Congress Cataloging-in-Publication Data
Alinhac, S. (Serge)
[Opérateurs pseudo-différentiels et théorème de Nash-Moser. English]
p. cm.
Includes bibliographical references and index.
ISBN 978-0-8218-3454-7 (alk. paper)
QA329.7.A4513 2007
515.7242—dc22 2006047985

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2007 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1
§A. Nonlinear dyadic analysis 77
§B. Microlocal analysis: wave front set and pseudo-differential operators 89
§C. Energy estimates 98
Commentary on Chapter II 106
Exercises for Chapter II 107

Chapter III. Implicit function theorems 121
§A. Implicit function theorem and elliptic problems 121
§B. Two examples of the use of the fixed-point method 128
§C. Nash–Moser theorem 135
Commentary on Chapter III 153
Exercises for Chapter III 154

Bibliography 161

Main notation introduced 165

Index 167
Preface to the English edition

We are happy to welcome the English translation of our book, which originally appeared under the title ‘Opérateurs pseudo-différentiels et théorème de Nash–Moser’ in 1991 (InterEditions/Editions du CNRS, Paris).

Though the world of partial differential equations has changed a lot during these years, we think that the elementary presentation of the subjects touched upon in our book is still up to date and can be useful; thus, we made no changes, except for correcting some misprints. On the other hand, several remarkable books on partial differential equations have appeared since: though their scopes largely exceed that of our book, we thought it relevant to mention them in our bibliography.

Finally, we wish to thank the translator, Dr. Stephen S. Wilson, and the editorial board of the AMS, who worked to produce this new edition of our work.

Orsay, November 2006

Serge Alinhac and Patrick Gérard

Translator’s note

The numbering system I have used in my translation is essentially that employed by the authors in the original French edition so that the actual equation numbers etc. are the same in both versions. I did, however, make certain changes to the cross-referencing system: for example, to remove ambiguity, outside of Chapter II Exercise A.1 of that chapter may be referred to here as Exercise II.A.1 although within Chapter II it is referred to as Exercise A.1.

Cheltenham, February 2007

Stephen S. Wilson
This page intentionally left blank
This page intentionally left blank
Bibliography

Works to be read prior to this book

Works accessible at the level of this book

Complementary works at the research level

This page intentionally left blank
Main notation introduced

\(\alpha, |\alpha|, \alpha!, \partial^\alpha, D^\alpha, \xi^\alpha\), 6

\(p, p_m\), 6

\(C^k(\Omega), C^\infty(\Omega)\), 5

\(C^\infty_0(\Omega)\), 6

\(C^k(\Omega)\), 5

\(\langle \cdot, \cdot \rangle\), 6

\(\langle \cdot, \cdot \rangle\), 12

\(\text{supp } u, \text{sing supp } u\), 7

\(u \ast v\), 8

\(D'(\Omega), \mathcal{E}'(\Omega)\), 6, 8

\(S, S', \hat{u}, \mathcal{F}\), 10, 11

\(\Delta\), 16

\([,]\), 29

\(\Box\), 94

\(S^m, |a|^m_{\alpha, \beta}\), 20, 21

\(S^m_{\rho, \delta}\), 52

\(a(x, D), \text{Op}(a), a^*\), 24, 25, 28

\(a \# b\), 28

\(T^*M, \pi, \alpha, \sigma, \{f, g\}\), 38, 39, 40

\(I_\varphi(a)\), 42

\(u_p, S_p u\), 78

\(\|u\|_0, \|u\|_\alpha, \|u\|'_\alpha, C^\alpha\), 79, 80

\(C^1_s\), 108

\(\|0\|_s, \|s\|_{H^s}\), 30, 31

\(H^{s, \infty}\), 114

\(\Sigma(u), \Sigma_x(u), WF(u)\), 89, 90

\(WF', 92\)

\(WF_s, 113\)
This page intentionally left blank
Index

adjoint, 26
almost orthogonality, 78
asymptotic sum, 22

bicharacteristic (curve), 116

Cauchy problem, 93
change of variables, 37
characteristic (surface), 111
commutator, 40
continuity, L^2, 30
convexity inequalities, 82
cotangent bundle, 29
density on a manifold, 74
Dirichlet problem, 124

elliptic (symbol, operator), 33
energy (inequality), 98

1-form, canonical, 39
2-form, symplectic, 39
factorization (of an operator), 103
Fourier distribution, 91
Fourier transform, 11

Gårding inequality, 31
Gagliardo–Nirenberg inequality, 86

Hamiltonian (vector field), 40
Hölder spaces, 80
Hörmander's theorem, 102
hyperbolic (operator, system), 103

implicit function theorem, 121, 122
interpolation, 108

isometric embedding, 133
kernels, 9
Laplacian, 16
Littlewood–Paley decomposition, 77
local inversion theorem, 121
local symbol, 35
Meyer multiplier, 87
Morse's lemma, 69
Newton scheme, 146
non-stationary phase, 41
operator on a manifold, 37
oscillatory integral, 41

parametrix, 17
paraproduct, 86
partition of unity, 7, 36
Poisson bracket, 29
principal symbol, 27
propagation of singularities, 101
properly supported operator, 36
pseudo-differential operator, 15, 24
pseudo-local property, 19

quasilinear system, 128

Rauch's lemma, 113
regularization operator, 83

singular integral, 60
small divisors, 138
Sobolev space, 31
spectrum, 85
stationary phase, 68
sub-elliptic operator, 67
symbol, 15
symbolic calculus, 16, 28
symmetric system, 128
tame (mapping, estimate), 137

trace, 92
transmission property, 68
wave equation, 94
wave front set, 89
Zygmund class, 108
This book presents two essential and apparently unrelated subjects. The first, microlocal analysis and the theory of pseudo-differential operators, is a basic tool in the study of partial differential equations and in analysis on manifolds. The second, the Nash–Moser theorem, continues to be fundamentally important in geometry, dynamical systems, and nonlinear PDE.

Each of the subjects, which are of interest in their own right as well as for applications, can be learned separately. But the book shows the deep connections between the two themes, particularly in the middle part, which is devoted to Littlewood–Paley theory, dyadic analysis, and the paradifferential calculus and its application to interpolation inequalities.

An important feature is the elementary and self-contained character of the text, to which many exercises and an introductory Chapter 0 with basic material have been added. This makes the book readable by graduate students or researchers from one subject who are interested in becoming familiar with the other. It can also be used as a textbook for a graduate course on nonlinear PDE or geometry.