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Foreword 

During the early nineteenth century the French mathematician Simeon Denis 
Poisson (1781-1840) observed through his study of celestial mechanics that 
the solutions of a differential equation which exhibit recurrent behavior more 
general than periodicity play a central role in determining the disposition of 
all solutions of the system. Since the time of Poisson, mathematicians have 
sought precisely what it means for a solution of a differential equation to be 
recurrent. 

Recurrence and Topology develops increasingly more general topological 
modes of recurrence for dynamical systems beginning with fixed points and 
concluding with chain recurrent points. For each type of recurrence we pro
vide detailed examples arising from explicit systems of differential equations; 
we establish the general topological properties of the set of recurrent points; 
and we investigate the possibility of partitioning the set of recurrent points 
into subsets which are dynamically irreducible. Furthermore, we consider 
how test functions such as invariant functions, potential functions and Lya-
punov functions describe the structures of sets of recurrent points. The text 
concludes with a statement, proof, and interpretation of the Fundamental 
Theorem of Dynamical Systems due to Charles Conley (1933-1984). 

Recurrence and Topology has a deliberately narrow focus. We treat flows 
(continuous dynamical systems) rather than maps (discrete dynamical sys
tems) for three reasons. First, flows arise directly and naturally from the 
differential equations that motivate the subject. Second, the connectedness 
of orbits for flows sets the stage for a rich interplay between recurrence and 
topology. Third, chains for flows rely on both distance and time, while 
chains for maps rely only on distance. 
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V l l l Foreword 

Recurrence and Topology does not treat results, such as the Poincare-
Bendixson Theorem, which are particular to low dimension, nor do we dis
cuss recurrence in the context of measure theory nor recurrence arising from 
hyperbolicity. However, we hope there is a niche for this text in seminar 
courses, independent studies, and as a supplement to comprehensive works 
such as Katok and Hasselblatt [26] and Robinson [37] which develop many 
threads within the subject simultaneously. Recurrence and Topology exam
ines a single thread and aims to present it in a clear, complete and coherent 
manner. 

While the objective of Recurrence and Topology is to integrate existing 
knowledge, we offer detailed original proofs of a few folklore theorems (such 
as the fact that a flow's chain components are exactly the connected compo
nents of the flow's chain recurrent set). We present competing definitions of 
certain terms (such as what it means for a set to be topologically transitive 
with respect to a flow) and argue for the definitions we adopt. 

With the work of Stephen Smale (1930- ) during the 1960s and the 
genesis of chaos as a scientific paradigm during the mid-1970s, the field of 
dynamical systems enjoyed a renaissance. Today it seems appropriate to 
reflect on advances in the field, to place them in context, and to make them 
accessible to a broader mathematical audience. We hope that Recurrence 
and Topology is a step in that direction. 

Recurrence and Topology is appropriate for mathematics graduate stu
dents, though a well-prepared undergraduate1 might read most of the text 
with great benefit. We presume differential equations, undergraduate analy
sis and general topology as background. The texts by Boyce and DiPrima [10] 
Rudin [38] and Munkres [32] provide sufficient preparation. Certain sections 
also require advanced linear algebra and complex variables. After referring 
to manifolds in Section 1.1 for motivation, we do not require the geom
etry of manifolds until Sections 4.5 and 4.6. Milnor [31], Guillemin and 
Pollack [17], and Hicks [20] are good references for the relevant material. 
Regarding our exposition, we emphasize clarity over brevity and apologize 
to readers who find our presentation excessively detailed. 

John Alongi thanks John Franks, Clark Robinson, Bob Welland, Don 
Saari, Jeff Xia and Keith Burns for teaching him about dynamical systems, 
topology and differential equations. Thanks to the Department of Math
ematics and Computer Science at Pomona College for providing financial 
support from its Spears account during the 2003-2004 and 2004-2005 aca
demic years. Most of all, thanks to Michael and Joan Alongi, David, Tina 
and Kristine Alongi, Ryan Beveridge and Tricia Hansen, Alissa Crans, Alli
son Engel, and Connie and Jim Pemble. 
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