Recurrence

and Topology

John M. Alongi
 Gail S. Nelson

Graduate Studies
 in Mathematics

Volume 85

Recurrence and Topology

This page intentionally left blank

Recurrence and Topology

John M. Alongi
Gail S. Nelson

Graduate Studies
in Mathematics
Volume 85

American Mathematical Society Providence, Rhode Island

Editorial Board

David Cox (Chair)
Walter Craig
N. V. Ivanov

Steven G. Krantz

2000 Mathematics Subject Classification. Primary 37-01, 37B20, 37B25, 37B35, 54H20; Secondary $37 \mathrm{C} 10,37 \mathrm{C} 15,37 \mathrm{C} 25,37 \mathrm{C} 27,37 \mathrm{C} 50,37 \mathrm{C} 70,34 \mathrm{D} 45$.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-85

Library of Congress Cataloging-in-Publication Data
Alongi, John M., 1971-
Recurrence and topology / John M. Alongi, Gail S. Nelson.
p. cm. - (Graduate studies in mathematics, ISSN 1065-7339; v. 85)
Includes bibliographical references and index.
ISBN-13: 978-0-8218-4234-8 (alk. paper)
ISBN-10: 0-8218-4234-X (alk. paper)
1. Recurrent sequences (Mathematics) 2. Point mappings (Mathematics) 3. Topology. I. Nelson, Gail Susan. II. Title.

QA9.6.A46 2007
$515^{\prime} .24-\mathrm{dc} 22$
2007060754

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2007 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.
© The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
$10987654321 \quad 121110090807$

Contents

Foreword vii
Chapter 1. Flows 1
§1.1. Flows and Orbits 1
§1.2. Topologically Conjugate Flows 8
§1.3. Topologically Equivalent Flows 10
§1.4. Invariant Sets 18
§1.5. Exercises 20
Chapter 2. Recurrent Points 23
§2.1. Fixed Points 24
§2.2. Periodic Points 28
§2.3. Limit Sets 38
§2.4. Poincaré Recurrent Points 51
§2.5. Nonwandering Points 56
§2.6. Central Points 64
§2.7. Chain Recurrent Points 69
$\S 2.8$. A Summary of Recurrent Sets and Their Properties 93
§2.9. Exercises 93
Chapter 3. Irreducible Sets 99
§3.1. Minimal Sets 99
§3.2. Topologically Transitive Sets 102
§3.3. Chain Transitive Sets 109
§3.4. Attracting Sets and Repelling Sets 118
§3.5. Exercises 133
Chapter 4. Test Functions 139
§4.1. Potential Functions on Euclidean Spaces and Surfaces 139
§4.2. Hamiltonian Functions 148
§4.3. Invariant Functions 161
§4.4. Weak and Strong Lyapunov Functions 162
§4.5. Potential Functions on Riemannian Manifolds 167
§4.6. Morse Functions 172
§4.7. Complete Lyapunov Functions 176
§4.8. The Fundamental Theorem of Dynamical Systems 178
§4.9. Exercises 191
Afterword 197
Appendix A. Discrete Dynamical Systems 201
Appendix B. Circle Rotations 205
Appendix C. The Hausdorff Metric 209
Bibliography 213
Index 217

Foreword

During the early nineteenth century the French mathematician Simeon Denis Poisson (1781-1840) observed through his study of celestial mechanics that the solutions of a differential equation which exhibit recurrent behavior more general than periodicity play a central role in determining the disposition of all solutions of the system. Since the time of Poisson, mathematicians have sought precisely what it means for a solution of a differential equation to be recurrent.

Recurrence and Topology develops increasingly more general topological modes of recurrence for dynamical systems beginning with fixed points and concluding with chain recurrent points. For each type of recurrence we provide detailed examples arising from explicit systems of differential equations; we establish the general topological properties of the set of recurrent points; and we investigate the possibility of partitioning the set of recurrent points into subsets which are dynamically irreducible. Furthermore, we consider how test functions such as invariant functions, potential functions and Lyapunov functions describe the structures of sets of recurrent points. The text concludes with a statement, proof, and interpretation of the Fundamental Theorem of Dynamical Systems due to Charles Conley (1933-1984).

Recurrence and Topology has a deliberately narrow focus. We treat flows (continuous dynamical systems) rather than maps (discrete dynamical systems) for three reasons. First, flows arise directly and naturally from the differential equations that motivate the subject. Second, the connectedness of orbits for flows sets the stage for a rich interplay between recurrence and topology. Third, chains for flows rely on both distance and time, while chains for maps rely only on distance.

Recurrence and Topology does not treat results, such as the PoincaréBendixson Theorem, which are particular to low dimension, nor do we discuss recurrence in the context of measure theory nor recurrence arising from hyperbolicity. However, we hope there is a niche for this text in seminar courses, independent studies, and as a supplement to comprehensive works such as Katok and Hasselblatt [26] and Robinson [37] which develop many threads within the subject simultaneously. Recurrence and Topology examines a single thread and aims to present it in a clear, complete and coherent manner.

While the objective of Recurrence and Topology is to integrate existing knowledge, we offer detailed original proofs of a few folklore theorems (such as the fact that a flow's chain components are exactly the connected components of the flow's chain recurrent set). We present competing definitions of certain terms (such as what it means for a set to be topologically transitive with respect to a flow) and argue for the definitions we adopt.

With the work of Stephen Smale (1930-) during the 1960s and the genesis of chaos as a scientific paradigm during the mid-1970s, the field of dynamical systems enjoyed a renaissance. Today it seems appropriate to reflect on advances in the field, to place them in context, and to make them accessible to a broader mathematical audience. We hope that Recurrence and Topology is a step in that direction.

Recurrence and Topology is appropriate for mathematics graduate students, though a well-prepared undergraduate might read most of the text with great benefit. We presume differential equations, undergraduate analysis and general topology as background. The texts by Boyce and DiPrima [10] Rudin [38] and Munkres [32] provide sufficient preparation. Certain sections also require advanced linear algebra and complex variables. After referring to manifolds in Section 1.1 for motivation, we do not require the geometry of manifolds until Sections 4.5 and 4.6. Milnor [31], Guillemin and Pollack [17], and Hicks [20] are good references for the relevant material. Regarding our exposition, we emphasize clarity over brevity and apologize to readers who find our presentation excessively detailed.

John Alongi thanks John Franks, Clark Robinson, Bob Welland, Don Saari, Jeff Xia and Keith Burns for teaching him about dynamical systems, topology and differential equations. Thanks to the Department of Mathematics and Computer Science at Pomona College for providing financial support from its Spears account during the 2003-2004 and 2004-2005 academic years. Most of all, thanks to Michael and Joan Alongi, David, Tina and Kristine Alongi, Ryan Beveridge and Tricia Hansen, Alissa Crans, Allison Engel, and Connie and Jim Pemble.

Gail Nelson thanks Steve Kennedy, Sam Patterson, and John Alongi for inviting her to join their research seminar, giving her the opportunity to learn more about dynamical systems. Thanks also to the rest of the members of the Department of Mathematics at Carleton College for their support of this project. Many thanks to her family, Rik, Julie, and Lauren Getty, Doug, Teresa, Thomas, and Anna Bearrood, and especially Edward Nelson, who has always been her role model.

Both authors thank Joseph Borzellino, Karen Brucks, Ezra Buchla, Richard Elderkin, Francesca Fairbrother, John Franks, Barbara Jenkins, Stephen Kennedy, Laurene Lee, Sam Patterson, Ami Radunskaya, Clark Robinson, Anthony W. Sevold and Kathy Sheldon for their assistance in this endeavor. In particular, Ezra Buchla and Anthony W. Sevold rendered the figures in the text. Laurene Lee offered many important suggestions while reading a draft of the text. Both authors also thank the anonymous reviewers of the text as well as the editors and staff of the American Mathematical Society for their thoughtful suggestions. Ed Dunne, Cristin Zannella and Luann Cole of the AMS deserve special recognition in this regard.

Please direct comments and corrections to jalongi@northwestern.edu or gnelson@carleton.edu.

John M. Alongi
Chicago, IL
Gail S. Nelson
Northfield, MN

This page intentionally left blank

Bibliography

[1] Ralph Abraham and Jerrold E. Marsden. Foundations of Mechanics. Benjamin/Cummings, Don Mills, Ontario, 1978.
[2] Ethan Akin. The General Topology of Dynamical Systems. American Mathematical Society, Providence, 1993.
[3] Vladimir I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, New York, second edition, 1989.
[4] Vladimir I. Arnold. Ordinary Differential Equations. Springer-Verlag, New York, 1992.
[5] Ivar Bendixson. Sur les courbes définies par des équations différentielles. Acta Mathematica, 24:1-88, 1901.
[6] George Birkhoff. Quelques théorèmes sur le mouvement des systèmes dynamiques. Bulletin de la Société Mathématique de France, 40:305-323, 1912.
[7] George Birkhoff. Dynamical Systems. American Mathematical Society, Providence, 1927.
[8] Rufus Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer-Verlag, New York, 1975.
[9] Rufus Bowen. ω-Limit sets for axiom A diffeomorphisms. Journal of Differential Equations, 18:333-339, 1975.
[10] William E. Boyce and Richard C. DiPrima. Elementary Differential Equations. Wiley, Hoboken, NJ, eighth edition, 2005.
[11] Charles Conley. Isolated Invariant Sets and the Morse Index. American Mathematical Society, Providence, 1978.
[12] Arnaud Denjoy. Sur les curbes définies par les équations differentielles à la surface du tore. Journal de Mathématiques Pures et Appliquées, 11:333-375, 1932.
[13] Robert Ellis. Lectures on Topological Dynamics. W.A. Benjamin, New York, 1969.
[14] John Franks. Homology and Dynamical Systems. American Mathematical Society, Providence, 1982.
[15] John Franks and David S. Richeson. Shift equivalence and the Conley index. Transactions of the American Mathematical Society, 352:3305-3322, 2000.
[16] W.H. Gottschalk and G.A. Hedlund. Topological Dynamics. American Mathematical Society, Providence, 1955.
[17] Victor Guillemin and Alan Pollack. Differential Topology. Prentice-Hall, Englewood Cliffs, 1974.
[18] Jack Hale. Ordinary Differential Equations. Wiley, New York, 1969.
[19] Paul R. Halmos. Naive Set Theory. Springer-Verlag, New York, 1974.
[20] Noel J. Hicks. Notes on Differential Geometry. Van Nostrand, Princeton, 1965.
[21] Michael Hurley. Chain recurrence and attraction in noncompact spaces. Ergodic Theory and Dynamical Systems, 11:709-729, 1991.
[22] Michael Hurley. Chain recurrence and attraction in noncompact spaces II. Proceedings of the American Mathematical Society, 115:1139-1148, 1992.
[23] Michael Hurley. Chain recurrence, semiflows, and gradients. Journal of Dynamics and Differential Equations, 7:437-456, 1995.
[24] Wilfred Kaplan. Regular curve families filling the plane, I. Duke Mathematical Journal, 7:154-185, 1940.
[25] Irving Kaplansky. An Introduction to Differential Algebra. Hermann, Paris, 1957.
[26] Anatole Katok and Boris Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, New York, 1995.
[27] Hellmuth Kneser. Reguläre kurvenscharen auf den ringfächen. Mathematische Annalen, 91:135-154, 1924.
[28] Serge Lang. Real and Functional Analysis. Springer-Verlag, New York, third edition, 1993.
[29] Lawrence Markus. Global structure of ordinary differential equations on the plane. Transactions of the American Mathematical Society, 76:127-148, 1954.
[30] John W. Milnor. Morse Theory. Princeton University Press, Princeton, 1963.
[31] John W. Milnor. Topology from the Differentiable Viewpoint. The University of Virginia Press, Charlottesville, 1969.
[32] James R. Munkres. Topology. Prentice-Hall, Upper Saddle River, 2000.
[33] V. Nemytskii and V.V. Stepanov. Qualitative Theory of Differential Equations. Dover, New York, 1989.
[34] Henri Poincaré. Les méthodes nouvelles de la mécanique céleste Vols. 1-3. GautierVillars, Paris, 1892.
[35] Clark Robinson. Structural stability of C^{1} flows. Lecture Notes in Mathematics, 468:262-277, 1975.
[36] Clark Robinson. Stability theorems and hyperbolicity in dynamical systems. Rocky Mountain Journal of Mathematics, 7:425-437, 1977.
[37] Clark Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, Boca Raton, 1999.
[38] Walter Rudin. Principles of Mathematical Analysis. McGraw Hill, San Francisco, third edition, 1976.
[39] Arthur J. Schwartz. A generalization of the Poincaré-Bendixson theorem to closed two-dimensional manifolds. American Journal of Mathematics, 85:453-458, 1963.
[40] George Sell. Topological Dynamics and Ordinary Differential Equations. Von Nostrand-Reinhold, Princeton, 1971.
[41] Stephen Smale. Differentiable dynamical systems. Bulletin of the American Mathematical Society, 73:747-817, 1967.
[42] Michael Spivak. Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. Addison-Wesley, Menlo Park, 1965.
[43] Michael Spivak. A Comprehensive Introduction to Differential Geometry: Volume One. Publish or Perish, Houston, 1999.
[44] Peter Walters. An Introduction to Ergodic Theory. Springer-Verlag, New York, 1982.
[45] Hassler Whitney. Regular families of curves. Mathematische Annalen, 34:244-270, 1933.

This page intentionally left blank

Index

(ϵ, T)-chain, 70
$C\left(\phi^{t}\right), 65$
$M\left(\phi^{t}\right), 99$
$R\left(\phi^{t}\right), 23$
Ω-Stability Theorem, 199
$\Omega\left(\phi^{t}\right), 56$
α-limit point, 39
α-limit set, 39
and topological equivalences, 46
example of an, 39, 42, 47-49
for a flow on a closed interval, 40
properties of an, 43
α-recurrent point, 51
$\alpha(x), 39$
ϵ-chain, 81
$\mathcal{R}\left(\phi^{t}\right), 71$
ω-limit point, 39
ω-limit set, 39
and topological equivalences, 46
example of an, 39, 42, 47-49
for a flow on a closed interval, 40
properties of an, 43
ω-recurrent point, 51
$\omega(x), 39$

Abel, Niels, 155
accumulation property, 24, 39, 93
and the center, 69
and the fixed set, 27, 47
and the periodic set, 38,48
and the Poincaré recurrent set, 55
for the fixed set of a flow on a closed interval, 42
for the periodic set of a flow on a closed interval, 42
of the chain recurrent set, 81
of the nonwandering set, 63
action
of a group on a set, 21, 94
almost periodic point, 136
Anosov Closing Lemma, 198
arrested logistic rotation-dilation, 13, 48, $55,62,63,66,69,75,118,135,177$, 190, 197
arrested rotation, $5,26,33,36,42,48,60$, $72,110,177$
attracting set, 123
and ω-limit sets, 128
is closed, '127
is invariant, 127
attracting-repelling pair, 123
and the chain recurrent set, 131
example of an, 123, 124, 126, 128, 132
attractor, 129
example of an, 129
backward chain limit set, 70
Baire space, 106
Baire, René-Louis, 64
basic set, 199
basin, 194
Birkhoff Transitivity Theorem, 106
Birkhoff, George, 38, 47, 65, 99, 103
bracket
Poisson, 192

Cantor ternary set, 74, 118
center, 65
and the accumulation property, 69
and topological equivalences, 68
closure property of the, 67
example of a, 66, 67
flow invariance of the, 67
restriction property of the, 66
topological invariance of the, 68
central point, 65
is nonwandering, 65, 80
chain
for a flow, 70
for a map, 81
chain component, viii, 112, 197
example of a, 118
is a connected component of the chain recurrent set, 116
is chain transitive, 114
is closed, 114
is connected, 115
is invariant, 113
chain equivalence relation, 112, 197
chain equivalent points, 195
for flows, 70,194
for maps, 81
chain limit set
backward, 70
forward, 70
chain recurrent point, vii, 70
example of a, 72
chain recurrent set, viii, 71, 197
accumulation property of the, 81
and attracting-repelling pairs, 131
and topological equivalences, 77
closure property of the, 76
example of a, 72-74, 132, 147
flow invariance of the, 76,113
of a gradient flow, 170
of a strongly gradient-like flow, 176
restriction property of the, 90,199
topological invariance of the, 78,79
chain transitive set, 109
and flow invariance, 135
and topological equivalences, 111
and topological invariance, 135
example of a, 110
is a topologically transitive set, 110
closure property, 23, 55, 93
and the periodic set, 36
and the Poincaré recurrent set, 52,53
of the center, 67
of the chain recurrent set, 76
of the fixed set, 26
of the nonwandering set, 57
complete flow, 3
complete Lyapunov function, 76, 176, 177, 193, 197
example of a, $177,178,188$
Conley, Charles, vii, 69, 71, 109, 123, 139, 178, 197
countable additivity, 159
critical point, 172
nondegenerate, 172
is isolated, 172
curve
integral, 1
damped harmonic oscillator, 162
damped pendulum, 163
decomposition property, 24,93
of the fixed set, 27,133
of the periodic set, 38,133
decreasing segment flow, $73,103,119,124$, $126,129,132,177$
differential equation
constant, 4, 6, 13, 104
Hamilton's, 150, 193
linear, $4,8,13,25,30,37,119,124,129$, 135, 193
logistic, 5, 13, 25, 42, 94
Lorenz, 93
dual space, 168
dynamical system
continuous, vii, 3
discrete, vii, 4
ergodic theory, 161
exponential of a matrix, 4
filtration, 194
First Vàriation Equation, 156, 157, 159
Fix (ϕ^{t}), 24
fixed point, vii, 24
and zero of a vector field, 25
is central, 67
is chain recurrent, 72
is nonwandering, 56
is periodic, 28
is Poincaré recurrent, 51
fixed set
and the accumulation property, 27,47
and topological equivalences, 27
closure property of the, 26
decomposition property of the, 27, 133
example of a, 25,26
flow invariance of the, 25
restriction property of the, 27
topological invariance of the, 26
flow, vii, 3
complete, 3
example of a, 4, 5
gradient, 140, 169, 191, 193, 197
gradient-like, 165, 190, 191, 197
strongly, 176, 191, 193
group property of a, 3
Hamiltonian, 151, 192, 197
strongly gradient-like, 176
is gradient like, 191
flow invariance property, 23, 93
of the center, 67
of the chain recurrent set, 76,113
of the fixed set, 25
of the nonwandering set, 57
of the periodic set, 35
of the Poincaré recurrent set, 52
flows
topologically conjugate, $8-10,17$
topologically equivalent, 12,17
forward chain limit set, 70
Franks, John, 82
fundamental matrix solution, 193
Fundamental Theorem of Dynamical Systems, vii, 139, 178, 187, 190, 191, 197
gradient flow
and ω-limit sets, 193
gradient flow, 140, 143, 191, 193, 197
and α-limit sets, 146,193
and ω-limit sets, 146
example of a, 141, 143
of a Morse function, 175
on a Riemannian manifold, 169, 193
gradient vector, 140
on a Riemannian manifold, 168
gradient vector field, 140-142
on a Riemannian manifold, 168
gradient-like flow, 165, 190, 191, 197
example of a, 165, 166
strongly, 176, 193
is gradient-like, 191
group action, 21, 94
group property of flows, 3

Hamilton's differential equations, 150
Hamilton, William Rowan, 150
Hamiltonian flow, 151, 192, 197
example of a, 152, 154
is volume-preserving, 159
Hamiltonian function, 139, 148, 151, 197
example of a, 152, 154
is invariant, 161
is weak Lyapunov, 165
Hamiltonian vector field, 150
example of a, 152, 154
harmonic oscillator, 151
damped, 162
Hausdorff metric, 91, 132, 136, 194
definition, 209, 210
height flow
on the sphere, 143, 192, 193
on the torus, $144,147,176,193$

Hessian matrix, 172
homotopy to the identity, 21
Hurley, Michael, 81
hyperbolic metric, 79, 96
integral curve, 1, 5
invariant, 202
negatively, 202
positively, 202
invariant function, vii, 139, 161
and topologically transitive sets, 161
invariant set, 18, 19
and intersections, 19
and topological equivalences, 20
and unions, 19
closure of, 20
complement of, 19
example of an, 19
negatively, 19
positively, 19
irrational flow on the torus, $49,52,57,100$, 104, 177, 193

Jordan-measurable set, 158
length, 158
limit ordinal, 64
limit set, 39
Newhouse, 96
Liouville's Theorem, 155, 159
Liouville, Joseph, 155
Liouville-Ostrogradski Formula, 155, 160
logistic rotation-dilation, 13, 47, 61
Lyapunov function, vii
complete, 76, 139, 176, 177, 188, 193, 197
strong, 139, 162, 165-167, 190, 191, 195
weak, $139,162,165,177$
Lyapunov, Alexander M., 162
manifold
stable, 146
unstable, 147
map, vii, 4, 201
time-one, 4
matrix exponential, 4
matrix solution, 155
measure zero, 158
metric
Hausdorff, 132, 209, 210
Riemannian, 168
minimal set, 99
and α-limit sets, 101
and ω-limit sets, 101
and the Poincaré recurrent set, 101
and topological equivalences, 102
example of a, 99, 100
existence of a, 101
is closed, 100
is connected, 100
is invariant, 100
monotonicity, 159
Morse function, 139, 172, 173, 193, 197
example of a, 173
Morse, Marston, 172
negatively invariant set, 19
negatively recurrent point, 51
Newton's Second Law of Motion, 148
nondegenerate bilinear map, 172
nondegenerate critical point, 172
nonwandering point, 56
example of a, 56
is chain recurrent, 80
nonwandering set, 56
accumulation property of the, 63
and α-limit sets, 63
and ω-limit sets, 63
and the decomposition property, 109
and the restriction property, 63
and topological equivalences, 59,62
closure property of the, 57
example of a, 57, 60,62
flow invariance property of the, 57
topological invariance property of the, 58
orbit, 5, 201
backward, 5, 201
connectedness of an, vii, 6
example of an, 6
forward, 5, 201
of a group action, 21
periodic, 28
ordinal number, 64
limit, 64
successor, 64
orthogonal projection, 142
Ostrogradski, Mikhail, 155
pendulum
damped, 163
ideal, 153
$\operatorname{Per}\left(\phi^{t}\right), 28$
period, 28
periodic orbit, 28
periodic point, 28
example of a, 28, 30, 31, 34, 37
is central, 67
is chain recurrent, 72
is nonwandering, 56
is Poincaré recurrent, 51
periodic set
and the accumulation property, 38, 48
and topological equivalences, 37
decomposition property of the, 38,133
flow invariance property of the, 35
is not closed, 36
restriction property of the, 38
topological invariance property of the, 37
phase portrait, 8
phase space, 3,197
Poincaré Recurrence Theorem, 155, 160
Poincaré recurrent point, 51
example of a, 51
is central, 67
is nonwandering, 63, 80
Poincaré recurrent set, 51
and minimal sets, 101
and the accumulation property, 55
and the closure property, 53
and topological equivalences, 54
example of a, $52,53,55$
flow invariance of the, 52
restriction property of the, 55
topological invariance of the, 54
Poincaré, Henri, 51, 56
Poincaré-Bendixson Theorem, viii, 47
Poisson bracket, 192
Poisson, Simeon Denis, vii, 51
positively invariant set, 19
positively recurrent point, 51
potential function, vii, $139,141,143,169$, 191, 193, 197
decreases along orbits, 145, 169
example of a, 141, 143, 144
is strong Lyapunov, 165
is weak Lyapunov, 165
on a Euclidean space, 139
on a Riemannian manifold, 167,169
on a surface, 139
rational flow on the torus, 34,177
$\operatorname{Rec}\left(\phi^{t}\right), 51$
rectangle, 158
regionally recurrent point, 56
regular point, 172
reparametrization, 11,18
example of, 11,12
repeller, 129
example of a, 129
repelling set, 123
and α-limit sets, 128
is closed, 127
is invariant, 127
residual set, 106
restriction property, 24,93
and the nonwandering set, 63
of the center, 66
of the chain recurrent set, 90,199
of the fixed set, 27
of the periodic set, 38
of the Poincaré recurrent set, 55
Riemannian manifold, 168
Riemannian metric, 168
Robinson, R. Clark, 82, 90, 199
rotation
of the circle, 205

Shadowing Theorem, 198
Smale, Stephen, viii, 109
solution, 1
Spectral Decomposition Theorem, 109, 199
sphere
height flow on the, 143, 193
stabilizer, 94
stable manifold, 146
strong Lyapunov function, 139, 162, 165, 190, 191, 195
example of a, 165-167
strongly gradient-like flow, 176, 193
is gradient-like, 191
Structural Stability Theorem, 199
successor ordinal, 64
syndetic set, 136
test function, 139
time change, 16
and topological equivalence, 16
time-one map, 4, 21
topological conjugacy, 8-10, 17
example of, 10
topological equivalence, $12,16,17,48$
and α-limit sets, 46
and ω-limit sets, 46
and fixed sets, 27
and invariant sets, 20
and minimal sets, 102
and periodic sets, 37
and the center, 68
and the chain recurrent set, 77
and the nonwandering set, 59
and the Poincaré recurrent set, 54
and time changes, 16
example of a, 13,14
topological invariance property, $23,24,93$
of the center, 68
of the chain recurrent set, 78,79
of the fixed set, 26
of the nonwandering set, 58
of the periodic set, 37
of the Poincaré recurrent set, 54
topologically transitive set, viii, 103, 135
and α-limit sets, 107
and ω-limit sets, 107
and chain transitive sets, 110
and invariant functions, 161
and minimal sets, 104,108
and topologically equivalence, 109
connectedness of a, 108
example of a, 103, 104
is closed, 105
is flow invariant, 105
torus
height flow on the, 144, 147, 193
irrational flow on the, 49, 52, 57, 100, 104, 177
rational flow on the, 34, 177
totally bounded, 210
transfinite induction, 66, 67, 69
trapping region, 119
example of a, 119, 121
twist flow, 121, 124, 128, 129, 132, 188
unstable manifold, 147
vector field
gradient, 140, 142, 168
Hamiltonian, 150
volume
countable additivity of, 159
monotonicity of, 159
of a Jordan-measurable set, 159
of a rectangle, 158
volume-preserving flow, 159
wandering point, 56
weak Lyapunov function, 139, 162, 165
example of a, 165, 177

Since at least the time of Poisson, mathematicians have pondered the notion of recurrence for differential equations. Solutions that exhibit recurrent behavior provide insight into the behavior of general solutions. In Recurrence and Topology, Alongi and Nelson provide a modern understanding of the subject, using the language
 and tools of dynamical systems and topology.
Recurrence and Topology develops increasingly more general topological modes of recurrence for dynamical systems beginning with fixed points and concluding with chain recurrent points. For each type of recurrence the text provides detailed examples arising from explicit systems of differential equations; it establishes the general topological properties of the set of recurrent points; and it investigates the possibility of partitioning the set of recurrent points into subsets which are dynamically irreducible. The text includes a
 discussion of real-valued functions that reflect the structure of the sets of recurrent points and concludes with a thorough treatment of the Fundamental Theorem of Dynamical Systems.
Recurrence and Topology is appropriate for mathematics graduate students, though a well-prepared undergraduate might read most of the text with great benefit.

