Twenty-Four Hours of Local Cohomology
This page intentionally left blank
Twenty-Four Hours of Local Cohomology

Srikanth B. Iyengar
Graham J. Leuschke
Anton Leykin
Claudia Miller
Ezra Miller
Anurag K. Singh
Uli Walther

Graduate Studies in Mathematics
Volume 87

American Mathematical Society
Providence, Rhode Island
The book is an outgrowth of the 2005 AMS-IMS-SIAM Joint Summer Research Conference on “Local Cohomology and Applications” held at Snowbird, Utah, June 20–30, 2005, with support from the National Science Foundation, grant DMS-9973450.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-87

Library of Congress Cataloging-in-Publication Data
Twenty-four hours of local cohomology / Srikanth Iyengar . . . [et al.].
p. cm. — (Graduate studies in mathematics; ISSN 1065-7339; v. 87)
Includes bibliographical references and index.
ISBN 978-0-8218-4126-6 (alk. paper)
QA612.36.T94 2007
514'.23—dc22
2007060786

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2007 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 12 11 10 09 08 07
To our teachers
Contents

Preface .. xiii

Introduction .. xv

Lecture 1. Basic Notions 1
 §1. Algebraic sets 1
 §2. Krull dimension of a ring 3
 §3. Dimension of an algebraic set 6
 §4. An extended example 9
 §5. Tangent spaces and regular rings 10
 §6. Dimension of a module 12

Lecture 2. Cohomology 15
 §1. Sheaves ... 16
 §2. Čech cohomology 18
 §3. Calculus versus topology 23
 §4. Čech cohomology and derived functors 26

Lecture 3. Resolutions and Derived Functors 29
 §1. Free, projective, and flat modules 29
 §2. Complexes .. 32
 §3. Resolutions 34
 §4. Derived functors 36

Lecture 4. Limits ... 41
 §1. An example from topology 41
§2. Direct limits
§3. The category of diagrams
§4. Exactness
§5. Diagrams over diagrams
§6. Filtered posets
§7. Diagrams over the pushout poset
§8. Inverse limits

Lecture 5. Gradings, Filtrations, and Gröbner Bases
§1. Filtrations and associated graded rings
§2. Hilbert polynomials
§3. Monomial orders and initial forms
§4. Weight vectors and flat families
§5. Buchberger’s algorithm
§6. Gröbner bases and syzygies

Lecture 6. Complexes from a Sequence of Ring Elements
§1. The Koszul complex
§2. Regular sequences and depth: a first look
§3. Back to the Koszul complex
§4. The Čech complex

Lecture 7. Local Cohomology
§1. The torsion functor
§2. Direct limit of Ext modules
§3. Direct limit of Koszul cohomology
§4. Return of the Čech complex

Lecture 8. Auslander-Buchsbaum Formula and Global Dimension
§1. Regular sequences and depth redux
§2. Global dimension
§3. Auslander-Buchsbaum formula
§4. Regular local rings
§5. Complete local rings

Lecture 9. Depth and Cohomological Dimension
§1. Depth
§2. Cohomological dimension
<table>
<thead>
<tr>
<th>Lecture 10. Cohen-Macaulay Rings</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>§1. Noether normalization</td>
<td>106</td>
</tr>
<tr>
<td>§2. Intersection multiplicities</td>
<td>108</td>
</tr>
<tr>
<td>§3. Invariant theory</td>
<td>110</td>
</tr>
<tr>
<td>§4. Local cohomology</td>
<td>115</td>
</tr>
<tr>
<td>Lecture 11. Gorenstein Rings</td>
<td>117</td>
</tr>
<tr>
<td>§1. Bass numbers</td>
<td>118</td>
</tr>
<tr>
<td>§2. Recognizing Gorenstein rings</td>
<td>120</td>
</tr>
<tr>
<td>§3. Injective resolutions of Gorenstein rings</td>
<td>123</td>
</tr>
<tr>
<td>§4. Local duality</td>
<td>123</td>
</tr>
<tr>
<td>§5. Canonical modules</td>
<td>126</td>
</tr>
<tr>
<td>Lecture 12. Connections with Sheaf Cohomology</td>
<td>131</td>
</tr>
<tr>
<td>§1. Sheaf theory</td>
<td>131</td>
</tr>
<tr>
<td>§2. Flasque sheaves</td>
<td>137</td>
</tr>
<tr>
<td>§3. Local cohomology and sheaf cohomology</td>
<td>139</td>
</tr>
<tr>
<td>Lecture 13. Projective Varieties</td>
<td>141</td>
</tr>
<tr>
<td>§1. Graded local cohomology</td>
<td>141</td>
</tr>
<tr>
<td>§2. Sheaves on projective varieties</td>
<td>142</td>
</tr>
<tr>
<td>§3. Global sections and cohomology</td>
<td>144</td>
</tr>
<tr>
<td>Lecture 14. The Hartshorne-Lichtenbaum Vanishing Theorem</td>
<td>147</td>
</tr>
<tr>
<td>Lecture 15. Connectedness</td>
<td>153</td>
</tr>
<tr>
<td>§1. Mayer-Vietoris sequence</td>
<td>153</td>
</tr>
<tr>
<td>§2. Punctured spectra</td>
<td>154</td>
</tr>
<tr>
<td>Lecture 16. Polyhedral Applications</td>
<td>159</td>
</tr>
<tr>
<td>§1. Polytopes and faces</td>
<td>159</td>
</tr>
<tr>
<td>§2. Upper bound theorem</td>
<td>161</td>
</tr>
<tr>
<td>§3. The h-vector of a simplicial complex</td>
<td>163</td>
</tr>
<tr>
<td>§4. Stanley-Reisner rings</td>
<td>164</td>
</tr>
<tr>
<td>§5. Local cohomology of Stanley-Reisner rings</td>
<td>166</td>
</tr>
<tr>
<td>§6. Proof of the upper bound theorem</td>
<td>168</td>
</tr>
<tr>
<td>Lecture 17. D-modules</td>
<td>171</td>
</tr>
</tbody>
</table>
Contents

§1. Rings of differential operators 171
§2. The Weyl algebra 173
§3. Holonomic modules 176
§4. Gröbner bases 177

Lecture 18. Local Duality Revisited 179
§1. Poincaré duality 179
§2. Grothendieck duality 180
§3. Local duality 181
§4. Global canonical modules 183

Lecture 19. De Rham Cohomology 191
§1. The real case: de Rham’s theorem 192
§2. Complex manifolds 195
§3. The algebraic case 198
§4. Local and de Rham cohomology 200

Lecture 20. Local Cohomology over Semigroup Rings 203
§1. Semigroup rings 203
§2. Cones from semigroups 205
§3. Maximal support: the Ishida complex 207
§4. Monomial support: \mathbb{Z}^d-graded injectives 211
§5. Hartshorne’s example 213

Lecture 21. The Frobenius Endomorphism 217
§1. Homological properties 217
§2. Frobenius action on local cohomology modules 221
§3. A vanishing theorem 225

Lecture 22. Curious Examples 229
§1. Dependence on characteristic 229
§2. Associated primes of local cohomology modules 233

Lecture 23. Algorithmic Aspects of Local Cohomology 239
§1. Holonomicity of localization 239
§2. Local cohomology as a D-module 241
§3. Bernstein-Sato polynomials 242
§4. Computing with the Frobenius morphism 246

Lecture 24. Holonomic Rank and Hypergeometric Systems 247
Contents

1. §1. GKZ A-hypergeometric systems 247
2. §2. Rank vs. volume 250
3. §3. Euler-Koszul homology 251
4. §4. Holonomic families 254

Appendix. Injective Modules and Matlis Duality 257
1. §1. Essential extensions 257
2. §2. Noetherian rings 260
3. §3. Artinian rings 263
4. §4. Matlis duality 265

Bibliography 269

Index 277
This page intentionally left blank
Preface

This book is an outgrowth of the summer school *Local cohomology and its interactions with algebra, geometry, and analysis* that we organized in June 2005 in Snowbird, Utah. This was a joint program under the AMS-IMS-SIAM Summer Research Conference series and the MSRI Summer Graduate Workshop series. The school centered around local cohomology, and was intended for graduate students interested in various branches of mathematics. It consisted of twenty-four lectures by the authors of this book, followed by a three-day conference.

We thank our co-authors for their support at all stages of the workshop. In addition to preparing and delivering the lectures, their enthusiastic participation, and interaction with the students, was critical to the success of the event. We also extend our hearty thanks to Wayne Drady, the AMS conference coordinator, for cheerful and superb handling of various details.

We profited greatly from the support and guidance of David Eisenbud and Hugo Rossi at MSRI, and Jim Maxwell at AMS. We express our thanks to them, and to our Advisory Committee: Mel Hochster, Craig Huneke, Joe Lipman, and Paul Roberts. We are also indebted to the conference speakers: Markus Brodmann, Ragnar-Olaf Buchweitz, Phillippe Gimenez, Gennady Lyubeznik, Paul Roberts, Peter Schenzel, Rodney Sharp, Ngo Viet Trung, Kei-ichi Watanabe, and Santiago Zarzuela.

Finally, we thank the AMS and the MSRI for their generous support in hosting this summer school, and the AMS for publishing this revised version of the "Snowbird notes".

Anurag K. Singh and Uli Walther
This page intentionally left blank
Introduction

Local cohomology was invented by Grothendieck to prove Lefschetz-type theorems in algebraic geometry. This book seeks to provide an introduction to the subject which takes cognizance of the breadth of its interactions with other areas of mathematics. Connections are drawn to topological, geometric, combinatorial, and computational themes. The lectures start with basic notions in commutative algebra, leading up to local cohomology and its applications. They cover topics such as the number of defining equations of algebraic sets, connectedness properties of algebraic sets, connections to sheaf cohomology and to de Rham cohomology, Gröbner bases in the commutative setting as well as for D-modules, the Frobenius morphism and characteristic p methods, finiteness properties of local cohomology modules, semigroup rings and polyhedral geometry, and hypergeometric systems arising from semigroups.

The subject can be introduced from various perspectives. We start from an algebraic one, where the definition is elementary: given an ideal a in a Noetherian commutative ring, for each module consider the submodule of elements annihilated by some power of a. This operation is not exact, in the sense of homological algebra, and local cohomology measures the failure of exactness. This is a simple-minded algebraic construction, yet it results in a theory rich with striking applications and unexpected interactions.

On the surface, the methods and results of local cohomology concern the algebra of ideals and modules. Viewing rings as functions on spaces, however, local cohomology lends itself to geometric and topological interpretations. From this perspective, local cohomology is sheaf cohomology with support on a closed set. The interplay between invariants of closed sets and the topology of their complements is realized as an interplay between local
cohomology supported on a closed set and the de Rham cohomology of its complement. Grothendieck's local duality theorem, which is inspired by and extends Serre duality on projective varieties, is an outstanding example of this phenomenon.

Local cohomology is connected to differentials in another way: the only known algorithms for computing local cohomology in characteristic zero employ rings of differential operators. This connects the subject with the study of Weyl algebras and holonomic modules. On the other hand, the combinatorics of local cohomology in the context of semigroups turns out to be the key to understanding certain systems of differential equations.

Prerequisites. The lectures are designed to be accessible to students with a first course in commutative algebra or algebraic geometry, and in point-set topology. We take for granted familiarity with algebraic constructions such as localizations, tensor products, exterior algebras, and topological notions such as homology and fundamental groups. Some material is reviewed in the lectures, such as dimension theory for commutative rings and Čech cohomology from topology. The main body of the text assumes knowledge of the structure theory of injective modules and resolutions; these topics are often omitted from introductory courses, so they are treated in the Appendix.

Local cohomology is best understood with a mix of algebraic and geometric perspectives. However, while prior exposure to algebraic geometry and sheaf theory is helpful, it is not strictly necessary for reading this book. The same is true of homological algebra: although we assume some comfort with categories and functors, the rest can be picked up along the way either from references provided, or from the twenty-four lectures themselves. For example, concepts such as resolutions, limits, and derived functors are covered as part and parcel of local cohomology.

Suggested reading plan. This book could be used as a text for a graduate course; in fact, the exposition is directly based on twenty-four hours of lectures in a summer school at Snowbird (see the Preface). That being said, it is unlikely that a semester-long course would cover all of the topics; indeed, no single one of us would choose to cover all the material, were we to teach a course based on this book. For this reason, we outline possible choices of material to be covered in, say, a semester-long course on local cohomology.

Lectures 1, 2, 3, 6, 7, 8, and 11 are fundamental, covering the geometry, sheaf theory, and homological algebra leading to the definition and alternative characterizations of local cohomology. Many readers will have seen enough of direct and inverse limits to warrant skimming Lecture 4 on their first pass, and referring back to it when necessary.
A course focusing on commutative algebra could include also Lectures 9, 10, 12, and 13. An in-depth treatment in the same direction would follow up with Lectures 14, 15, 18, 21, and 22.

For those interested mainly in the algebraic geometry aspects, Lectures 12, 13, and 18 would be of interest, while Lectures 18 and 19 are intended to describe connections to topology.

For applications to combinatorics, we recommend that the core material be followed up with Lectures 5, 16, 20, and 24, although Lecture 24 also draws on Lectures 17 and 23. Much of the combinatorial material—particularly the polyhedral parts—needs little more than linear algebra and some simplicial topology.

From a computational perspective, Lectures 5, 17, and 23 give a quick treatment of Gröbner bases and related algorithms. These lectures can also serve as an introduction to the theory of Weyl algebras and D-modules.

A feature that should make the book more appealing as a text is that there are exercises peppered throughout. Some are routine verifications of facts used later, some are routine verifications of facts not used later, and others are not routine. None are open problems, as far as we know. To impart a more comprehensive feel for the depth and breadth of the subject, we occasionally include landmark theorems with references but no proof. Results whose proofs are omitted are identified by the end-of-proof symbol \square at the conclusion of the statement.

There are a number of topics that we have not discussed: Grothendieck’s parafactoriality theorem, which was at the origins of local cohomology; Castelnuovo-Mumford regularity; the contributions of Lipman and others to the theory of residues; vanishing theorems of Huneke and Lyubeznik, and their recent work on local cohomology of the absolute integral closure. Among the applications, a noteworthy absence is the use of local cohomology by Benson, Carlson, Dwyer, Greenlees, Rickard, and others in representation theory and algebraic topology. Moreover, local cohomology remains a topic of active research, with new applications and new points of view. There have been a number of spectacular developments in the two years that it has taken us to complete this book. In this sense, the book is already dated.

Acknowledgements. It is a pleasure to thank the participants of the Snowbird summer school who, individually and collectively, made for a lively and engaging event. We are grateful to them for their comments, criticisms, and suggestions for improving the notes. Special thanks are due to Manoj Kummini for enthusiastically reading several versions of these lectures.
We learned this material from our teachers and collaborators: Lucho Avramov, Ragnar-Olaf Buchweitz, Sankar Dutta, Bill Dwyer, David Eisenbud, Hans-Bjørn Foxby, John Greenlees, Phil Griffith, Robin Hartshorne, David Helm, Mel Hochster, Craig Huneke, Joe Lipman, Gennady Lyubeznik, Tom Marley, Laura Matusevich, Arthur Ogus, Paul Roberts, Rodney Sharp, Karen Smith, Bernd Sturmfels, Irena Swanson, Kei-ichi Watanabe, and Roger Wiegand. They will recognize their influence—points of view, examples, proofs—at various places in the text. We take this opportunity to express our deep gratitude to them.

Sergei Gelfand, at the AMS, encouraged us to develop the lecture notes into a graduate text. It has been a pleasure to work with him during this process, and we thank him for his support; it is a relief that we no longer have to hide from him at various AMS meetings. We also thank Natalya Pluzhnikov, production editor at AMS, for her expert assistance.

The authors gratefully acknowledge partial financial support from the following sources: Iyengar from NSF grants DMS 0442242 and 0602498; Leuschke from NSF grant DMS 0556181 and NSA grant H98230-05-1-0032; C. Miller from NSF grant DMS 0434528 and NSA grant H98230-06-1-0035; E. Miller from NSF grants DMS 0304789 and 0449102, and a University of Minnesota McKnight Land-Grant Professorship; Singh from NSF grants DMS 0300600 and 0600819; Walther from NSF grant DMS 0555319 and NSA grant H98230-06-1-0012.

Srikanth Iyengar
Graham J. Leuschke
Anton Leykin
Claudia Miller
Ezra Miller
Anurag K. Singh
Uli Walther
Bibliography

Bibliography

a local number.

France. Translating the in to geometry, of f, geometry.

Bernstein-Sato local, 2, 2 Amer.
s local Bass-Quillen set, results, the l, se r over of s, polyv

Invent. polynomials, H 1 modules, e, 7 Amer.,

local over, o, .

s

d regular Proc > a.
s sets, algebric intersection spheres, c an to einer.
h pairs, with p, and problems, characteristic y calculus, local (1988), 0 of char­
application.

Math proofs of o, algorithmic Invent of and projective w algebr,

the c 2 number and d o defining, of and approach, equations on of 2 a cohomology, algebric l a, algebr 8 microlocal n-dimensional concerning associated f of, of in modules y, local an of rings of Birkhause the, revise w:
d two.
e e, s.
e applications of.
e of.

of.
e of.

e,

e, d e homomorphisms.

commutative a.

variety,

vanishing primes d of e, of cohomology, w Mathematik.

theorems, w Stafford, polynomials e, of, of in modules y, local an of rings of Birkhause the, revise w:
d two.
e e, s.
e applications of.
e of.

of.

e,

e, d e homomorphisms.

commutative a.

variety,

vanishing primes d of e, of cohomology, w Mathematik.

theorems, w Stafford, polynomials e, of, of in modules y, local an of rings of Birkhause the, revise w:
d two.
e e, s.
e applications of.
e of.

of.

e,

e, d e homomorphisms.

commutative a.

variety,

vanishing primes d of e, of cohomology, w Mathematik.

theorems, w Stafford, polynomials e, of, of in modules y, local an of rings of Birkhause the, revise w:
d two.
e e, s.
e applications of.

of.

e,

e, d e homomorphisms.

commutative a.

variety,

vanishing primes d of e, of cohomology, w Mathematik.

theorems, w Stafford, polynomials e, of, of in modules y, local an of rings of Birkhause the, revise w:
d two.
e e, s.
e applications of.

of.

e,

e, d e homomorphisms.

commutative a.

variety,

vanishing primes d of e, of cohomology, w Mathematik.

theorems, w Stafford, polynomials e, of, of in modules y, local an of rings of Birkhause the, revise w:
d two.
e e, s.
e applications of.

of.

e,

e, d e homomorphisms.

Index

α-invariant, 181
acyclicity lemma, 220
acyclicity principle, 26
adjunction morphism, 46
Adolphson, Alan, 250, 251, 254
affine variety, 143
Stein, 196
algebraic set, 1
cone, 2
coordinate ring, 7
dimension, 7
hypersurface, 2
irreducible, 7
singular, 10
smooth, 10
tangent space, 10
André, Michel, 218
arithmetic rank, 101–103, 156, 201
Artin-Rees lemma, 59
associated prime, 69, 118
Auslander, Maurice, 94, 95
Auslander-Buchsbaum formula, 91
Avramov, Luchezar, 217

b-function
 global, 243
 local, 245
Baer’s criterion, 257
Bass numbers, 118, 262
 of Gorenstein rings, 123
Bass’ conjecture, 119
Bass-Hyman, 117, 119, 260
Bass-Quillen conjecture, 30
Bernstein, Joseph, 175, 242, 243
Bernstein-Sato polynomial, 243, 245
Betti numbers, 90
big Cohen-Macaulay module, 223
Blickle, Manuel, 246
Brodman, Markus, 147, 155
Buchberger’s algorithm, 64, 177
Buchsbaum, David, 94, 95
canonical module, 126, 130
 Bass numbers, 126
 existence, 129, 184
 global, 183, 184, 189
 graded, 142
 Stanley-Reisner ring, 167
 uniqueness, 130, 185
Cartan, Henri, 15
Cattani, Eduardo, 251
Cayley-Hamilton theorem, 12
Čech cohomology, 20, 21, 27, 73, 84
Čech complex, 20, 73
 refinement, 21
 sign rule, 20
Čech-de Rham complex, 197
Chevalley’s theorem, 148
Chevalley, Claude, 148
Cohen’s structure theorem, 96
Cohen, Irvin, 96
Cohen-Macaulay ring, 93, 105, 119
 local cohomology, 115
cohomological dimension, 100, 101, 103,
 147, 200, 227
commutator, 171
complete intersection ring, 106, 121
complex
 bounded, 32
 comparison theorem, 35
dualizing, 183
 Hom, 32
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>isomorphism</td>
<td>33</td>
</tr>
<tr>
<td>morphism</td>
<td>32</td>
</tr>
<tr>
<td>of sheaves</td>
<td>25</td>
</tr>
<tr>
<td>quasi-isomorphism</td>
<td>33</td>
</tr>
<tr>
<td>shift</td>
<td>32</td>
</tr>
<tr>
<td>tensor product</td>
<td>32</td>
</tr>
<tr>
<td>cone</td>
<td></td>
</tr>
<tr>
<td>face</td>
<td>206</td>
</tr>
<tr>
<td>facet</td>
<td>208</td>
</tr>
<tr>
<td>pointed</td>
<td>206</td>
</tr>
<tr>
<td>rational polyhedral</td>
<td>205</td>
</tr>
<tr>
<td>transverse section</td>
<td>207</td>
</tr>
<tr>
<td>connectedness</td>
<td>154</td>
</tr>
<tr>
<td>Faltings’ theorem</td>
<td>156</td>
</tr>
<tr>
<td>Fulton-Hansen theorem</td>
<td>156</td>
</tr>
<tr>
<td>punctured spectrum</td>
<td>151, 154</td>
</tr>
<tr>
<td>convex hull</td>
<td>159</td>
</tr>
<tr>
<td>coproduct</td>
<td>43</td>
</tr>
<tr>
<td>Cowsik, R. Chandrashekhar</td>
<td>103</td>
</tr>
<tr>
<td>D’Andrea, Carlos</td>
<td>251</td>
</tr>
<tr>
<td>D-module</td>
<td>171</td>
</tr>
<tr>
<td>algebraic family</td>
<td>255</td>
</tr>
<tr>
<td>B-dimension</td>
<td>175</td>
</tr>
<tr>
<td>characteristic ideal</td>
<td>176</td>
</tr>
<tr>
<td>characteristic variety</td>
<td>176</td>
</tr>
<tr>
<td>Dehn-Sommervill equations</td>
<td>168</td>
</tr>
<tr>
<td>depth</td>
<td>70, 73, 89</td>
</tr>
<tr>
<td>exact sequence</td>
<td>89</td>
</tr>
<tr>
<td>Ext</td>
<td>97</td>
</tr>
<tr>
<td>Koszul cohomology</td>
<td>97</td>
</tr>
<tr>
<td>local cohomology</td>
<td>97</td>
</tr>
<tr>
<td>derivation</td>
<td>171, 186</td>
</tr>
<tr>
<td>universal</td>
<td>186</td>
</tr>
<tr>
<td>determinantal ring</td>
<td>2, 9, 114, 122, 226</td>
</tr>
<tr>
<td>de Rham cohomology</td>
<td>193</td>
</tr>
<tr>
<td>de Rham complex</td>
<td>191</td>
</tr>
<tr>
<td>algebraic</td>
<td>199</td>
</tr>
<tr>
<td>holomorphic</td>
<td>195</td>
</tr>
<tr>
<td>de Rham’s theorem</td>
<td>193</td>
</tr>
<tr>
<td>diagrams</td>
<td>42</td>
</tr>
<tr>
<td>category of</td>
<td>44</td>
</tr>
<tr>
<td>constant</td>
<td>47</td>
</tr>
<tr>
<td>direct limit</td>
<td>43</td>
</tr>
<tr>
<td>exact sequence</td>
<td>45</td>
</tr>
<tr>
<td>over diagrams</td>
<td>48</td>
</tr>
<tr>
<td>pushout</td>
<td>42, 52</td>
</tr>
<tr>
<td>Dickenstein, Alicia</td>
<td>251</td>
</tr>
<tr>
<td>differential form</td>
<td>191</td>
</tr>
<tr>
<td>closed</td>
<td>193</td>
</tr>
<tr>
<td>exact</td>
<td>193</td>
</tr>
<tr>
<td>differential operator</td>
<td>171</td>
</tr>
<tr>
<td>divided powers</td>
<td>172</td>
</tr>
<tr>
<td>order</td>
<td>171</td>
</tr>
<tr>
<td>dimension</td>
<td></td>
</tr>
<tr>
<td>algebraic set</td>
<td>7</td>
</tr>
<tr>
<td>local cohomology</td>
<td>99</td>
</tr>
<tr>
<td>module</td>
<td>13, 58</td>
</tr>
<tr>
<td>ring</td>
<td>4</td>
</tr>
<tr>
<td>transcendence degree</td>
<td>5</td>
</tr>
<tr>
<td>direct limit</td>
<td>43</td>
</tr>
<tr>
<td>commute</td>
<td>49</td>
</tr>
<tr>
<td>derived functor</td>
<td>52</td>
</tr>
<tr>
<td>exact</td>
<td>51</td>
</tr>
<tr>
<td>filtered poset</td>
<td>50</td>
</tr>
<tr>
<td>homology</td>
<td>51</td>
</tr>
<tr>
<td>of diagrams</td>
<td>43</td>
</tr>
<tr>
<td>of modules</td>
<td>43</td>
</tr>
<tr>
<td>of sheaves</td>
<td>137</td>
</tr>
<tr>
<td>sums</td>
<td>49</td>
</tr>
<tr>
<td>tensor product</td>
<td>47, 51</td>
</tr>
<tr>
<td>direct system</td>
<td>42</td>
</tr>
<tr>
<td>cokernel</td>
<td>44</td>
</tr>
<tr>
<td>exact sequence</td>
<td>45</td>
</tr>
<tr>
<td>kernel</td>
<td>44</td>
</tr>
<tr>
<td>morphism</td>
<td>44</td>
</tr>
<tr>
<td>dualizing complex</td>
<td>212</td>
</tr>
<tr>
<td>Dwyer, William</td>
<td>181</td>
</tr>
<tr>
<td>Eagon, John</td>
<td>112</td>
</tr>
<tr>
<td>elliptic curve</td>
<td>195, 230, 232</td>
</tr>
<tr>
<td>ordinary</td>
<td>232</td>
</tr>
<tr>
<td>supersingular</td>
<td>232</td>
</tr>
<tr>
<td>enough injectives</td>
<td>34, 136</td>
</tr>
<tr>
<td>enough projectives</td>
<td>34</td>
</tr>
<tr>
<td>essential extension</td>
<td>258</td>
</tr>
<tr>
<td>maximal</td>
<td>259</td>
</tr>
<tr>
<td>essentially of finite type</td>
<td>185</td>
</tr>
<tr>
<td>étale cohomology</td>
<td>201</td>
</tr>
<tr>
<td>Euler operator</td>
<td>248</td>
</tr>
<tr>
<td>Euler-Koszul complex</td>
<td>253</td>
</tr>
<tr>
<td>Euler-Koszul homology</td>
<td>253</td>
</tr>
<tr>
<td>exceptional parameter</td>
<td>251</td>
</tr>
<tr>
<td>exceptional set</td>
<td>251</td>
</tr>
<tr>
<td>f-vector</td>
<td>160</td>
</tr>
<tr>
<td>Faltings’ connectedness theorem</td>
<td>156</td>
</tr>
<tr>
<td>Faltings, Gerd</td>
<td>151, 155</td>
</tr>
<tr>
<td>Félix, Yves</td>
<td>181</td>
</tr>
<tr>
<td>filtration</td>
<td>56</td>
</tr>
<tr>
<td>α-adic</td>
<td>56</td>
</tr>
<tr>
<td>decreasing</td>
<td>56</td>
</tr>
<tr>
<td>dimension</td>
<td>58</td>
</tr>
<tr>
<td>exhaustive</td>
<td>56</td>
</tr>
<tr>
<td>increasing</td>
<td>56</td>
</tr>
<tr>
<td>induced</td>
<td>57</td>
</tr>
<tr>
<td>multiplicity</td>
<td>58</td>
</tr>
<tr>
<td>separated</td>
<td>56</td>
</tr>
<tr>
<td>finitistic dimension conjecture</td>
<td>91</td>
</tr>
<tr>
<td>flat dimension</td>
<td>35</td>
</tr>
<tr>
<td>Forster, Otto</td>
<td>102</td>
</tr>
<tr>
<td>Fossum, Robert</td>
<td>119</td>
</tr>
<tr>
<td>Foxby, Hans-Bjørn</td>
<td>98, 119</td>
</tr>
<tr>
<td>Frobenius</td>
<td></td>
</tr>
</tbody>
</table>
Index

endomorphism, 217
flatness, 217, 220
functor, 219
power, 225
Fulton, William, 156
Fulton-Hansen theorem, 156
functor
acyclic module, 36
additive, 45
adjoint, 46
connecting homomorphism, 37
derived, 26, 36
exact, 30
Ext, 37, 39
graded Ext, 141
left-exact, 30
natural transformation, 44
right-exact, 36
Tor, 37, 39

Gauss' theorem, 194
Gelfand, Israel, 247, 249, 254
Gelfand, Sergei, 15
generic point, 132
global dimension, 90, 94
Godement, Roger, 15
Gorenstein ring, 117
Poincaré duality, 180
Stanley-Reisner, 167
Goto, Shiro, 230
Govorov, Valentin Evgen’evich, 32
Govorov-Lazard theorem, 32
grading
coarse, 205
fine, 55, 205
standard, 55, 58
twist, 141
Graev, Mark, 247, 249
Green’s theorem, 192
Greenlees, John, 181
Griffith, Phillip, 119
Griffiths, Phillip, 15
Gröbner basis, 63
Weyl algebra, 177
Grothendieck duality, 123, 124
graded, 181
Grothendieck’s comparison theorem, 199
Grothendieck, Alexander, 123

h-polynomial, 163
h-vector, 163
Halperin, Stephen, 181
Hansen, Johan, 156
Harris, Joseph, 15
Hartshorne, Robin, 15, 103, 147, 151, 183, 213, 224, 226, 230
Hartshorne-Lichtenbaum theorem, 103, 147, 150
hedgehog, 31
Heitmann, Raymond, 223
Herzog, Jürgen, 221
Hilbert polynomial, 58
Hilbert’s basis theorem, 2
Hilbert’s Nullstellensatz, 3
Hilbert’s syzygy theorem, 65, 95
Hilbert-Poincaré series, 6, 58
of Cohen-Macaulay rings, 108
of local cohomology, 167
of polynomial rings, 6
of Stanley-Reisner rings, 165
Hochster’s formula, 166
Hochster’s theorem, 210
Hochster, Melvin, 112, 113, 119, 156, 166, 201, 210, 223, 224, 226
holonomic D-module, 176, 240, 255
associated prime, 241
exact sequence, 177
family, 255
length, 177
local cohomology, 241
localization, 240, 243
multiplicity, 177
rank, 249, 250, 254
Hom
graded, 141
of complexes, 32
homogeneous maximal ideal, 6
Huneke, Craig, 147, 151, 156, 223, 233, 234
hypercohomology, 200
hypergeometric
class, 247
GKZ-system, 247
system, 248
ideal
cofinal family, 80
Frobenius power, 225
height, 4, 101
irrelevant, 141
perfect, 91
toric, 205
injective dimension, 34, 119
injective hull, 260
graded, 74, 180, 211
injective module, 257
Baer’s criterion, 257
graded, 141, 212
structure theorem, 257, 262
injective resolution, 26, 34, 260
graded, 212
intersection multiplicity, 108, 110
inverse limit, 53
exact, 54
irreducible topological space, 132
Ishida complex, 208
Iversen, Birger, 15
Iyengar, Srikanth, 98, 181, 217

Jacobian criterion, 189
Jacobian matrix, 188

Kähler differentials, 186, 191
gradient map, 188, 191
polynomial ring, 188
presentation, 188
Kaplansky, Irving, 89
Kapranov, Mikhail, 249, 254
Kashiwara, Masaki, 245, 254
Katzman, Mordechai, 236
Koszul cohomology, 68
annihilator, 71
Koszul complex, 67, 68
depth sensitivity, 71, 72
self-dual, 69
Kronecker, Leopold, 102
Krull dimension, 4
Krull’s height theorem, 4, 13
Krull’s principal ideal theorem, 4
Kunz, Ernst, 217

Lazard, Daniel, 32
Lemma, 12
Leray, Jean, 15
Lichtenbaum, Stephen, 103, 147
Lindel, Hartmut, 30
linear algebraic group, 113
reductive, 113
Lipman, Joseph, 183
local cohomology, 77
associated prime, 98, 233–237, 241
Čech cohomology, 85, 139
Frobenius action, 221
graded, 141
Künneth formula, 230
limit of Ext, 80
limit of Koszul cohomology, 82
of abelian groups, 78
of Cohen-Macaulay rings, 115
of Gorenstein rings, 124
of polynomial rings, 86
of Segre product, 230
socle, 213
vanishing, 147, 150, 151, 226, 229
local duality, 123–125, 130, 182
graded, 142, 181
local homomorphism, 263
local ring, 4
complete, 96
depth, 89
embedding dimension, 90

of a point, 7
punctured spectrum, 154
system of parameters, 5
Lyubeznik, Gennady, 151, 223, 229, 234, 241, 245, 246

Macaulay 2, 63, 240, 241, 245
Malgrange, Bernard, 245
Manin, Yuri, 15
Marley, Thomas, 235
Matlis duality, 257, 265, 267
graded, 212
Matlis, Eben, 267
maximal Cohen-Macaulay module, 126, 211, 224
Mayer-Vietoris sequence, 153
Miller, Claudia, 217
minimal generators, 12
miracle, 199
Mittag-Leffler condition, 54
module
associated graded, 56
associated prime, 69
basis, 29
Cohen-Macaulay, 115
completion, 53, 265
composition series, 263
depth, 70
dimension, 13, 58
divisible, 258
filtration, 56
flat, 31, 32, 39
free, 29
graded, 6, 55
homogenization, 62
induced filtration, 57
injective, 39, 257
length, 263
minimal generators, 12
multiplicity, 58
projective, 30, 31, 39
rank, 29
socle, 120, 259
torsion, 261
type, 123, 267
monomial
Laurent, 204
support, 165
monomial conjecture, 223
Montaner, Josep Alvarez, 246
morphism
homotopy, 33
homotopy equivalence, 33
null-homotopic, 33
of complexes, 32

Néron desingularization, 30
Index

Nakai’s conjecture, 173
Nakayama’s lemma, 12
Noether normalization, 106
nonzerodivisor, 69
Nori, Madhav, 103
normal form, 64
algorithm, 64
Nullstellensatz, 3

Oaku, Toshinori, 244
Ogus, Arthur, 151
open cover, 20
refinement, 21
order
associated graded, 60
initial form, 59
initial ideal, 59
leading monomial, 59
leading term, 59
lexicographic, 59
monomial, 59
standard monomial, 60
support, 59
term, 59
weight, 60

partition of unity, 23
perfect pairing, 179, 182
Peskine, Christian, 119, 151, 224, 226
Poincaré duality, 179, 180
polytope, 159
cyclic, 162
dimension, 159
face, 160
lattice, 250
neighborly, 162, 169
normalized volume, 250
simplicial, 161
support hyperplane, 160
Popescu, Dorin, 30
poset, 42
directed, 49
filtered, 49
presheaf, 133
direct limit, 138
sheafification, 134
stalk, 134
prime avoidance, 72, 92
principal ideal theorem, 4
projective dimension, 35, 89
projective resolution, 34
projective space, 143
projective variety, 142
distinguished open set, 142
quasi-coherent sheaf, 143
Quillen, Daniel, 30
Quillen-Suslin theorem, 30
rational normal curve, 162
reduction to diagonal, 8, 156
Rees’ theorem, 88
Rees, David, 120
regular element, 69
regular local ring, 11, 90, 94, 117
complete, 96
regular polynomial, 243
regular sequence, 69
maximal, 88
permutation, 73
weak, 69, 72
Reiten, Idun, 119
resolution
comparison theorem, 35, 36
flasque, 138, 140
homotopy equivalence, 36
injective, 26, 34, 260
minimal, 34, 89, 260
projective, 34
uniqueness, 36
Reynolds operator, 112
ring
associated graded, 56
characteristic, 96
completion, 53
dimension, 4
filtration, 56
graded, 6, 55
homogenization, 61
local, 4
Noetherian, 2
of invariants, 107, 110–114
spectrum, 3
type, 123
Roberts, Joel, 113
Roberts, Paul, 119, 123, 183
Rung, Josef, 155

S-polynomial, 64
Sather-Wagstaff, Sean, 217
Sato, Mikio, 243
scheme, 139
affine, 132, 139
Schreyer, Frank-Olaf, 65
section, 16
global, 16, 144
support, 140
Segre product, 230
Seifert-van Kampen theorem, 41
semigroup, 204
face, 208
facet, 208
semigroup ring, 203
affine, 203
Cohen-Macaulay, 206, 254
normal, 206, 210
Serre condition, 140
Serre duality, 183
Serre, Jean-Pierre, 94, 95, 109, 138, 147,
183, 195, 196
Sharp, Rodney, 234
sheaf, 16, 131
acyclic, 26, 136, 137
associated to module, 135
coherent, 135
cokernel, 135
complex, 25
constant, 17, 18, 22, 23, 132, 137, 138
defined on base, 132
direct limit, 138
espace étalé, 16
exact sequence, 25, 135
extension by zero, 135
flabby, 137
flasque, 137
global sections, 131
holomorphic functions, 195
image, 135
injective, 26, 136, 137
injective resolution, 26
kernel, 133
morphism, 24
\mathcal{O}_X-module, 132
of Abelian groups, 131
quasi-coherent, 135
resolution, 136
restriction map, 16, 131
sections, 131
skyscraper, 17, 134, 137
stalk, 24, 134
surjective morphism, 135
twist, 144
sheaf cohomology, 26, 27, 136, 139
exact sequence, 140
of projective space, 146
vanishing, 146
with support, 140
sheaf space, 16
sheafification, 134
exact, 135
simplex, 161
simplicial complex, 163
link, 166
smooth algebra, 185
Jacobian criterion, 189
socle, 120, 259
spectrum, 3
distinguished open set, 132
global sections, 135
punctured, 134, 151, 154
structure sheaf, 132
Zariski topology, 3
Speiser, Robert, 226, 230
Stafford, John Tobias, 172
Stanley-Reisner ideal, 164
Stanley-Reisner ring, 164
Stein manifold, 196
cohomology, 196
cover, 197
Stokes’ theorem, 194
structure sheaf, 132
projective variety, 143
Sturmfels, Bernd, 251
Suslin, Andrei, 30
system of parameters, 5
Szpiro, Lucien, 119, 151, 224, 226
Takahayama, Nobuki, 251
tangent space, 10
tensor algebra, 172
tensor product
direct limit, 47, 51
of complexes, 32
right-exact, 31
Thomas, Jean-Claude, 181
toric residue, 249
torsion functor, 77
on injectives, 79
transcendence degree, 5
trivial extension, 129
upper bound theorem, 162, 164
Watanabe, Keiichi, 230
Weibel, Charles, 15
Weyl algebra, 56, 172, 173
B-dimension, 175
Bernstein filtration, 174
grading, 248
homogenized, 178
Noetherian, 174
order filtration, 174
PBW basis, 173
simple, 172
V-filtration, 174
weight, 174
Weyl, Hermann, 111
Yanagawa, Kohji, 213
Zariski topology, 3
Zelevinski, Andrei, 247, 249, 254
Titles in This Series

86 Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, 2007
85 John M. Alongi and Gail S. Nelson, Recurrence and topology, 2007
84 Charalambos D. Aliprantis and Rabee Tourky, Cones and duality, 2007
83 Wolfgang Ebeling, Functions of several complex variables and their singularities (translated by Philip G. Spain), 2007
81 V. V. Prasolov, Elements of homology theory, 2007
80 Davar Khoshnevisan, Probability, 2007
79 William Stein, Modular forms, a computational approach (with an appendix by Paul E. Gunnells), 2007
78 Harry Dym, Linear algebra in action, 2007
77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, 2006
76 Michael E. Taylor, Measure theory and integration, 2006
75 Peter D. Miller, Applied asymptotic analysis, 2006
74 V. V. Prasolov, Elements of combinatorial and differential topology, 2006
73 Louis Halle Rowen, Graduate algebra: Commutative view, 2006
72 R. J. Williams, Introduction the the mathematics of finance, 2006
71 S. P. Novikov and I. A. Taimanov, Modern geometric structures and fields, 2006
70 Séan Dineen, Probability theory in finance, 2005
69 Sebastián Montiel and Antonio Ros, Curves and surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems, 2005
67 T.Y. Lam, Introduction to quadratic forms over fields, 2004
66 Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis, Functional analysis, An introduction, 2004
65 S. Ramanan, Global calculus, 2004
64 A. A. Kirillov, Lectures on the orbit method, 2004
63 Steven Dale Cutkosky, Resolution of singularities, 2004
62 T. W. Körner, A companion to analysis: A second first and first second course in analysis, 2004
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003
58 Cédric Villani, Topics in optimal transportation, 2003
57 Robert Plato, Concise numerical mathematics, 2003
56 E. B. Vinberg, A course in algebra, 2003
55 C. Herbert Clemens, A scrapbook of complex curve theory, second edition, 2003
54 Alexander Barvinok, A course in convexity, 2002
53 Henryk Iwaniec, Spectral methods of automorphic forms, 2002
52 Ilka Agricola and Thomas Friedrich, Global analysis: Differential forms in analysis, geometry and physics, 2002
Y. A. Abramovich and C. D. Aliprantis, Problems in operator theory, 2002
50 Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, 2002
49 John R. Harper, Secondary cohomology operations, 2002
48 Y. Eliashberg and N. Mishachev, Introduction to the h-principle, 2002
46 Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, 2002
44 Jim Agler and John E. McCarthy, Pick interpolation and Hilbert function spaces, 2002
43 N. V. Krylov, Introduction to the theory of random processes, 2002
42 Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, 2002
41 Georgi V. Smirnov, Introduction to the theory of differential inclusions, 2002
40 Robert E. Greene and Steven G. Krantz, Function theory of one complex variable, third edition, 2006
39 Larry C. Grove, Classical groups and geometric algebra, 2002
38 Elton P. Hsu, Stochastic analysis on manifolds, 2002
37 Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, 2001
35 James F. Davis and Paul Kirk, Lecture notes in algebraic topology, 2001
34 Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001
33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001
31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001
30 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001
29 Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001
25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000
24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000
23 Alberto Candel and Lawrence Conlon, Foliations I, 2000
21 John B. Conway, A course in operator theory, 2000
20 Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
19 Lawrence C. Evans, Partial differential equations, 1998
18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997
17 Henryk Iwaniec, Topics in classical automorphic forms, 1997

For a complete list of titles in this series, visit the
AMS Bookstore at www.ams.org/bookstore/.
This book is aimed to provide an introduction to local cohomology which takes cognizance of the breadth of its interactions with other areas of mathematics. It covers topics such as the number of defining equations of algebraic sets, connectedness properties of algebraic sets, connections to sheaf cohomology and to de Rham cohomology, Gröbner bases in the commutative setting as well as for D-modules, the Frobenius morphism and characteristic p methods, finiteness properties of local cohomology modules, semigroup rings and polyhedral geometry, and hypergeometric systems arising from semigroups.

The book begins with basic notions in geometry, sheaf theory, and homological algebra leading to the definition and basic properties of local cohomology. Then it develops the theory in a number of different directions, and draws connections with topology, geometry, combinatorics, and algorithmic aspects of the subject.