A Course on the Web Graph

Anthony Bonato

Graduate Studies in Mathematics
Volume 89

American Mathematical Society
Atlantic Association for Research in the Mathematical Sciences
A Course on the Web Graph
This page intentionally left blank
A Course on the Web Graph

Anthony Bonato

Graduate Studies
in Mathematics
Volume 89
Bonato, Anthony, 1971-
A course on the Web graph / Anthony Bonato.
p. cm. — (Graduate studies in mathematics ; v. 89)
Includes bibliographical references and index.
ISBN 978-0-8218-4467-0
1. Internet—Mathematical models. 2. Telecommunication—Traffic—Mathematical models.
TK5105.888.B667 2008
004.678–dc22 2007060579

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by
e-mail to reprint-permission@ams.org.

© 2008 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 13 12 11 10 09 08
Contents

List of Figures vii
Preface ix

Chapter 1. Graphs and Probability 1
 §1.1. Introduction 1
 §1.2. Graph Theory 2
 §1.3. Probability Theory 9
 Exercises 14

Chapter 2. The Web Graph 19
 §2.1. Introduction 19
 §2.2. Other Real-World Self-Organizing Networks 28
 Exercises 31

Chapter 3. Random Graphs 33
 §3.1. Introduction 33
 §3.2. What is a Random Graph? 34
 §3.3. Expectation and the First Moment Method 44
 §3.4. Variance and the Second Moment Method 47
 §3.5. Martingales and Concentration 50
 Exercises 54

Chapter 4. Models for the Web Graph 59
 §4.1. Introduction 59
 §4.2. On-Line Web Graph Models 61

§4.3. Future Challenges in Modelling the Web Graph 92
Exercises 94

Chapter 5. Searching the Web 97
§5.1. Introduction 97
§5.2. An Overview of Search Engines 98
§5.3. Adjacency Matrices and the Perron-Frobenius Theorem 99
§5.4. Markov Chains 103
§5.5. PageRank 105
§5.6. HITS 110
§5.7. SALSA 113
§5.8. Further Analysis of Web Ranking Algorithms 115
Exercises 117

Chapter 6. The Infinite Web 121
§6.1. Introduction 121
§6.2. The Infinite Random Graph 124
§6.3. Representations and Properties of R 127
§6.4. Limits of Copying Models 132
§6.5. Limits of Preferential Attachment Models 142
§6.6. The n-Ordered Graphs and Their Limits 145
Exercises 153

Chapter 7. New Directions in Internet Mathematics 157
§7.1. Introduction 157
§7.2. Eigenvalues of Power Law Graphs 158
§7.3. Modelling Viruses on the Web 160
§7.4. Dominating Sets in the Web Graph 162
Exercises 168

Bibliography 171

Index 181
List of Figures

1.1 The Petersen graph. 3
1.2 Isomorphic graphs. 4
1.3 A graph G with $\omega(G) = \alpha(G) = 3$ and $\chi(G) = 4$. 8
1.4 A directed path and cycle. 8
2.1 A sparse and a dense graph. 21
2.2 The graph G and a plot of its degree distribution. 22
2.3 A power law graph with 400 vertices. 23
2.4 The log-log plot of the degree distribution of a power law graph. 24
2.5 A graph G with $L(G) = 1.4$. 26
2.6 A graph H with $c(H) = 0.75$. 27
2.7 A bipartite core. 28
3.1 A graph with 25 vertices, where edges were drawn with probability $\frac{1}{2}$. 35
3.2 The 1-e.c. graphs of order 4. 38
3.3 The graph $K_3 \Box K_3$. 38
4.1 A graph with 100 vertices and edges drawn with probability $\frac{1}{2}$. 63
4.2 A graph generated by the preferential attachment model with 100 vertices and average degree close to the average degree of the graph in Figure 4.1. 64
4.3 An LCD with the corresponding graph. The vertex a is identified with 1, 2, 3, 4, the vertex b with 5, the vertex c with 6, 7, and d with 8. 65

4.4 The graphs G_{12} and G_{13} in a simulation of $G(2)$. The new vertex is grey, and is more likely to join to existing vertices with high degree. 68

4.5 A time-step in the copying model. The new white vertex copies from the grey vertex. 81

4.6 A time-step in the evolution of the geometric preferential attachment model when $m = 1$. The grey vertex is the new vertex, while the dotted circles are the caps. 84

4.7 A simulation of the SPA model. 88

5.1 A digraph. 101

5.2 An aperiodic digraph. 104

5.3 The digraph H. 113

5.4 The graph $G(H)$. 114

5.5 The directed tree T. 119

6.2 The e.c. property. 125

6.3 The locally e.c. property. 133

6.4 The graph $C_5(C_7, f)$, where the homomorphism f to C_5 is defined by the vertex labellings. 140

6.5 The n-locally e.c. property. 141

6.6 The 3-ordered graph G. 150

6.7 The 2-ordered graph G. 151

6.8 A graph and its 2-core. 151

7.1 $\gamma(Q_3) = 2$. Each pair of antipodal vertices is a dominating set in the cube. 162

7.2 A cop-win graph. 166
The internet affects many aspects of our lives, such as how we store and retrieve information, conduct business, and communicate. For example, information is no longer only stored in printed form, but is represented on-line via a complex set of interconnected web pages. The web graph has vertices representing web pages, with edges corresponding to the links between pages. The web graph is a real-world network which has undergone intensive study in the last decade by theoreticians and experimentalists. Does this graph have interesting properties? Are there good, rigorous mathematical models for these properties? Can we exploit the graph structure of the web to help search it for information? The answer to all three questions is, of course, yes!

The study of the web graph, or internet mathematics as it is now often called, is an active field of study. As the subject is new, there is often a lack of consensus on the central topics, models, even notation, with key questions not always evident. As the subject is fast-breaking, a large arsenal of techniques are required to model and analyze properties of the web. However, possessing the right mathematical tools and a familiarity with current research developments is an important first step. This book should supply a solid mathematical introduction to internet mathematics, and will encourage interest in an emerging and fascinating area of graph theory and theoretical computer science.

The book resulted from lecture notes for an Atlantic Association for Research in the Mathematical Sciences (AARMS) Summer School graduate course Massive Networks and Internet Mathematics taught in July 2006 at Dalhousie University in Halifax. A version of the course was taught twice.
before at Wilfrid Laurier University in Waterloo. As such, the book is appropriate for graduate students or keen undergraduate students in mathematics, computer science, engineering, or physics, whose background includes elementary graph theory, linear algebra, and probability theory. The text is also useful to professional mathematicians, scientists, or engineers interested in learning more about the web graph and graph theory in general. We emphasize that our view is clearly on the mathematics surrounding the web graph. Further, the topics covered are by no means exhaustive.

The book is largely self-contained, and references are given where proofs are omitted. There are over 100 exercises at the end of the chapters and many worked examples, all making the book suitable for either a course or for self-study. Open problems are stated in the exercises and elsewhere.

The book consists of seven chapters. Chapter 1 supplies the requisite background and notation in graph theory and discrete probability used throughout the remaining chapters. We describe the graph and probability theory as well as notation that acts as the foundation for the remaining chapters. The web graph and its key properties are introduced in Chapter 2. Here the reader will learn, among other things, about power law degree distributions and the small world property. Various real-world, self-organizing networks, ranging from technological, biological, to social, are discussed in this chapter. In Chapter 3, an introduction is given to techniques and properties of the classical $G(n,p)$ random graph. Random graph theory supplies the backbone for much of internet mathematics; the techniques used here will be used in later chapters. Chapter 4 surveys the mathematics of stochastic web graph models. Several models are reviewed and analyzed for their degree sequence and other parameters. The topic of searching the web is presented in Chapter 5, where the key web ranking algorithm PageRank—used by the search engine Google—is described. The chapter includes a discussion of the linear algebra and Markov chains used in modern web ranking algorithms. In Chapter 6, we describe the interaction between infinite graph theory and web graph models. The view of massive real-world networks as infinite graphs is relatively new, and it ties in well with the existing theory on the infinite random graph. There are myriad facets to research on the web graph, so as a result we finish in Chapter 7 with three distinct topics on web graph research: spectra of power law graphs, modelling viruses on the web, and domination in web graph models.

How to read this book? The key chapters for a course in internet mathematics are Chapters 1 to 5, inclusive. Chapters 6 and 7 may be completely or partially omitted in a one-semester course. The topics in those chapters are well suited for reading projects. All chapters contain exercises (some with
references), and so the book is well suited for assignments and self-study. A web page will be maintained for the book at

http://info.wlu.ca/~wwwmath/faculty/bonato/webgraph.html

which will contain useful links and additional information such as corrections or addenda.

As with any undertaking of this nature, there are many people to acknowledge and thank. A sincere thank you goes out to Jon Borwein, David Langstroth, Ron Fitzgerald, Ina Mette, Natalya Pluzhnikov, and everyone at the AMS and AARMS for their generous support of this project. I would like to thank all the mathematicians I have discussed internet mathematics and graph theory with over the years; in particular, I would like to thank Cathy Baker, Kathie Cameron, Peter Cameron, Colin Cooper, Dejan Delić, Fan Chung Graham, Geña Hahn, Jon Kleinberg, Jarik Nešetřil, Richard Nowakowski, and Joel Spencer. I especially wish to acknowledge Jeannette Janssen, whose infectious enthusiasm and brilliance attracted me to and kept me fascinated with the subject. Thanks to Dejan Delić, Douglas Hamlyn, Jeannette Janssen, Pawel Prałat, Laleh Samarbakhsh, Changping Wang, and the anonymous referees for their careful reading of early drafts of the book. Without the constant love and support of my family—Doug, Anna Maria, Paul, Lisa—this book would not have been written. I dedicate the book to the memory of my sister Paula.
This page intentionally left blank
Bibliography

[18] C.A. Baker, A. Bonato, N.A. McKay, Graphs with the n-e.c. adjacency property constructed from resolvable designs, submitted.

Bibliography

[44] A. Bonato, D. Delić, I. Dolinka, All countable monoids embed into the monoid of the infinite random graph, submitted.
[64] G. Cantor, Beiträge zur Begründung der transfiniten Mengenlehre, Mathematische Annalen 49 (1897) 207-246.
Bibliography

[85] R. Diestel, I. Leader, A. Scott, S. Thomassé, Orientations and partitions of the Rado graph, accepted to *Transactions of the American Mathematical Society*.

[101] L. Euler, Solutio problematis ad geometriam situs pertinentis, *Commetarii Academiae Scientiarum Imperialis Petropolitanae* 8 (1736) 128-140.

Bibliography

[158] A.A. Markov, Extension of the law of large numbers to variables depending on each other, Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete 15 (1906) 135-156. (Russian)

Bibliography

http://www.zakon.org/robert/internet/timeline/
Index

$C(G)$, 27
$G[N,p]$, 132
$G(d)$, 89, 158
$G(n,p)$, 34, 60, 163, 167
$G \cong H$, 4
$G \leq H$, 4
$G \uparrow S$, 4
$L(G)$, 26
$N(u)$, 3
$N^c(u)$, 3
N_k,G, 22
N_k,t, 62
$R(n)$, 34
$R(n)$, 145
R_H, 135
$[n]$, 1
$\Delta(G)$, 5
$\Theta(G)$, 152
\emptyset, 1
$\alpha(G)$, 7
$\chi(G)$, 7
$\deg_G(u)$, 5
$\delta(G)$, 5
$\gamma(G)$, 8
$(S)_G$, 4
$E(X)$, 10
$G(m)$, 67
$\mathcal{P}(\mathcal{A})$, 142
$\text{Cov}(X,Y)$, 11
$\text{Var}(X)$, 11
$\text{Vol}_k(G)$, 159
$\omega(G)$, 7
$\rho(X,Y)$, 95
\bar{d}, 159
$f = O(g)$, 2
$f = \Omega(g)$, 2
$f = \Theta(g)$, 2
$f = o(g)$, 2
$f \sim g$, 2
$g = \omega(f)$, 2
actor graph, 30
adjacency property, 37
Aeschylus, 97
affine plane, 41
Aiello,W., 29, 76, 81
Aigner, M., 166
Albert, R., 24, 30, 62
Alderson, D., 93
Alon, N., 54
arboricity, 76, 94
asymptotically almost surely (a.a.s.), 36
authorities, 110
automorphism, 5, 168
average distance, 26
Azuma, K., 52
Azuma-Hoeffding inequality, 52, 80
back-and-forth, 124, 127
Barabási, A., 24, 30, 62
Berger, B., 160
bipartite core, 27
blog graph, 30
Bollobás, B., 49, 62, 65, 66, 82
Bonato, A., 132, 145, 158
Borgs, C., 160
Box, G.E.P., 59
Brin, S., 105
Brook’s theorem, 14
call graph, 29
Cameron, P.J., 131

181
Index

Cartesian product, 156, 169
Chayes, J.T., 160
Chebyshev’s inequality, 12
Chernoff bounds, 13, 47
cromatic number, 7
Chung, F.R.K., 29, 39, 76, 82, 89, 158
clustering coefficient, 27, 31
collaboration graph, 30
communities, 27
concentration, 48, 52, 66, 72, 79
conditional expectation, 51
tower property, 51, 57
conditional mass function, 50
conditional probability, 10
connected components, 6
contact process, 160, 161
Cooper, C., 80, 82
Cops and Robber, 165
correlation coefficient, 95
covariance, 11
crawler, 98
Curie, M., 121
cycle, 5
 chord, 6
degree distribution, 22
 power law, 22
Delsarte, P., 42
directed edges, 8
directed graph, 8
 strongly connected components, 8
topological sort, 15
distance, 6
dominant eigenvalue, 102
dominant eigenvector, 102
dominating set, 8, 55, 162
Doyle, J.C., 93
Dreyer, P.A., 163
eigenvalue power law, 158
Einstein, A., 33
embedding, 4
endvertices, 14
Erdős, P., 30, 34, 37, 49, 60, 124, 157
event
 independent, 10
 mutually independent, 10
expectation, 10
Faloutsos, C., 29
Faloutsos, M., 29
Faloutsos, P., 29
first moment method, 44
First Theorem of Graph Theory, 5
Flake, G.W., 28
Flaxman, A., 83
Fraïssé, R., 122, 130
Frieze, A., 80, 82, 83
Fromme, M., 166
Füredi, Z., 159
gamma function, 76
Gardiner, A., 129
Giles, C.L., 20, 28
girth, 5
Goethals, J.M., 42
Gol’fand, Y., 129
Google, 105
Graham, R.L., 39
graph, 2
 acyclic, 5
 adjacency matrix, 158, 168
 asymmetric, 15
 balanced, 49, 56
 bipartite, 56
 clique, 7
 clique number, 7
 complement, 7
 complete, 7
 connected, 6
 cop number, 165
 cop-win, 166, 170
 copying, 135
 cover time, 118
dense, 21
diameter, 6
dismantlable, 166, 170
domination number, 8, 93, 162
existentially closed (e.c.), 125
expected average degree, 158
girth, 44
Henson, 129
homogeneous, 129, 155
hypercube, 7
independence number, 7
independent, 7
infinite random, 124
infinite random n-ordered, 145
jumbled, 56
Kneser, 15
locally e.c., 132
Mycielski, 56
n-e.c., 37
n-ordered, 149
Paley, 38, 40, 129
Petersen, 3
power law, 23
random, 17, 34
regular, 5
self-complementary, 15
small world, 25
sparse, 21
strongly n-e.c., 135
strongly regular, 40, 168
tree, 57
triangle-free, 56
universal, 139, 150
vertex-critical, 15
vertex-transitive, 5, 150, 155
wheel, 7
graphical sequence, 94

Hamilton cycle, 7
Hamilton path, 7, 155
Hawking, S., 33
Henson, C.W., 130
Henzinger, M., 115
Hilbert, D., 121
Hoeffding, W., 52
hubs, 110
hyperlink-induced topic search (HITS), 110, 113, 116, 119
hypertext markup language (HTML), 20

increasing property, 49
indexer, 98
isotropic, 130, 138, 145, 147, 155

Janssen, J., 132, 145
Jensen's inequality, 16
Jeong, H., 24
Jordan, J., 67
Kleinberg, J., 27, 80, 105, 142
Kleinberg, R., 142
Klin, M., 129
Komlós, J., 159
Krivelevich, M., 54
Kumar, R., 27, 80, 81

Lachlan, A.H., 130
Laplacian matrix, 159
Lawrence, S., 20, 28
Lempel, R., 113
Li, L., 93
Liggett, T.M., 160
Lincoln, L., 158
linearized chord diagram (LCD), 62, 64
Lipschitz condition, 52
Lobachevsky, N., 59
Lovász, L., 15, 46
Lu, L., 29, 76, 82, 89

Machiavelli, N., 1
Markov chain, 103, 114
continuous-time, 161
ergodic, 104
irreducible, 104
random walk, 104
reversible, 118
state space, 103
stationary distribution, 104
transition probability, 103
Markov's inequality, 11, 46
martingale, 51, 80
Doob, 51, 66
degree-exposure, 52, 57
vertex-exposure, 52
master equation, 95
matrix
adjacency, 100
irreducible, 102
Laplacian, 118
primitive, 102
spectral radius, 102
stochastic, 103
method of bounded differences, 52
Mihail, M., 158
Milgram, S., 30
Moran, S., 113
mutually embeddable, 122, 153
n-core, 151
n-deletion, 152
n-existentially closed (n-e.c.), 37
n-reduction, 151
network, 2
complex, 29
heterogeneous, 29
internet, 93
PPI, 93
scale-free, 29
self-organizing, 29
network of citations, 30
Newman, M.E.J., 30
Newton, I., 19

Page, L., 97, 105
PageRank, 98, 105
Markov chain, 107
matrix, 106
personalization vector, 106, 119
random walk, 107
teleportation constant, 107
vector, 107
Papadimitriou, C., 158
Pareto, V., 24
partial n-tree, 149
Pastor-Storras, R., 161
Perron-Frobenius theorem, 102
pigeonhole property, 130
Poincaré, H., 1
Pólya urn, 162
power law random graphs, 89
power method, 108
preferential attachment (PA), 62
probability space, 9
product space, 17
protein-protein interaction (PPI) networks	correctly joined, 125
pseudo-randomness, 39	degree, 5
quasi-randomness, 39, 90	eccentricity, 14
Ramsey number, 34, 54	in-degree, 8
random variable	in-neighbour, 8
Bernoulli, 12	isolated, 6, 57
binomial, 12	out-degree, 8
covariance, 11	out-neighbour, 8
expectation, 10	universal, 6
independent, 11	vertex classes, 7
Poisson, 13	vertex-transitive, 140
probability mass function, 10	Ramsey number, 34, 54
variance, 11	random walk, 114
random walk, 114	ranking algorithm, 98
ray, 7, 155	web graph, 2
Redner, S., 30	web graph model
Rényi, A., 34, 37, 49, 60, 124	ACL, 76
Riemann, F.B., 41	copying, 80, 132
Riordan, O., 62, 66, 82	geometric, 83
Robinson, A., 125	growth deletion, 82
Saberi, A., 160	LCD, 62
Santayana, G., 19	preferential attachment, 62, 142, 163
search engine, 98	SPA, 86
second moment method, 47	web page
self-similarity property, 122	dynamic, 21, 121
Sheehan, J., 129	static, 21, 121
six degrees of separation, 30	Weil, A., 41
small world graph, 25	Wilde, O., 157
spanning tree, 110, 116	Willinger, W., 93
Spencer, J., 62	Wilson, R.W., 39
stability, 116	with extreme probability (w.e.p.), 46
Stochastic Approach for Link Structure	Woodrow, R.E., 130
Analysis (SALSA), 113	
Strogatz, S.H., 25, 30	
submartingales, 142	
Susceptible-Infected-Susceptible (SIS), 160	
Thomason, A., 49	uniform resource locators (URL), 20
threshold function, 49, 57	uniformly at random (u.a.r.), 9
tournament, 9, 55, 154	Urysohn, P., 130
king, 15	vertex
tree, 6, 153	Vera, J., 82, 83
spanning tree, 6	vertex
Turyn, R.J., 42	
Tusnády, G., 62	
uniform resource locators (URL), 20	
uniformly at random (u.a.r.), 9	
Urysohn, P., 130	
Vera, J., 82, 83	vertex
Titles in This Series

89 Anthony Bonato, A course on the web graph, 2008
86 Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, 2007
85 John M. Alongi and Gail S. Nelson, Recurrence and topology, 2007
84 Charalambos D. Aliprantis and Rabee Tourky, Cones and duality, 2007
83 Wolfgang Ebeling, Functions of several complex variables and their singularities (translated by Philip G. Spain), 2007
81 V. V. Prasolov, Elements of homology theory, 2007
80 Davar Khosrnevisan, Probability, 2007
79 William Stein, Modular forms, a computational approach (with an appendix by Paul E. Gunnells), 2007
78 Harry Dym, Linear algebra in action, 2007
77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, 2006
76 Michael E. Taylor, Measure theory and integration, 2006
75 Peter D. Miller, Applied asymptotic analysis, 2006
74 V. V. Prasolov, Elements of combinatorial and differential topology, 2006
73 Louis Halle Rowen, Graduate algebra: Commutative view, 2006
72 R. J. Williams, Introduction the the mathematics of finance, 2006
71 S. P. Novikov and I. A. Taimanov, Modern geometric structures and fields, 2006
70 Seán Dineen, Probability theory in finance, 2005
69 Sebastián Montiel and Antonio Ros, Curves and surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems, 2005
67 T.Y. Lam, Introduction to quadratic forms over fields, 2004
66 Yuli Eidelman, Vitali Milman, and Antonis Tsaolimitis, Functional analysis, An introduction, 2004
65 S. Ramanan, Global calculus, 2004
64 A. A. Kirillov, Lectures on the orbit method, 2004
63 Steven Dale Cutkosky, Resolution of singularities, 2004
62 T. W. Körner, A companion to analysis: A second first and first second course in analysis, 2004
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003
58 Cédric Villani, Topics in optimal transportation, 2003
57 Robert Plato, Concise numerical mathematics, 2003
56 E. B. Vinberg, A course in algebra, 2003
55 C. Herbert Clemens, A scrapbook of complex curve theory, second edition, 2003
54 Alexander Barvinok, A course in convexity, 2002
TITLES IN THIS SERIES

53 Henryk Iwaniec, Spectral methods of automorphic forms, 2002
52 Ilka Agricola and Thomas Friedrich, Global analysis: Differential forms in analysis, geometry and physics, 2002
51 Y. A. Abramovich and C. D. Aliprantis, Problems in operator theory, 2002
50 Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, 2002
49 John R. Harper, Secondary cohomology operations, 2002
48 Y. Eliashberg and N. Mishachev, Introduction to the h-principle, 2002
46 Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, 2002
44 Jim Agler and John E. McCarty, Pick interpolation and Hilbert function spaces, 2002
43 N. V. Krylov, Introduction to the theory of random processes, 2002
42 Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, 2002
41 Georgi V. Smirnov, Introduction to the theory of differential inclusions, 2002
40 Robert E. Greene and Steven G. Krantz, Function theory of one complex variable, third edition, 2006
39 Larry C. Grove, Classical groups and geometric algebra, 2002
38 Elton P. Hsu, Stochastic analysis on manifolds, 2002
37 Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, 2001
35 James F. Davis and Paul Kirk, Lecture notes in algebraic topology, 2001
34 Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001
33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001
31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001
30 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001
29 Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001
25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000
24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000
23 Alberto Candel and Lawrence Conlon, Foliations I, 2000
21 John B. Conway, A course in operator theory, 2000
20 Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, 1999
19 Lawrence C. Evans, Partial differential equations, 1998
18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
A Course on the Web Graph provides a comprehensive introduction to state-of-the-art research on the applications of graph theory to real-world networks such as the web graph. It is the first mathematically rigorous textbook discussing both models of the web graph and algorithms for searching the web.

After introducing key tools required for the study of web graph mathematics, an overview is given of the most widely studied models for the web graph. A discussion of popular web search algorithms, e.g., PageRank™, is followed by additional topics, such as applications of infinite graph theory to the web graph, spectral properties of power law graphs, domination in the web graph, and the spread of viruses in networks.

The book is based on a graduate course taught at the AARMS 2006 Summer School at Dalhousie University. As such it is self-contained and includes over 100 exercises. The reader of the book will gain a working knowledge of current research in graph theory and its modern applications. In addition, the reader will learn first-hand about models of the web, and the mathematics underlying modern search engines.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-89