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Preface 

The theory of quadratic forms has a long and glorious history: launched 
in ancient Babylonia between 1900 and 1600 BC, taken up again by Brah-
magupta in the Seventh Century, and then—another thousand years later— 
by the great genius Fermat, followed by a succession of extraordinary math
ematicians, including Euler, Lagrange, and Gauss, who brought the subject 
closer to its modern form. The work of Minkowski in the late Nineteenth 
Century, coupled with the extension of his work by Hasse in the early Twen
tieth Century, led to a great broadening and deepening of the theory that has 
served as the foundation for an enormous amount of research that continues 
today. 

Though the roots of the subject are in number theory of the purest 
sort, the last third of the Twentieth Century brought with it new links of 
quadratic forms to group theory, topology, and—most recently—to cryptog
raphy and coding theory. So there are now many members of the mathe
matical community who are not fundamentally number theorists but who 
find themselves needing to learn about quadratic forms, especially over the 
integers. There is thus a need for an accessible introductory book on qua
dratic forms that can lead readers into the subject without demanding a 
heavy background in algebraic number theory or previous exposure to a lot 
of sophisticated algebraic machinery. My hope is that this is such a book. 

One of the special attributes of number theory that distinguishes it from 
most other areas of mathematics is that soon after a subject is introduced 
and objects are defined, questions arise that can be understood even by a 
newcomer to the subject, although the answers may have eluded the experts 
for centuries. Even though this is an introductory book, it contains a sub
stantial amount of material that has not yet appeared in book form, and 
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the reader will be exposed to topics of current research interest. I will be 
happy if the readers find themselves wanting to pursue some aspects of the 
subject in more detail than this book can provide; accordingly, I will offer 
some references to the literature and recommendations for further study. 

Before 1937, quadratic forms were treated primarily as homogeneous 
polynomials of degree 2 acted on by transformations that could change a 
given quadratic form into certain other ones. (And a fundamental question 
was: into which other ones?) But a pioneering paper by Witt in 1937 brought 
a more geometric flavor to the subject, putting it on the border of linear 
algebra and number theory—roughly speaking, a theory of generalized inner 
products on modules. Our coefficient ring of interest will most often be the 
ring Z of rational integers, though we will also give special attention to the 
polynomial rings Fg[x]. (Here ¥q denotes a finite field with q elements.) We 
will see that before we can effectively explore quadratic forms over a given 
domain R, we may need to extend i?, perhaps in many ways, to larger rings. 
The extended domains (specifically, the p-adic number fields, their rings of 
integers, and their function-field analogues) may possess complications of 
their own that require clarification before we can consider quadratic forms 
over them; but once we have achieved that clarification, we may find that 
quadratic forms over those extensions are far more tractable than over R. 
When that happens, the trick is to then bring that information down to R 
and apply it to the original forms. 

This book has evolved from lecture notes for introductory graduate 
courses on quadratic forms I have taught many times at the University of 
California, Santa Barbara, and once at Dartmouth College. Typically these 
courses have been populated by second-year graduate students who have 
already had a basic course in algebraic structures, and this is the primary 
audience I have had in mind during the writing process. But in fact the book 
should be readable by anyone with a strong undergraduate background in 
linear and abstract algebra who has also seen the construction of the real 
numbers from the rationals. 

Naturally the contents of this book have been shaped by my own inter
ests, experience, and tastes, and I have no doubt that some mathematicians 
will lament the absence of one or more of their favorite topics in the theory 
of quadratic forms. But I hope that their concerns will be eased by seeing in 
these pages some new perspectives—and occasionally something completely 
new—and that where the material is familiar they will experience the joy of 
revisiting old friends. 

I thank Miklos Ajtai, Mark Gaulter, Arnold Johnson, Timothy O'Meara, 
Martin Scharlemann, Thomas Shemanske, and the anonymous referees for 
their helpful comments, and I especially thank Melissa Flora for her detailed 
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reading—and numerous corrections—of nearly the entire manuscript. Of 
course any errors that remain are my own doing. I have appreciated TeXni-
cal rescues from Caroline Johnson, Barbara Beeton, and Richard Spjut. 
Natalya Pluzhnikov's perceptive and thorough copy editing helped me put 
the manuscript in final form. And I thank editor Ina Mette of the AMS for 
her patience and encouragement, and for her thoughtful selection of excellent 
referees. 

Finally, I thank my dear family for the inspiration, love, and encourage
ment that have sustained me throughout my work on this project. 
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