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Introduction

As indicated in the title, this volume is concerned primarily with noncommu-

tative algebraic structures, having grown from a course introducing complex

representations of finite groups via the structure of group algebras and their

modules. Our emphasis is on algebras, although we also treat some major

classes of finite and infinite groups. Since this volume was conceived as a

continuation of Volume 1 (Graduate Algebra: Commutative View, Graduate

Studies in Mathematics, volume 73), the numeration of chapters starts with

Chapter 13, Part IV, and we use the basics of rings and modules developed

in Part I of Volume 1 (Chapters 1–3). Nevertheless, Chapters 13–15 and 18

can largely be read independently of Volume 1.

In the last one hundred years there has been a vast literature in noncom-

mutative theory, and our goal here has been to find as much of a common

framework as possible. Much of the theory can be cast in terms of repre-

sentations into matrix algebras, which is our major theme, dominating our

treatment of algebras, groups, Lie algebras, and Hopf algebras. A secondary

theme is the description of algebraic structures in terms of generators and

relations, pursued in the appendices of Chapter 17, and leading to a discus-

sion of free structures, growth, word problems, and Zelmanov’s solution of

the Restricted Burnside Problem.

One main divergence of noncommutative theory from commutative

theory is that left ideals need not be ideals. Thus, the important notion of

“principal ideal” from commutative theory becomes cumbersome; whereas

the principal left ideal Ra is described concisely, the smallest ideal of a non-

commutative ring QR containing an element a includes all elements of the

form

r1,1ar1,2 + · · ·+ rm,1arm,2, ∀ri,1, ri,2,∈ R,

xiii
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where m can be arbitrarily large. This forces us to be careful in distinguish-

ing “left” (or “right”) properties from two-sided properties, and leads us to

rely heavily on modules.

There are many approaches to structure theory. We have tried to keep

our proofs as basic as possible, while at the same time attempting to appeal

to a wider audience. Thus, projective modules (Chapter 25) are introduced

relatively late in this volume.

The exposition is largely self-contained. Part IV requires basic module

theory, especially composition series (Chapter 3 of Volume 1). Chapter 16

draws on material about localization and Noetherian rings from Chapters 8

and 9 of Volume 1. Chapter 17, which goes off in a different direction,

requires some material (mostly group theory) given in the prerequisites of

this volume. Appendix 17B generalizes the theory of Gröbner bases from

Appendix 7B of Volume 1. Chapter 18 has applications to field theory

(Chapter 4 of Volume 1).

Parts V and VI occasionally refer to results from Chapters 4, 8, and 10

of Volume 1. At times, we utilize quadratic forms (Appendix 0A) and,

occasionally, derivations (Appendix 6B). The end of Chapter 24 draws on

material on local fields from Chapter 12. Chapters 25 and 26 require basic

concepts from category theory, treated in Appendix 1A.

There is considerable overlap between parts of this volume and my earlier

book, Ring Theory (student edition), but the philosophy and organization

is usually quite different. In Ring Theory the emphasis is on the general

structure theory of rings, via Jacobson’s Density Theorem, in order to lay

the foundations for applications to various kinds of rings.

The course on which this book is based was more goal-oriented — to

develop enough of the theory of rings for basic representation theory, i.e., to

prove and utilize the Wedderburn-Artin Theorem and Maschke’s Theorem.

Accordingly, the emphasis here is on semisimple and Artinian rings, with

a short, direct proof. Similarly, the treatment of Noetherian rings here

is limited mainly to Goldie’s Theorem, which provides most of the non-

technical applications needed later on.

Likewise, whereas in Ring Theory we approached representation theory

of groups and Lie algebras via ring-theoretic properties of group algebras

and enveloping algebras, we focus in Part V of this volume on the actual

groups and Lie algebras.

Thanks to Dror Pak for pointing me to the proofs of the hook cate-

gories, to Luda Markus-Epstein for material on Stallings foldings, to Alexei

Belov for gluing components in the Wedderburn decomposition, and to Sue

Montgomery for a description of the current state of the classification of
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finite dimensional Hopf algebras. Steve Shnider, Tal Perri, Shai Sarussi,

and Luie Polev provided many helpful comments. Again, as with Volume 1,

I would like to express special gratitude to David Saltman, in particular for

his valuable suggestions concerning Chapter 24 and Chapter 25, and also to

Uzi Vishne. Thanks to Sergei Gelfand for having been patient for another

two years. And, of course, many thanks to Miriam Beller for much of the

technical preparation of the manuscript.

Needless to say, I am deeply indebted to Rachel Rowen, my helpmate,

for her steadfast support all of these years.
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Prerequisites

As mentioned in the Introduction, most of Part IV of Volume 2 is self-

contained, modulo some basic results on rings and modules. In Chapter 17,

we need a few extra general basic results, mostly concerning finitely gener-

ated groups, which we list here.

Finitely generated (f.g.) groups.

A fair part of Chapter 17 concerns f.g. groups, introduced briefly in

Volume 1, namely on p. 13 and Exercises 0.23–0.27. Often we look for

f.g. subgroups of a given f.g. group. The following straightforward facts

often come in handy. Recall that a subgroup H has finite index G if H
has finitely many cosets in G, the number of which is designated as [G:H].

Remark 00.1. Any subgroup H of finite index in a f.g. group G is also f.g.

(This was stated in Exercise 0.27 of Volume 1, with an extensive hint.) The

same proof shows, more precisely, that if G is generated by t elements and

[G:H] = m, then H is generated by tm elements.

Lemma 00.2. For any n ∈ N, any f.g. group G has finitely many subgroups
of index n.

Proof. We elaborate on Exercise 0.25 of Volume 1. For any subgroup H
of index n, we have a homomorphism ψH : G → Sn, given by left multipli-

cation on the cosets of H. But any element a of ker ψH satisfies aH = H,

implying kerψH ⊆ H, and thus H = ψ−1
H (H) for some subgroup H of Sn.

Working backwards, since G is f.g., there are only finitely many homo-

morphisms from G to Sn, which has finitely many possible subgroups H.

Since any subgroup H of index n can be recovered in this way, we have only

finitely many possibilities for H. �

xxiii
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Proposition 00.3. If H is a f.g. normal subgroup of G, and K is a subgroup
of finite index in H, then K contains a f.g. normal subgroup of G that has
finite index in H. (The special case for H = G was given in Exercise 0.25
of Volume 1.)

Proof. For each g ∈ G, gKg−1 is a subgroup of gHg−1 = H of the same

index as K; by the lemma, there are only finitely many of these, so, by

Exercise 0.24 of Volume 1,
⋂

g∈G gKg−1 is a normal subgroup of G having

finite index in H. �

Groups of fractions.

In the proof of Theorem 17.61 we also need the following easy special

case of the construction of Exercise 8.26 of Volume 1:

Definition 00.4. Suppose (A, +) is a torsion-free Abelian group. The

group AQ is defined as follows:

Define an equivalence on A×N+ by putting (a, m) ∼ (b, n), iff an = bm.
Writing a

m for the equivalence class [(a, m)], we define AQ to be the set of

equivalence classes, endowed with the operation

a

m
+

b

n
=

an + bm

mn
.

Remark 00.5. AQ is a group, and in fact is a Q-module in the natural

way, namely

u

v

a

m
=

ua

vm
, a ∈ A, u ∈ Z, m, v ∈ N+.

There is a group injection A → AQ given by A �→ a
1 . Furthermore, any

automorphism σ of A extends naturally to an automorphism of AQ via the

action σ( a
m) =

σ(a)
m .

(The verifications are along the lines of those in the proof of Proposi-

tion 12.18 of Volume 1. Alternatively, once we have tensor products from

Chapter 18, we could view AQ as A⊗Z Q.)

Jordan decomposition.

The Jordan decomposition of Theorem 2.75 of Volume 1 has an easy but

useful application in nonzero characteristic:

Proposition 00.6. Over a field of characteristic p > 0, any n×n matrix T
has a power whose radical component is 0.
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Proof. Write the Jordan decomposition T = Ts + Tn, where the semisim-

ple component Ts and the nilpotent component Tn commute. Then, as

in Corollary 4.69 of Volume 1,

T pk
= (Ts + Tn)pk

= T pk

s + T pk

n

for each k, but T pk

n = 0 whenever pk > n, so we conclude for such k that

T pk
= T pk

s is semisimple. �

Galois theory.

We also need a fact from Galois theory, which was missed in Volume 1.

Proposition 00.7. Suppose F is a finite field extension of Q, and a ∈ F
is integral over Z. If |σ(a)| ≤ 1 for every embedding σ: F → C, then a is a
root of unity.

Proof. The minimal monic polynomial fa ∈ Z[λ] of a over Z has some

degree n; its coefficients are sums of products of conjugates of a, and so

by hypothesis have absolute value ≤ n. But there are at most (2n + 1)n

possibilities for such a polynomial; moreover, the hypothesis also holds for

each power of a, which must thus be a root of one of these polynomials. We

conclude that there are only finitely many distinct powers of a, which means

a is a root of unity. �

The trace bilinear form.

We need a result about the trace bilinear form on the matrix alge-

bra Mn(F ) over a field F , given by 〈x, y〉 = tr(xy). Clearly this form is

symmetric and also nondegenerate, for if x = (aij) with ai0j0 �= 0, then

tr(xej0i0) = ai0j0 �= 0. The discriminant of a base B = {b1, . . . , bn2} of

Mn(F ) is defined as the determinant of the n2×n2 matrix (tr(bibj)). In view

of Remark 4B.5 of Volume 1, the discriminant of any base B is nonzero (since

there exists an orthogonal base with respect to the trace bilinear form).

Lemma 00.8. Suppose {b1, . . . , bn} is a base of Mn(F ) over F . Then for
any α1, . . . , α

2
n ∈ F, the system of n2 equations {tr(bix) = αi : 1 ≤ i ≤ n2}

has at most one solution for x ∈ Mn(F ).

Proof. Write x =
∑n2

j=1 γjbj . Then αi =
∑n2

j=1 γj tr(bibj), 1 ≤ i ≤ n2, can

be viewed as n2 equations in the γj ; since the discriminant det(tr(bibj)) is

nonzero, one can solve these equations using Cramer’s rule.

To prove uniqueness, suppose there were two matrices x1 and x2 such

that tr(bix1) = tr(bix2), 1 ≤ i ≤ n2. Then tr(bi(x1−x2)) = 0 for each i, which

implies x1−x2 = 0 since the trace form is nondegenerate; thus, x1 = x2. �
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tive ideals, and each primitive ideal is maximal. Their intersection is the

Jacobson radical J , which is nilpotent, and R/J is a semisimple ring. Con-

sequently, any prime left Artinian ring is simple Artinian; any semiprime

left Artinian ring is semisimple Artinian. 50, 51

15.21 (Hopkins-Levitzki). Any left Artinian ring is also left Noetherian.

52

15.23. If R is left Artinian and N is a nil subset satisfying the condition

that for any a1, a2 in N there is ν = ν(a1, a2) ∈ Z with a1a2 + νa2a1 ∈ N ,

then N is nilpotent. 52

15.26 (Wedderburn’s Principal Theorem). If R is a f.d. algebra over an

algebraically closed field F , then R = S ⊕ J where S is a subalgebra of R
isomorphic to R/J . 54

15A.2 (Jacobson Density Theorem for simple modules). Suppose M is

a simple R-module, and D = EndR M. For any n∈N, any D-independent

elements a1, . . . , an ∈ M, and any elements b1, . . . , bn of M , there is r in R
such that rai = bi for 1 ≤ i ≤ n. 57

15A.4. If A is a subalgebra of Mn(F ) = EndF (n) for F an algebraically

closed field, and F (n) is simple as an A-module, then A = Mn(F ). 58

15A.5 (Amitsur). Jac(R[λ]) = 0 whenever R has no nonzero nil ideals.

58

15A.8 (Amitsur). If R is a division algebra over a field F such that

dimF R < |F |, then R is algebraic over F . 60

15B.4 (Kolchin). If S is a monoid of unipotent matrices of Mn(F ) with

F algebraically closed field F , then S can be simultaneously triangularized

via a suitable change of base. 61
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E15.3. A ring R is primitive iff R has a left ideal comaximal with all

prime ideals. 167

E15.6. Any prime ring having a faithful module of finite composition

length is primitive. 167

E15.7. For W = EndMD and f ∈ W , the left ideal Wf is minimal iff

f has rank 1. Also, the set of elements of W having finite rank is an ideal

of W , which is precisely soc(W ). 168

E15.21. For any semiprime ring, soc(R) is also the sum of the minimal

right ideals of R. 169

E15.24. Jac(R) is a quasi-invertible ideal that contains every quasi-

invertible left ideal of R. 169

E15.26. Jac(R) is the intersection of all maximal right ideals of R. 169

E15A.1. For any faithful simple R-module M that is infinite-dimensional

over D = EndR M, and each n, Mn(D) is isomorphic to a homomorphic

image of a subring of R. 170

E15A.3. If W is a finite normalizing extension of R, then any simple

W -module is a finite direct sum of simple R-modules. 170

E15A.4. Jac(R) ⊆ Jac(W ) for any finite normalizing extension W of R.

170

E15A.6. R∩Jac(W ) ⊆ Jac(R) whenever the ring R is a direct summand

of W as an R-module. 171

E15A.8. For any algebra W over a field, every element of Jac(W ) is

either nilpotent or transcendental. 171

E15A.9 (Amitsur). Jac(R) is nil whenever R is an algebra over an infinite

field F satisfying the condition dimF R < |F |. 171

E15B.9. Kolchin’s Problem has an affirmative answer for locally solvable

groups and for locally metabelian groups. 172

E15B.12. (Derakhshan). Kolchin’s Problem has an affirmative answer

in characteristic 2. 172

Chapter 16.

16.17. If L < R and Rs ∩ L = 0 with s ∈ R left regular, then the left

ideals L, Ls, Ls2, . . . are independent. 70
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16.23 (Goldie). A ring R has a semisimple left ring of fractions iff R
satisfies the following two properties: (i) Rs<eR for each regular element s.
(ii) Every large left ideal L of R contains a regular element. 72

16.24. Any ring R satisfying ACC(ideals) has only finitely many minimal

prime ideals, and some finite product of them is 0. 74

16.26 (Levitzki). Any semiprime ring satisfying ACC on left ideals of

the form {�(r) : r ∈ R} has no nonzero nil right ideals and no nonzero nil

left ideals. 75

16.29 (Goldie). Any semiprime left Noetherian ring has a semisimple left

ring of fractions. Any prime left Noetherian ring R has a simple Artinian

left ring of fractions. 75, 76

16.31. Generalization of Theorem 15.23 to left Noetherian rings. 77

16.35. Any left Noetherian ring R has IBN. 78

16.46 (Fitting’s Lemma). If M has finite composition length n, then

M = fn(M) ⊕ ker fn for any map f :M → M ; furthermore, f restricts to

an isomorphism on fn(M) and a nilpotent map on ker fn. 81

E16.4 (Levitzki). A ring R is semiprime iff N(R) = 0. 173

E16.6. The upper nilradical of R is the intersection of certain prime

ideals, and is a nil ideal that contains all the nil ideals of R. 173

E16.8. If R is weakly primitive, then R is a primitive ring. 174

E16.12. The construction of the ring S−1R, for any denominator set S
of R. 174

E16.15 (Goldie’s Second Theorem). A ring R has a semisimple left ring

of fractions iff R is a semiprime left Goldie ring. 175

E16.16 (Goldie’s First Theorem). The ring of fractions of any prime

Goldie ring is simple Artinian. 175

E16.17. ab = 1 implies ba = 1 in a left Noetherian ring. 175

E16.25 (Martindale). If R is a prime ring and a, b ∈ R with arb = bra
for all r ∈ R, then a = cb for some c in the extended centroid. 177

E16.29. (Wedderburn-Krull-Schmidt-Azumaya-Beck). For any finite di-

rect sum of LE-modules, every other decomposition as a direct sum of inde-

composables is the same, up to isomorphism and permutation of summands.

In particular, this is true for modules of finite composition length. 177
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E16.30. Suppose the ring R = Re1 ⊕ · · · ⊕ Ret = Re′1 ⊕ · · · ⊕ Re′t′ is

written in two ways as a direct sum of indecomposable left ideals. Then

t′ = t and there is some invertible element u ∈ R and permutation π such

that e′π(i) = ueiu
−1 for each 1 ≤ i ≤ t. 177

E16.33. A graded module M is gr-semisimple iff every graded submodule

has a graded complement. 178

E16.34 (Graded Wedderburn-Artin.). Any gr-left Artinian, gr-simple

ring has the form END(M)D, where M is f.g. over a gr-division ring D. 178

E16.36 (Graded First Goldie Theorem – Goodearl and Stafford). If R
is graded by an Abelian group G and is gr-prime and left gr-Goldie, then R
has a gr-simple left gr-Artinian graded ring of (left) fractions. 178

E16.40 (Bergman). Jac(R) is a graded ideal of any Z-graded ring R. 179

E16A.4. The quantized matrix algebra, quantum affine space, and the

quantum torus all are Noetherian domains. 180

Chapter 17.

17.12. Any domain R is either an Ore domain or contains a free algebra

on two generators. 92

17.16 (The Pingpong Lemma). Suppose a group G acts on a set S,

and A, B ≤ G. If S has disjoint subsets ΓA and ΓB satisfying aΓB ⊆ ΓA,
bΓA ⊆ ΓB, and bΓB ∩ ΓB �= ∅ for all a ∈ A \ {e} and b ∈ B \ {e}, then A
and B interact freely. 94

17.20. If 0 → M1
f1→ M2

f2→ · · · → Mk → 0 is an exact sequence of

f.g. modules over a left Artinian ring, then
∑k

j=1(−1)j�(Mj) = 0. 99

17.25 (König Graph Theorem). Any infinite connected, directed graph

has an infinite path. 102

17.38. The Hilbert series of a commutative affine algebra is rational.107

17.49. Any commutative affine algebra has integral Gel′fand-Kirillov

dimension, equal both to its Krull dimension and to its transcendence de-

gree. For any algebra with filtration whose associated graded algebra is

commutative affine, the Gel′fand-Kirillov dimension is an integer. 111

17.55 (Bergman Gap Theorem). The Gel′fand-Kirillov dimension cannot

be between 1 and 2. 112
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17.60. The growth rate of each nilpotent group is polynomially bounded.

115

17.61 (Milnor-Wolf). Any f.g. virtually solvable group of subexponential

growth is virtually nilpotent. 117

17.66. Every f.g. linear group of subexponential growth is of polynomial

growth. 120

17A.9 (Nielsen-Schreier). Every subgroup of a free group is free. 124

17B.5 (The Diamond Lemma). A reduction procedure is reduction-

unique on A iff for each r ∈ A and any reductions ρ, τ , the elements ρ(r)
and τ(r) have chains of reductions arriving at the same element. 128

17B.7. The word problem is solvable in any group satisfying Dehn’s

algorithm. 130

17B.13 (Bergman). Any set of relations can be expanded to a set of

relations for which any given word h becomes reduction-unique. 133

17C.2. The generalized BP has a positive answer for solvable groups.134

E17.8. The free group on a countably infinite set can be embedded into

the free group G on two letters. 181

E17.9. The free group G can be embedded into GL(2, F ). 181

E17.13. D[[M ]] is a division ring, for any ordered group M and any

division ring D. 181

E17.22. γt/γt+1 is a free f.g. Abelian group, for every t. 182

E17.23 (Magnus-Witt). The free group G is an ordered group. 182

E17.24. F [[G]] is a division ring containing the free algebra F{X}. 182

E17.31 (Generalized Artin-Tate Lemma). If is an affine algebra is f.g. over

a commutative (not necessarily central) subalgebra C, then C is affine. 183

E17.32. Any affine algebra that is f.g. over a commutative subalgebra

has a rational Hilbert series with respect to a suitable generating set. 183

E17.37. GK(R/I) ≤ GK(R) − 1 for any I � R containing a regular

element of R. 183

E17.44. Under the hypotheses of Theorem 17.60, the nilpotent group N
has polynomial growth of degree

∑
j jdj . 184
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E17A.1. The symmetric group Sn has the Coxeter presentation σ2
i = 1,

(σiσi+1)
3 = 1, and (σiσj)

2 = 1 for |j − i| > 1. 184

E17A.7. Any subgroup of index m in a free group of rank n is free of

rank mn−m + 1. 185

E17A.9. Any group G is the fundamental group of a complex K of di-

mension 2. G is finitely presented iff K can be taken finite. 186

E17B.1. Any set of relations can be expanded to a Gröbner-Shirshov

basis. 187

E17C.1. The Burnside group B(m, 3) is finite for all m. 187

E17C.3. The Burnside group B(m, 4) is finite for all m. 188

E17C.7, E17C.8. Grigorchuk’s group is infinite but torsion; every ele-

ment has order a power of 2. 189

Chapter 18.

18.4. Any balanced map ψ:M ×N → G yields a group homomorphism

ψ:M⊗N → G given by ψ(a⊗ b) = ψ(a, b). 140

18.5. For any map f :M → M ′ of right R-modules and map g:N → N ′

of R-modules, there is a group homomorphism f⊗g:M⊗R N → M ′⊗N ′

given by (f⊗g)(a⊗b) = f(a)⊗g(b). 140

18.11. (M1⊕. . .⊕Mt)⊗N ∼= (M1⊗N)⊕ · · · ⊕ (Mt⊗N). 142

18.12. Suppose M is a free right R-module with base B = {bi : i ∈ I},
and N is an R-module. Then every element of M ⊗ N can be written

uniquely in the form
∑

i∈I bi⊗vi for vi in N . 143

18.13. C(m)⊗C C(n) ∼= C(mn). 144

18.15. M1 ⊗R2 (M2⊗R3 M3) ∼= (M1⊗R2 M2)⊗R3 M3. 144

18.16. τ :A⊗C B ∼= B ⊗C A. 145

18.21. If A and B are C-algebras, then A⊗C B is also a C-algebra with

multiplication (a⊗b)(a′⊗b′) = aa′ ⊗ bb′ and c(a⊗b) = ca⊗ b. 147

18.25. The following algebra isomorphisms hold for any C-algebras:

A⊗C C ∼= C⊗C A ∼= A; A1⊗A2
∼= A2⊗A1; A1⊗(A2⊗A3) ∼= (A1⊗A2)⊗A3.

149

18.29′. A finite field extension K ⊇ F is separable iff the ring K⊗F K is

semisimple. 151
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18.31. Any splitting field K of an F -algebra R contains some subfield

K0 f.g. over F such that K0 also splits R. 152

18.33. If R is simple with center a field F , and W is an F -algebra, then

any nonzero ideal I of the tensor product R ⊗F W contains 1⊗w for some

w ∈ W. In particular, if W is simple, then R⊗F W is also simple. 152

18.36. Mm(C)⊗Mn(C) ∼= Mmn(C). 153

18.41. The tensor product of two integral domains over an algebraically

closed field F is an integral domain. 157

18.42. If X and Y are affine varieties over an algebraically closed field

F , then X × Y is an affine variety, with F [X]⊗ F [Y ] ∼= F [X × Y ]. 157

18.44. Φ : HomR(A⊗S B, C) ∼= HomS(B,HomR(A, C)). 158

E18.2. (
⊕

i∈I Mi)⊗N ∼=⊕i∈I(Mi⊗N). 189

E18.7. If K → N → P → 0 is an exact sequence of right R-modules,

then K⊗M → N⊗M → P⊗M → 0 is also exact. 190

E18.12. C(V,Q) has an involution (*) satisfying v∗ = v, ∀v ∈ V. 191

E18.16. For any separable field extension K of F , K⊗F K has a simple

idempotent e with (a⊗b) e = (b⊗a) e for all a, b ∈ K. 191

E18.18 (Wedderburn’s Principal Theorem). Any finite-dimensional al-

gebra R over a perfect field F has a Wedderburn decomposition R = S ⊕ J
for a suitable semisimple subalgebra S ∼= R/J of R. 191

E18.19. The tensor product of two reduced algebras over an algebraically

closed field is reduced. 191

E18.23 (Amitsur). If R is an algebra without nonzero nil ideals over a

field F , then Jac(R⊗F F (λ)) = 0. 192

E18.24. K⊗F Jac(R) ⊆ Jac(K⊗F R) whenever K ⊇ F are fields and R
is an algebra over F , equality holding if K/F is separable. 192

Chapter 19.

19.18. For any vector space V over a field F , there is a 1:1 correspon-

dence among: group representations ρ:G → GL(V ), algebra representa-

tions F [G] → EndF V, G-space structures on V , and F [G]-module structures

on V . 206
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19.22. A group representation ρ of degree n is reducible iff there is a

representation τ equivalent to ρ for which each matrix τ(g), g ∈ G, has the

form (19.4) (for suitable 1 ≤ m < n). 208

19.26 (Maschke’s Theorem). F [G] is a semisimple ring, for any finite

group G whose order is not divisible by char(F ). 210

19.33. Any finite group G has a splitting field that is finite over Q. 212

19.36. For any splitting field F of the group G, a representation ρ of

degree n is irreducible iff {ρ(g) : g ∈ G} spans Mn(F ). 213

19.38. The following are equivalent, for F a splitting field of a finite

group G: (i) G is Abelian; (ii) The group algebra F [G] is commutative; (iii)

F [G] ∼= F × F × · · · × F ; (iv) Every irreducible representation of G has

degree 1. 213

19.42. Cent(C[G]) is free as a C-module. 215

19.43. The following numbers are equal, for F a splitting field of a

finite group G: (i) the number of conjugacy classes of G; (ii) the number

of inequivalent irreducible representations of G; (iii) the number of simple

components of F [G]; (iv) dimF Cent(F [G]). 216

19.48. Any complex irreducible representation of G of degree ni either

is extended from a real irreducible representation or corresponds to a real

irreducible representation of degree 2ni. 218

19.61. If char(F ) = 0 or char(F ) > n, then Iλ =
⊕

Tλ standard F [Sn]eTλ
.

223

19.64 (Frame, Robinson, and Thrall). fλ = n!Q
hi,j

. 226

19A.4. If {(a, b) : a ∈ A, b ∈ B} is finite for A, B � G, then the group

(A, B) is finite. 229

19A.9 (Burnside, Schur). In characteristic 0, every linear group of finite

exponent is finite, and any f.g. periodic linear group is finite. 231

19A.12. Every open subgroup of a quasicompact group is closed of finite

index. 234

19A.16. Every continuous f.d. representation of a compact (Hausdorff)

group is a finite direct sum of continuous irreducible representations. 235

19A.19. Any Lie homomorphism φ:G→ H of Lie groups (G connected)

is uniquely determined by its tangent map deφ. 236
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19B.4. In any algebraic group G, each open subgroup of G is closed of

finite index, each closed subgroup H of G of finite index is open, and Ge is

clopen of finite index in G. 239

19B.11. If H ≤ G, then H ≤ G; furthermore, if H contains a nonempty

open subset U of H, then H is closed. 240

19B.19. Every affine algebraic group is linear. 243

19B.21 (The Tits alternative). Every f.g. linear group either is virtually

solvable or contains a free subgroup. 244

19B.24 (Breuillard-Gelanter). Any f.g. linear group contains either a free

subgroup that is Zariski dense (in the relative topology), or a Zariski open

solvable subgroup. 248

E19.6 (Schur’s Lemma, representation-theoretic formulation). For F a

splitting field for G, EndF [G](Li) ∼= F and HomF [G](Li, Lj) = 0 for all i �= j,
where Li denotes the module corresponding to ρi. 355

E19.13. A representation ρ of finite degree ρ is completely reducible

whenever its G-space has a G-invariant Hermitian form. 356

E19.31. C[G] is semiprime, for any group G and any integral domain C
of characteristic 0. 358

E19.34 (Herstein; Amitsur). Jac(F [G]) = 0 for any uncountable field F
of characteristic 0. 358

E19.42 (Schur’s Double Centralizer Theorem.) Suppose V is any f.d.vec-

tor space over a field of characteristic 0. The diagonal action of GL(V )

and the permutation action of Sn on V ⊗n = V ⊗ · · · ⊗ V centralize each

other, and provide algebra homomorphisms ρ̂:F [GL(V )] → EndF V ⊗n and

τ̂ :F [Sn] → EndF V ⊗n. Their respective images are the centralizers of each

other in EndF V ⊗n. 359

E19A.6 (Burnside). Any f.g. periodic linear group is finite. 361

E19A.8 (Schur). Each periodic subgroup of GL(n, C) consists of unitary

matrices with respect to some positive definite Hermitian form. 361

E19A.11 (Jordan). Any unitary subgroup G ⊆ GL(n, C) has a normal

Abelian subgroup of index bounded by (
√

8n + 1)2n2 − (
√

8n− 1)2n2
. 362

E19A.16. For any continuous complex representation of degree n of a

compact topological group G, the vector space C(n) has a positive definite

G-invariant Hermitian form. 362
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E19A.18. Any continuous f.d. representation of G having a positive

definite G-invariant Hermitian form is completely reducible 363

E19A.30 (Artin’s combing procedure). The kernel of the map Pn → Pn−1

obtained by cutting the n-th strand is the free group of rank n−1. 364

E19A.34. The braid group Bn satisfies B′
n = (B′

n, Bn). 364

E19B.7. The Tits alternative also over fields of any characteristic. 366

E19B.14. The commutator group of two closed subgroups of an algebraic

group G is closed. In particular, all the derived subgroups of G are closed,

and all subgroups in its upper central series are closed. 367

E19B.16. For F algebraically closed, any connected solvable algebraic

subgroup G of GL(n, F ) is conjugate to a subgroup of T(n, F ). 367

Chapter 20.

20.5. The characters χ1, . . . , χt comprise an orthonormal base of R with

respect to the Schur inner product. 251

20.10.
∑

g∈G χi(ga)χj(g) =
δij |G|χi(a)

ni
for each a ∈ G. 252

20.14 (Schur I). δik|G| =
∑t

j=1 mjχijχkj . 256

20.15 (Schur II).
∑t

i=1 χijχik = δjk
|G|
mk

. 256

20.18 (Frobenius). ni divides |G| for each i. 258

20.20. If gcd(ni, mj) = 1, then either χij = 0 or |χij | = ni. 259

20.22. In a finite nonabelian simple group, the size of a conjugacy class

cannot be a power (other than 1) of a prime number. 259

20.24 (Burnside). Every group of order puqv (p, q prime) is solvable.260

20.32. The character table of G×H is the tensor product of the character

tables of G and of H. 262

20.42 (Frobenius Reciprocity Theorem). For F ⊆ C a splitting field of

a finite group G, if σ is an irreducible representation of a subgroup H and

ρ is an irreducible representation of G, then the multiplicity of ρ in σG is

the same as the multiplicity of σ in ρH . 267

20.43. For H < K < G and a representation ρ of H, the representations

(ρK)G and ρG are equivalent, (ρ1 ⊕ ρ2)
G and ρG

1 ⊕ ρG
2 , are equivalent, and

ρG ⊗ σ and (ρ⊗ σH)G are equivalent for any representation σ of G. 268
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20.44 (Artin). Every complex character of a group is a linear combina-

tion (over Q) of complex characters induced from cyclic subgroups. 269

E20.20. ni divides [G :Zi] for each i. 370

E20.22. The degree of each irreducible character of G divides [G :A] for

any Abelian normal subgroup A. 370

E20.27. For any representation ρ of finite degree of a subgroup H ⊆ G,

the contragredient (ρG)∗ of the induced representation is equivalent to the

induced representation (ρ∗)G. 371

Chapter 21.

21.21. For F algebraically closed, if L is a Lie subalgebra of ⊆ gl(n, F )

and a = s + n is the Jordan decomposition of a ∈ L, then ada = ads +adn

is the Jordan decomposition of ada. 281

21.27. If L is a Lie subalgebra of R− and ada is nilpotent for every a ∈ L,

then ad L is nilpotent under the multiplication of R, and L is a nilpotent

Lie algebra. 283

21.29 (Engel). Any Lie algebra L ⊆ gl(n, F ) of nilpotent transformations

becomes a Lie subalgebra of the algebra of strictly upper triangular matrices

under a suitable choice of base. 284

21.32 (Lie). If a Lie subalgebra L of gl(n, F ) acts solvably on F (n), with

F an algebraically closed field, then L acts in simultaneous upper triangular

form with respect to a suitable base of F (n). 285

21.38. If L ⊆ gl(n, F ) in characteristic 0 such that tr(aL′) = 0 for all

a ∈ L, then L′ is a nilpotent Lie algebra. 287

21.41 (Cartan’s first criterion). A f.d. Lie algebra L of characteristic 0

is solvable iff its Killing form vanishes identically on L′. 288

21.47 (Cartan’s second criterion). A f.d. Lie algebra L of characteristic 0

is semisimple iff its Killing form is nondegenerate. 289

21.51. Any f.d. semisimple Lie algebra L of characteristic 0 is a direct

sum
⊕

Si of simple nonabelian Lie subalgebras Si, with each Si � L, and

any Lie ideal of L is a direct sum of some of the Si. 290

21.53. The trace bilinear form of any representation ρ of a f.d. semisimple

Lie algebra is nondegenerate. 290

21.54 (Zassenhaus). Every derivation of a f.d. semisimple Lie algebra L
of characteristic 0 is inner. 291
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21.57. The Casimir element satisfies tr(cρ) = n and [ρ(L), cρ] = 0. 292

21.58 (Weyl). Any f.d. representation of a f.d. semisimple Lie algebra L
(of characteristic 0) is completely reducible. 292

21.61. For any given nilpotent Lie subalgebra N of a f.d. Lie algebra L,

there exists a unique root space decomposition L =
⊕

a La. 295

21.64. Lb ⊥ La for any roots a �= −b. 296

21.71, 21.72. Any f.d. semisimple Lie algebra over an algebraically closed

field of characteristic 0 has a Cartan subalgebra h, which is its own nullspace

under the corresponding root space decomposition. The restriction of the

Killing form to h is nondegenerate. h is Abelian, and adh is semisimple for

all h ∈ h. 298

21.79. For any root a, dimLa = dimL−a = 1, and ka is not a root

whenever 1 < |k| ∈ N. 301

21.80. 〈h1, h2〉 =
∑

a	=0 a(h1)a(h2), ∀h1, h2 ∈ h. 301

21.84. Any simple L̂a-module V has an eigenspace decomposition V =

Vm⊕Vm−2⊕ · · ·⊕V−(m−2)⊕V−m, where each component Vm−2j = Fvj is a

one-dimensional eigenspace of ha with eigenvalue m − 2j. In particular, V
is determined up to isomorphism by its dimension m + 1. 303

21.88. [LaLb] = Lb+a whenever a,b, and b + a are roots. 305

21.91. 〈a,a〉 > 0 and 〈a,b〉 ∈ Q for all nonzero roots a,b. The bilinear

form given by Equation (21.18) restricts to a positive form on h∗0, the Q-

subspace of h∗ spanned by the roots, and h∗ = h∗0 ⊗Q F . 306

21.96. 〈a,b〉 ≤ 0 for all a �= b ∈ P . 308

21.97. The set of simple roots is a base of the vector space V and is

uniquely determined by the given order on V . 308

21.102. The Cartan numbers mij satisfy mijmji < 4. 310

21.103. The Cartan numbers are integers. 311

21.108. Suppose S = {a1, . . . ,an} is a simple root system for the

semisimple Lie algebra L. Take ei ∈ Lai , e′i ∈ L−ai , and hi = [eifi].
Writing any positive root a = ai1 + · · · + ai� , let xa = [ei1ei2 · · · ei� ] and

ya = [fi1fi2 · · · fi� ]. Then {h1, . . . , hn} together with the xa and ya comprise

a base of L. 313
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21.110. The Lie multiplication table of L (with respect to the base in

Theorem 21.108) has rational coefficients. 314

21.111. The split f.d. semisimple Lie algebra L is simple iff its simple

root system is indecomposable. 315

21.115, 21.116. Any indecomposable generalized Cartan matrix A is

of finite, affine, or indefinite type. The symmetric bilinear defined by A is

positive definite iff A has finite type, and is positive semidefinite (of corank 1)

iff A has affine type. 317

21B.18, 21B.19. Suppose the composition algebra (A, ∗) is the ν-double

of (A, ∗). If A is associative, then A is alternative. If A is associative, then

A must be commutative. 326

21B.22. (Herstein). If R is a simple associative algebra, with 1
2 ∈ R,

then R+ is simple as a Jordan algebra. 328

21C.5. (PBW Theorem). The map νL:L → U(L)− is 1:1. 333

E21.10. In characteristic �= 2, the classical Lie algebra Bn is simple for

each n ≥ 1, and Cn and Dn are simple Lie algebras for all n > 2. 372

E21.27 (Herstein). For any associative simple ring R of characteristic

�= 2, the only proper Lie ideals of R′ are central. 373

E21.28 (Herstein). If T is an additive subgroup of a simple ring R of

characteristic �= 2 such that [T,R′] ⊆ T , then either T ⊇ R′ or T ⊆ Z. 374

E21.41. The radical of a Lie algebra is contained in the radical of the

trace bilinear form with respect to any representation. 375

E21.42. The Casimir element of an irreducible Lie representation is al-

ways invertible. 375

E21.44 (Whitehead’s First Lemma). For any f.d. Lie module V and

linear map f :L → V satisfying f([ab]) = af(b) − bf(a), ∀a, b ∈ L, there is

v ∈ V such that f(a) = av, ∀a ∈ L. 376

E21.47 (Whitehead’s Second Lemma). For any f.d. semisimple Lie alge-

bra L of characteristic 0 and f.d. Lie module V with f :L×L → V satisfying

f(a, a) = 0 and
∑3

i=1 f(ai, [ai+1, ai+2])+aif(ai+1, ai+2) = 0, subscripts mod-

ulo 3, there is a map g:L→ V with f(a1, a2) = a1g(a2)−a2g(a1)−g([a1a2]).
376

E21.48 (Levi’s Theorem). Any f.d. Lie algebra L of characteristic 0 can

be decomposed as vector spaces L = S ⊕ I, where I = radL and S ∼= L/I
is a semisimple Lie subalgebra. 377
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E21.50. L′ ∩ rad(L) is Lie nilpotent, for any f.d. Lie algebra L of char-

acteristic 0. 377

E21.60. 〈a,a〉 =
∑

b〈a,b〉2 for any root a. 378

E21.63. The formulas [ej1ej2 · · · ej�
hi] = −∑�

u=1 miju [ej1ej2 · · · ej�
] and

[fj1fj2 · · · fj�
hi] =

∑�
u=1 miju [fj1fj2 · · · fj�

] hold in Theorem 21.108. 378

E21.67. Every root system of a simple Lie algebra L has a unique max-

imal root. 379

E21.70. The Weyl group acts transitively on simple root systems. 379

E21.71–E21.73. Construction of the Kac-Moody Lie algebra and its root

space decomposition. 379, 380

E21.75. Equivalent conditions for an indecomposable, symmetric gener-

alized Cartan matrix to have finite type. 380

E21.77, E21.78. Construction of the Witt and Virasoro algebras. 380

E21.79 (Farkas). For ai = (αi1, . . . , αi�), 1 ≤ i ≤ k. the system∑
j αijλj > 0 of linear inequalities for 1 ≤ i ≤ k has a simultaneous so-

lution over R iff every non-negative, nontrivial, linear combination of the ai

is nonzero. 381

E21.80 (The Fundamental Theorem of Game Theory). If there does not

exist x > 0 in R(�) with Ax < 0, then there exists w ≥ 0 (written as a row)

in R(k) with wA ≥ 0. 381

E21.81. The generalized Cartan matrix At has the same type as A. 381

E21.90, E21.91 (Farkas-Letzter). For any prime ring R with a Poisson

bracket, there exists c in the extended centroid of R such that [a, b] = c{a, b}
for every a, b ∈ R. 383

E21A.3. The Lie product in T (G)e corresponds to the natural Lie prod-

uct of derivations in Lie(G). 383

E21A.4. dϕ:T (G)e → T (H)e preserves the Lie product. 383

E21A.6. Description of the classical simple Lie algebras as the Lie alge-

bras of the algebraic groups SL, O, and Sp. 384

E21B.3. The base field K ⊃ F of any algebra can be cut down to a field

extension of finite transcendence degree over F . 385
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E21B.9 (Moufang). Every alternative algebra satisfies the three identi-

ties a
(
b(ac)

)
= (aba)c, c

(
a(ba)

)
= c(aba), and (ab)(ca) = a(bc)a. 386

E21B.11 (E. Artin). Any alternative algebra generated by two elements

is associative. 386

E21B.19. Any composition F -algebra must be either F itself, the direct

product of two copies of F (with the exchange involution), a quadratic field

extension of F , a generalized quaternion algebra, or a generalized octonion

algebra. 387

E21B.20 (Hurwitz). If C satisfies an identity
∑n

i=1 x2
i

∑n
i=1 y2

i =
∑n

i=1 z2
i ,

where zi are forms of degree 2 in the xi and yj , then n = 1, 2, 4, or 8. 387

E21B.22 (Zorn). Every f.d. simple nonassociative, alternative algebra is

a generalized octonion algebra. 388

E21B.26. The Peirce decomposition of an alternative algebra in terms

of pairwise orthogonal idempotents. 388

E21B.29. Any simple alternative algebra A containing three pairwise

orthogonal idempotents e1, e2, and e3 is associative. 388

E21B.37 (Glennie). Any special Jordan algebra satisfies the Glennie

identity. 389

E21B.39. (Herstein). S(R, ∗) is Jordan simple for any simple associative

algebra with involution of characteristic �= 2. 390

E21C.4. U(L) is an Ore domain, for any Lie algebra L of subexponential

growth. 391

E21C.13 (Ado). Any f.d. Lie algebra of characteristic 0 is linear. 392

E21C.17. Uq(sl(2, F )) is a skew polynomial ring. 393

E21C.21. Uq(L) is a Noetherian domain, for any f.d. semisimple Lie

algebra L of characteristic 0. 394

Chapter 22.

22.11. Any connected Dynkin diagram is either An, Bn = Cn, Dn, E6,
E7, E8, F4, or G2 of Example 22.2. 342

22.13. If any single vertex of the extended Dynkin diagram of a simple

affine Lie algebra is erased, the remaining subdiagram is a disjoint union of

Dynkin diagrams (of finite type). 345
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22.22. For i �= j, the Coxeter bilinear form restricts to a positive semi-

definite form on the two-dimensional subspace Fei + Fej , which is positive

definite iff ◦(σiσj) < ∞. 348

22.25. The only abstract Coxeter graphs whose quadratic forms are

positive definite are An, Dn, E6, E7, and E8. 350

22.28. (Bernstein, Gel′fand, and Ponomarev). If an abstract Coxeter

graph (Γ; ν) has only finitely many nonisomorphic indecomposable repre-

sentations, then its quadratic form is positive definite. 352

E22.1–E22.4. Construction of the classical Lie algebras from their Dynkin

diagrams. 394

E22.10. For any generalized Cartan matrix A of affine type, any proper

subdiagram of its Dynkin diagram is the disjoint union of Dynkin diagrams

of simple f.d. Lie algebras. 396

E22.19. Any finite reflection group is Coxeter. 397

E22.20. Any two positive systems Φ1 and Φ2 are conjugate under some

element of the Weyl group. 398

E22.23. Each mi,j ∈ {2, 3, 4, 6} for any crystallographic group. 398

E22.26. The bilinear form of any finite Coxeter group W is positive

definite. 398

E22.36. Every finite Coxeter group is a reflection group. 400

Chapter 23.

23.11. Any t-alternating polynomial f is an identity for every algebra

spanned by fewer than t elements over its center. 410

23.26 (Razmyslov). There is a 1:1 correspondence between multilinear

central polynomials of Mn(F ) and multilinear 1-weak identities that are not

identities. 415

23.31 (Kaplansky). Any primitive ring R satisfying a PI of degree d is

simple of dimension n2 over its center, for some n ≤ [d
2

]
. 418

23.32. A semiprime PI-ring R has no nonzero left or right nil ideals.418

23.33. Any semiprime PI-ring R has some PI-class n, and every ideal A
intersects the center nontrivially. 419

23.34 (Posner et al). The ring of central fractions of a prime PI-ring R
is simple and f.d. over the field of fractions of Cent(R). 419
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23.35. Extension of Theorem 15.23 to PI-rings. 419

23.39. Suppose R has PI-class n and center C, and 1 ∈ hn(R). Then

R is a free C-module of rank n; also, there is a natural 1:1 correspondence

between {ideals of R} and {ideals of C}. 421

23.48. If R is an algebra over an infinite field F , and H is any commu-

tative F -algebra, then R is PI-equivalent to R⊗F H. 425

23.51. The algebra of generic matrices is the relatively free PI-algebra

with respect to I = Mn,C . 426

23.57. Suppose R satisfies a PI of degree d, and 1
u + 1

v ≤ 2
e(d−1)4

, where

e = 2.71828 · · · . Then any multilinear polynomial of a Young tableau whose

shape contains a u× v rectangle is an identity of R. 429

23A.3 (Shirshov’s Dichotomy Lemma). For any �, d, k, there is β ∈ N
such that any word w of length ≥ β in � letters is either d-decomposable or

contains a repeating subword of the form uk with 1 ≤ |u| ≤ d. 431

23A.5. Any hyperword h is either d-decomposable or has the form vu∞

for some initial subword v and some subword u with |u| < d. 431

23A.6 (Shirshov’s First Theorem). If R = C{r1, . . . , r�} satisfies a PI,

and each word in the ri of length ≤ d is integral over C, then R is f.g. as

a C-module. 432

23A.7. If R is affine without 1 and satisfies a PI of degree d, and if each

word in the generators of length ≤ d is nilpotent, then R is nilpotent. 432

23A.10. Any prime PI-algebra and its characteristic closure have a com-

mon nonzero ideal. 433

23A.11 (Kemer). Any affine PI-algebra over a field F of characteristic 0

is PI-equivalent to a finite-dimensional algebra. 434

23A.19. For any PI algebra R, the following assertions are equivalent for

any multilinear polynomial f of degree n: f ∈ id(R); fI
∗ ∈ id2(R ⊗ G) for

some subset I ⊆ {1, . . . , n}; fI
∗ ∈ id2(R⊗G) for every subset of {1, . . . , n}.

436

23A.22 (Kemer). Let R be a PI-superalgebra, and f = f(x1, . . . , xn) =∑
π∈Sn

απxπ1 · · ·xπn. Then f ∈ id(G(R)) iff fI
∗ ∈ id2(R) for every subset

I ⊆ {1, . . . , n}. 437

23A.23 (Kemer). There is a 1:1 correspondence from {varieties of super-

algebras} to {varieties of algebras} given by R �→ G(R). 437
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23B.5 (Kostrikin-Zelmanov). Over a field of characteristic p, any f.g. Lie

algebra satisfying the Engel identity ep−1 is Lie nilpotent. 442

23B.6 (Zelmanov). If a f.g. restricted Lie algebra L over a field of char-

acteristic p satisfies the Engel identity en and all of its partial linearizations,

then L is Lie nilpotent. 442

23B.13. The Lie algebra L of a nilpotent group G is indeed a Lie algebra

and is N-graded in the sense that [LiLj ] ⊆ Li+j . L is Lie nilpotent of the

same index t as the nilpotence class of the group G. 444

23B.16 (Kostrikin and Zelmanov). Any sandwich algebra is Lie nilpo-

tent. 446

E23.4. Any algebra that is f.g. as a module over a commutative affine

subalgebra is representable. 563

E23.6. The Jacobson radical of a representable affine algebra is nilpo-

tent. 564

E23.16. Every identity of an algebra over a field of characteristic 0 is a

consequence of its multilinearizations. 565

E23.17. Over an infinite field, every identity is a sum of completely

homogeneous identities. 565

E23.22 (Amitsur-Levitzki. The standard polynomial s2n is an identity

of Mn(C) for any commutative ring C. 566

E23.24. Every PI-algebra has IBN. 566

E23.26 (Bell). Every prime affine PI-algebra has a rational Hilbert series.

566

E23.30 (Amitsur). Any PI-algebra R satisfies an identity sk
d. 566

E23.32. If algebras R1 and R2 are PI-equivalent, then so are Mn(R1)

and Mn(R2). 567

E23.36 (Regev). In characteristic 0, the T -ideal id(G) is generated by

the Grassmann identity. 567

E23.40 (Regev). Mn(G(p)) satisfies the identity sn2p+1
2n . 568

E23.42 (Kemer). In any F -algebra, a suitable finite product of T -prime

T -ideals is 0. Any T -ideal has only finitely many T -prime T -ideals minimal

over it. 568
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E23B.1. Any simple alternative, nonassociative algebra satisfies the cen-

tral polynomial [x, y]2. 569

E23B.4. Any Lie algebra of characteristic 3 satisfying the Engel ad-

identity e2 = X2 is Lie nilpotent of class ≤ 3. 570

E23B.6. For any nilpotent p-group G of exponent n=pk, the Lie algebra

Lγ̂(G) satisfies the multilinearized n-Engel identity ẽn and some weak Engel

condition eS,2n. 570

E23B.14 (Key step in proving Theorem 23B.16). An enveloping algebra

R of a Lie algebra L is nilpotent whenever R is generated by a finite set of

1-thick sandwiches. 571

E23B.17 (Zelmanov). If a f.g. restricted Lie algebra L satisfies various

Engel-type conditions, then its associative enveloping algebra R (without 1)

is nilpotent. 572

Chapter 24.

24.10. If R1 and R2 are csa’s, then R1⊗F R2 is also a csa. 452

24.14. If R is a csa, then Φ:R⊗F Rop → EndF R is an isomorphism. 453

24.15. The Brauer group Br(F ) is a group, where [R]−1 = [R]op. 453

24.23, 24.24. EndK R ∼= CR(K)⊗FRop as K-algebras, for any F -subfield

K of R. CR(K) is a K-csa and [CR(K) :F ] = [R :K]. 455, 456

24.25. R⊗F K ∼ CR(K) in Br(K). 456

24.32 (Double Centralizer Theorem). CR(K) ∼= A ⊗K CR(A) and

[A : F ][CR(A) : F ] = n2, for any simple F -subalgebra A of a csa R, where

K = Cent(A), 458

24.34 (Index Reduction Theorem). The index reduction factor divides

the g.c.d. of ind(R) and m = [L :F ]. 459

24.40 (Skolem-Noether Theorem). Suppose A1 and A2 are isomorphic

simple subalgebras of a csa R. Any F -algebra isomorphism ϕ:A1 → A2 is

given by conjugation by some u ∈ R×. 460

24.42 (Wedderburn). Every finite division ring is a field. 461

24.44. A csa R of degree n over an infinite field F is split iff R contains

an element of degree n whose minimal polynomial has a linear factor. 462

24.48′. (K, σ, β1)⊗ (K,σ, β2) ∼ (K,σ, β1β2). 464
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24.50. Any F -csa R is PI-equivalent to Mn(F ) for n = deg R. 465

24.51 (Koethe-Noether-Jacobson). Any separable subfield L of a cda D
is contained in a separable maximal subfield of D. 465

24.52. Every csa is similar to a crossed product. 466

24.54. UD(n, F ) is a division algebra of degree n (over its center) for

every n and every field F of characteristic prime to n. 467

24.57. If D is a cda of degree puq with p prime, p � q, then there is a

field extension L of F with p � [L : F ], as well as a splitting field Lu ⊇ L
of D together with a sequence of subfields L0 = L ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lu for

which ind(D ⊗F Li) = pu−i for each 0 ≤ i ≤ u, and each Li/Li−1 is cyclic

Galois of dimension p. 468

24.62. exp(R) divides ind(R). If a prime number p divides ind(R), then

p divides exp(R). 469

24.66. Any cda D is isomorphic to the tensor product of cda’s of prime

power index. 470

24.68 (Wedderburn). Suppose D is a cda. If a ∈ D is a root of a monic

irreducible polynomial f ∈ F [λ] of degree n, then f = (λ − an) · · · (λ − a1)

in D[λ], where each ai is a conjugate of a. 472

24.73, 24.74. For any Galois extension E of F , corE/F induces a homo-

morphism of Brauer groups, and corE/F resE/F R ∼= R⊗[E:F ]. 475

24.82 (Cohn-Wadsworth). A cda D has a valuation extending a given

valuation v on F , iff v extends uniquely to a valuation of each maximal

subfield of D. 480

24.85 (Hasse). Any cda D of degree n over a local field is a cyclic algebra,

having a maximal subfield K isomorphic to the unramified extension of F
of dimension n. 481

E24.1 (Frobenius). The only R-cda other than R is H. 572

E24.8 (Wedderburn’s criterion). A cyclic algebra (K,σ, β) of degree n
has exponent n, if βj is not a norm from K for all 1 ≤ j < n. 573

E24.25. (K, G, (cσ,τ ))⊗ (K,G, (dσ,τ )) ∼ (K,G, (cσ,τdσ,τ )). 575

E24.31. Any p-algebra is split by a purely inseparable, finite-dimensional

field extension. 575
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E24.32. If UD(n, F ) is a crossed product with respect to a group G,

then every F -csa of degree n is a crossed product with respect to G. 576

E24.38. Division algebras of all degrees exist in any characteristic. 577

E24.42. When deg D = 3, any element of reduced norm 1 is a multi-

plicative commutator. 577

E24.43. When deg D = 3 and char(F ) �= 3, any element of reduced

trace 0 is an additive commutator. 577

E24.48 (The Projection Formula). corL/F (a, b; L) ∼ (a, NL/F (b)) when

a ∈ F . 578

E24.49 (Rosset). Any cda D of degree p is similar to the corestriction of

a symbol algebra. 578

E24.51. Br(F ) is divisible whenever F has enough m-roots of 1. 578

E24.54. e(D/F )f(D/F ) ≤ [D :F ], equality holding when the valuation

is discrete and the field F is complete. 579

E24.58. D = (K,σ, πn) in Theorem 24.85. 579

E24A.7. (Plücker). The Brauer-Severi variety is a projective variety.

580

E24A.8. A geometric criterion for an n-dimensional subspace of a csa of

degree n to be a left ideal. 580

Chapter 25.

25.10. Equivalent conditions for an R-module to be projective. 494

25.11. A direct sum ⊕Pi of modules is projective iff each of the Pi is

projective. 494

25.12′. A ring R is semisimple iff every short exact sequence of R-

modules splits, iff every R-module is projective. 495

25.13 (Dual Basis Lemma). An R-module P =
∑

Rai is projective iff

there are R-module maps hi:P → R satisfying a =
∑

i∈I hi(a)ai, ∀a ∈ P,
where, for each a, hi(a) = 0 for almost all i. 495

25.24. If P and Q are modules over a commutative ring C such that

P ⊗Q ∼= C(n), then P is projective. 501
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25.38 (The Snake Lemma). Any commutative diagram

A′′
1

f1−−−→ A1
g1−−−→ A′

1 −−−→ 0

d′′
⏐⏐� d

⏐⏐� ⏐⏐�d′

0 −−−→ A′′
2

f2−−−→ A2
g2−−−→ A′

2

gives rise to an exact sequence ker d′′ → ker d → ker d′ → coker d′′ →
coker d → coker d′. 506

25.44. For any exact sequence 0 →M ′ → M → M ′′ → 0 of modules and

respective projective resolutions (P′, d′) and (P′′, d′′) of M ′ and M ′′, there

exists a projective resolution (P, d) of M , such that Pn = P ′
n⊕P ′′

n for each n,

and the three projective resolutions form a commutative diagram. 509

25.45. Any short exact sequence 0 → (A′′, d′′) f→ (A, d)
g→ (A′, d′) → 0

of complexes gives rise to a long exact sequence of the homology groups

· · · → Hn+1(A′′) f∗→ Hn+1(A)
g∗→ Hn+1(A′)∂∗→ Hn(A′′) f∗→ Hn(A)

g∗→ · · · where

(∂∗)n+1:Hn+1(A′) → Hn(A′′) is obtained via the Snake Lemma. 510

25.50, 25.51. Given a map f :M → N of modules, a resolution A of N,
and a projective resolution P of M , one can lift f to a chain map f :P→ A
that is unique up to homotopy equivalence. Consequently, any two projec-

tive resolutions of a module M are homotopy equivalent. 513, 514

25.54. A right exact covariant functor F is exact iff L1F = 0, in which

case LnF = 0 for all n. 515

25.58. The direct sum
⊕

Mi of right modules is flat iff each Mi is flat.

516

25.59. Every projective module P is flat. 516

25.67 (Shapiro’s Lemma). Hn(G,MG
L ) ∼= Hn(L,M) for each L-module M

and all n; Hn(G, CoindG
L (M)) ∼= Hn(L,M) for all n. 521

25A.8. An R-module M is a generator in R-Mod iff T (M) = R. 527

25A.14. If R and R′ are Morita equivalent rings, then there is an R-

progenerator P such that R′ ∼= (EndR P ) op . 529

25A.19 (Morita’s Theorem). Two rings R,R′ are Morita equivalent iff

there is an R-progenerator M such that R′ ∼= (EndR M)op; in this case the

categorical equivalence R-Mod→ R′-Mod is given by M∗ ⊗R . 531
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25A.19′. Notation as in Morita’s Theorem, M is also a progenerator in

Mod-R′. 532

25B.6. The separability idempotent e is indeed an idempotent, and

(r ⊗ 1)e = (1 ⊗ r)e for all r ∈ R. Conversely, if there exists an idempotent

e ∈ Re satisfying this condition, then R is separable over C, and e is a

separability idempotent of R. 533

25B.9. If a module P over a separable C-algebra R is projective as a

C-module, then P is projective as an R-module. 534

25B.10. If R is separable over a field F , then R is separable in the

classical sense; i.e., R is semisimple and R ⊗F F̄ is semisimple where F̄ is

the algebraic closure of F . 535

25B.15. If R is separable over its center C, then any maximal ideal B
of R has the form AR, where A = B ∩ C � C, and R/AR is central simple

over the field C/A. 536

25B.17. Equivalent conditions for a C-algebra R to be Azumaya. 537

25B.20 (Artin-Procesi). A C-algebra R is Azumaya of rank n2 iff R
satisfies all polynomial identities of Mn(Z), and no homomorphic image

of R satisfies the standard identity s2n−2. (Other equivalent PI-conditions

are also given.) 538

25C.8. Any basic f.d. algebra with J2 = 0 is a homomorphic image of

the path algebra P(R). 543

25C.11 (Gabriel). Suppose R is a f.d. algebra over an algebraically closed

field and J2 = 0. Then R has finite representation type iff its quiver (viewed

as an undirected graph) is a disjoint union of Dynkin diagrams of types

An, Dn, E6, E7, or E8. 544

25C.17. Any F -subalgebra R of Mn(F ) can be put into block upper

triangular form (with respect to a suitable change of base of F (n)). 548

E25.6. Every submodule of a projective module over a hereditary ring

is projective. 581

E25.7. A fractional ideal P of an integral domain C is invertible (as a

fractional ideal) iff P is projective as a module. 581

E25.9, E25.10 (Bourbaki). An example of a module that is invertible

and thus projective, but not principal. 581, 582

E25.17. Equivalent conditions for a module over a commutative ring to

be invertible. 582



624 Major Results

E25.20 (Schanuel’s Lemma). If 0 → Ki → Pi → M → 0 are exact

with Pi projective for i = 1, 2, then P1 ⊕K2
∼= P2 ⊕K1. 582

E25.22, E25.23. Inequalities involving projective dimensions of modules

in an exact sequence. 583

E25.24. pdR[λ] M ≤ pdR M + 1 for any R[λ]-module M. 583

E25.25. (Eilenberg). For any projective module P , the module P ⊕F is

free for some free module F . 583

E25.28. (Baer’s criterion). To verify injectivity, it is enough to check

Equation (25.5) for M = R. 584

E25.37. P ∗ = HomC(P,E) is injective, for any flat right R-module P
and any injective C-module E. 584

E25.39. Any module has an injective hull. 585

E25.45. For any adjoint pair (F,G) of functors, F is right exact and G
is left exact. 585

E25.47. Any homological δ-functor defined by a bifunctor is independent

of the choice of component. 586

E25.53. The homology functor is a universal δ-functor. 587

E25.55 (Generic flatness). If S−1M is free as an S−1C-module, then

there is s ∈ S such that M [s−1] is free as a C[s−1]-module. 587

E25.56. Every finitely presented flat module is projective. 587

E25.58. Group algebras over a field are quasi-Frobenius. 587

E25.61. gl dimR = sup{n : Extn(M, N) �= 0 for all R-modules M, N} =

sup{injective dimensions of all R-modules}. 587

E25.65. Ext1(M, N) can be identified with the equivalence classes of

module extensions 0 → N → E → M → 0. 588

E25.69. The corestriction map is compatible with the transfer in the

cohomology of H2(G,K×). 589

E25.71. H1(L,M) = Deriv(L)/ InnDeriv(L) for any Lie algebra L. 589

E25A.6. Morita equivalent commutative rings are isomorphic. 590

E25A.9. Properties of Morita contexts with τ, τ ′ onto. 590



Major Results 625

E25B.6. If H2(R, ) = 0 and R has a nilpotent ideal N such that R/N
is separable, then R has a subalgebra S ∼= R/N that is a complement to N
as a C-module. 591

E25B.11. 0 → MR → M → DerivC(R,M) → Ext1Re(R,M) → 0 is an

exact sequence. 592

E25B.12. Equivalent conditions for an algebra to be separable, in terms

of derivations. 593

E25B.14 (Braun). A C-algebra R is Azumaya, iff there are ai, bi ∈ R
such that

∑
aibi = 1 and

∑
aiRbi ⊆ C. 593

E25B.17. Any Azumaya algebra is a finite direct product of algebras of

constant rank when the base ring has no nontrivial idempotents. 593

Chapter 26.

26.21 (The Fundamental Theorem of Hopf Modules). Any Hopf mod-

ule M is isomorphic to H ⊗M co H as Hopf modules (the latter under the

“trivial action” h′(h⊗ a) = (h′h⊗ a)). 558

26.28 (Nichols-Zoeller [NiZ]). If K is a Hopf subalgebra of a f.d. Hopf

algebra H, then H is free as a K-module, and dimK | dimH. 561

26.30. A f.d. Hopf algebra H is semisimple iff ε(
∫ l
H) �= 0. 562

E26.3, E26.5. For any algebra A and coalgebra C, Hom(C, A) becomes

an algebra under the convolution product (∗). If H is a Hopf algebra, then

its antipode S is the inverse to 1H in Hom(H,H) under the convolution

product. S(ab) = S(b)S(a), ∆ ◦ S = τ ◦ (S ⊗ S) ◦∆, and ε ◦ S = ε. 594

E26.16 (Fundamental Theorem of Comodules). Any finite subset of a

comodule M (over a coalgebra C) is contained in a finite-dimensional sub-

comodule of M . 595

E26.17 (Fundamental Theorem of Coalgebras). Any finite subset of a

coalgebra C is contained in a f.d. subcoalgebra of C. 595

E26.28. The following equations hold for R =
∑

ai⊗ bi in a quasi-

triangular Hopf algebra: R−1 =
∑

S(ai)⊗ bi;
∑

ε(ai)bi =
∑

aiε(bi) = 1;

(S⊗S)(R) = R. 596

E26.32. For any almost cocommutative Hopf algebra H with antipode S,

there exists invertible u ∈ H such that uS(u) is central and S2 is the inner

automorphism given by conjugation with respect to u. 597
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E26.38. The smash product naturally gives rise to a Morita context

(A#H,AH , A, A′, τ, τ ′). 598

E26.40. The quantum groups of Examples 16A.3 are Hopf algebras. 598
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[Deh] Dehn M., Über unendliche diskontinuierliche Gruppen, Math. Ann. 71 (1912),
116–144.

[Di] Dixon J.D., The Tits alternative, preprint (1989).

[DonF] Donovan P. and Freislich M.R., The representation theory of finite graphs and
associated algebras, vol. 5, Carleton Math. Lecture Notes, 1973.

[DorSS] Dorfman R., Samuelson P., and Solow R., Linear Programming and Economic
Analysis, McGraw-Hill, 1958.



Bibliography 629

[Dr1] Drinfeld V.G., Quantum groups, Proc. Int. Cong. Math. Berkeley 1 (1986),
789–820.

[Dr2] Drinfeld V.G., On almost cocommutative Hopf algebras,, Leningrad Math. J.
1 (1990), 321-342.

[EtG1] Etingof P. and Gelaki S., Semisimple Hopf algebras of dimension pq are trivial,
J. Algebra 210 (1998), 664–669.

[EtG2] , The classification of finite-dimensional triangular Hopf algebras over
an algebraically closed field of characteristic 0. (English. English, Russian
summary), Mosc. Math. J. 3 (2003), 37–43, 258.

[FaL] Farkas D. and Letzter G., Ring theory from symplectic geometry, J. Pure Appl.
Algebra 125 (1998), 155–190.

[Fo] Formanek E., The Polynomial Identities and Invariants of n × n Matrices,
CBMS, vol. 78, Amer. Math. Soc., Providence, R.I., 1991.

[FoP] Formanek E. and Procesi C., Mumford’s conjecture for the general linear
group, Advances Math. 19 (1976), 292–305.

[Ga1] Gabriel P., Des categories abeliennes, Bull. Soc. Math. France 90 (1962), 323–
448.

[Ga2] , Unzerlegbare Darstellungen I., Manuscripta Math. 6 (1972), 71–103,
309.

[GaR] Gabriel P. and Roiter A.V., Representations of Finite Dimensional Algebras,
Springer, 1997.

[GeS] Gerstenhaber M. and Schack S., Algebraic cohomology and deformation theory,
Deformation Theory of Algebras and Structures and Applications, vol. 247,
Kluwer, 1988, pp. 11–265.

[Go] Golod E.S., On nil algebras and residually finite p-groups, Izv. Akad. Nauk.
SSR 28 (1964), 273–276.

[GreNW] Greene C., Nijenhuis A., and Wilf H., A probabilistic proof of a formula for
the number of Young tableaux of a given shape, Adv. in Math. 31 (1979),
104–109.

[Gri1] Grigorchuk R.I., The Burnside problem on periodic groups, Funct. Anal. Appl.
14(1) (1980), 53–54.

[Gri2] , On Milnor’s problem of group growth, Soviet Math. Dokl. 28 (1983),
23–26.
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Lecture Notes in Mathematics, vol. 389, Springer, Berlin, 1974.

[Ko] Kostrikin A.I., Around Burnside; transl. by J. Wiegold, Springer, 1990.

[KrafR] Kraft H. and Riedtmann C., Geometry of representations of quivers, Repre-
sentations of Algebras, London Math. Soc. Lecture Notes in Math., vol. 116,
1985, pp. 109–145.

[KrauL] Krause G.R. and Lenagan T.H., Growth of Algebras and Gelfand-Kirillov Di-
mension, Graduate Studies in Mathematics, vol. 22, Amer. Math. Soc., 2000.

[Lam] , A First Course in Noncommutative Rings. Second edition, Graduate
Texts in Mathematics, vol. 131, Springer, 2001.

[Lan] , Algebra, Addison-Wesley, 1965.

[LenS] Lenagan, T. H. and Smoktunowicz, Agata, An infinite dimensional affine nil
algebra with finite Gelfand-Kirillov dimension, J. Amer. Math. Soc. 20 (2007),
989–1001.

[Li] Lin V.Ya., Artin braids and the groups and spaces connected with them, J.
Soviet Math. 18 (1982), 736–788.

[LuS] Lubotzky A. and Segal D., Subgroup Growth, Progress in Mathematics, vol. 212,
Birkhauser, 2003.

[Mal] Mal′cev A.I., Algorithms and Recursive Functions, Wolters–Noordhorff, 1970.

[McCR] McConnell J.C. and Robson J.C., Noncommutative Noetherian Rings, Grad-
uate Studies in Math., vol. 30, Amer. Math. Soc., 2001.

[McK] McKinnie K., Prime to p extensions of the generic abelian crossed product.,
J. Algebra 317 (2007), 813–832.

[MeS] Merkurjev A.S. and Suslin A.A., K-cohomology of Severi-Brauer varieties and
norm residue homomorphisms., Izv. Akad. Nauk. USSR 46 (1982), 1011–1046.

[Mi] Milnor J., Growth of finitely generated solvable groups, J. Diff. Geom. 2 (1968),
447-449.

[Mo1] Montgomery S., Hopf Algebras and their Actions on Rings, CBMS Regional
Conference Series in Mathematics, vol. 82, Amer. Math. Soc., 1993.



632 Bibliography

[Mo2] , Classifying finite dimensional Hopf algebras, Contemp. Math. 229
(1998), Amer. Math. Soc., 265–279.

[Naz] Nazarova L.A., Representations of quivers of infinite type, Math. USSR Izvestija
37 (1973), 752–791.

[Ne] Newman, M. H. A., On theories with a combinatorial definition of “equiva-
lence”, Ann. of Math. (2) 43 (1942), 223–243.

[Ng] Ng Siu-Hung, Non-semisimple Hopf algebras of dimension p2, J. Algebra 255
(2002), 182–197.

[NiZ] Nichols W.D. and Zoeller M.B., A Hopf algebra freeness theorem, Amer. J.
Math. 1111 (1989), 381–385.

[Nie] Nielsen J., Om Regning med ikke-kommutative Faktorer og dens Anvendelse i
Gruppeteorien, Matematisk Tidsskrift B (1921), 77–94.

[Pak] Pak I., Hook length formula and geometric combinatorics, Sem. Lothar. Com-
bin. 46 (2001), 1–4.

[Pas] Passman D., The Algebraic Structure of Group Algebras, Wiley, 1977.

[Pie] Pierce C., Associative Algebras, Springer, 1982.

[Pr] Procesi C., The invariant theory of n × n matrices, Advances in Math. 19
(1976), 306–381.

[Q] Quillen D., Projective modules over polynomial rings, Inv. Math. 36 (1976),
167–171.

[Ra1] Razmyslov Yu.P., On a problem of Kaplansky, Math. USSR Izv. 7 (1972),
479–496.

[Ra2] Razmyslov Yu.P., Trace identities of full matrix algebras over a field of char-
acteristic zero, Math. USSR Izv. 8 (1974), 724–760.

[Re] Reiten I., Dynkin diagrams and the representation theory of algebras, Notices
Amer. Math. Soc. 44 (1997), 546–556.

[Ro] Rogers H. Jr., Theory of recursive functions and effective Computability, Sec-
ond edition, MIT Press, Cambridge, 1987.

[Rol] Rolfson D., New developments in the theory of Artin’s braid groups, Topology
Appl. 127 (2003), 77–90.

[Rot1] Rotman J., The Theory of Groups: An Introduction (second edition), Allyn
and Bacon, 1973.

[Rot2] Rotman J., An Introduction to Homological Algebra, Academic Press, 1979.

[Row1] Rowen L.H., Polynomial Identities in Ring Theory, Pure and Applied Math,
vol. 84, Academic Press, 1980.

[Row2] , Ring Theory I, II, Pure and Applied Math, vols. 127,128, Academic
Press, 1988.

[Row3] , Algebra: Group, Rings, and Fields, A K Peters, 1994.

[Sag] Sagan B., The Symmetric Group. Representations, Combinatorial Algorithms,
and Symmetric Functions. Second edition, Springer Graduate Texts in Mathe-
matics,
Springer, 2001.

[Sal1] Saltman D., Noncrossed product p-algebras and Galois extensions, J. Algebra
52 (1978), 302–314.



Bibliography 633

[Sal2] , The Brauer group is torsion, Proc. Amer. Math. Soc. 81 (1981), 385–
387.

[Sal3] , Generic Galois extensions and problems in field theory, J. Algebra 43
(1982), 250–283.

[Sal4] , Division algebras over p-adic curves, J. Ramanujan Math. Soc. 12
(1997), 25–47.

[Sal5] , Lectures on Division Algebras, CBMS Regional Conference Series in
Mathematics, vol. 94, Amer. Math. Soc., 1999.

[Sam] Samelson H., Notes on Lie Algebras, Mathematical studies, vol. 23, van Nos-
trand, 1969.

[Scha] Schafer R., An Introduction to Nonassociative Algebras, Pure and Applied
Math, vol. 22, Academic Press, 1966.

[Scho] Schofield A., Representations of Rings over Skew Fields, London Math. Soc.
Lecture Notes, vol. 92, Cambridge U. Press, 1985.

[Ser1] Serre J.-P., A Course in Arithmetic, Springer, 1973.

[Ser2] , Linear Representations of Finite Groups, Graduate Texts in Mathe-
matics, vol. 42, Springer, 1973.

[Ser3] , Galois Cohomology, Springer; transl. by Patrick Ion, 1997.

[ShiW] Shirvani M. and Wehrfritz B., Skew Linear Groups, Graduate Texts in Math-
ematics, vol. 118, Cambridge Univ. Press, 1986.

[ShnS] Shnider S. and Sternberg S., Quantum Groups: From Coalgebras to Drinfeld
Algebras, A Guided Tour, International Press, 1993.

[SmaW] Small L. and Warfield R.B., Affine algebras of Gelfand-Kirillov dimension one
are PI, J. Algebra 91 (1984), 386–389.

[SmoV] Smoktunowicz A. and Vishne U., An affine prime non-semiprimitive algebra
with quadratic growth, preprint.

[Sp] Springer T.A., Linear Algebraic Groups (Second edition), Progress in Mathe-
matics, vol. 9, Birkhäuser, Boston, 1998.
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439, 465, 473, 556, 573

Jantzen, 334, 335, 558
Jordan, 362
Joseph, 484

Kac, G.I., 561
Kac, V., 316, 346, 380, 543
Kantor, 316, 330, 331, 391
Kaplansky, 61, 316, 414, 418, 429, 494,

561, 582
Kapovich, 186
Kemer, 427, 429, 433–435, 437–439, 569
Killing, 293
Kirillov, 484
Kostrikin, 442, 446, 571
Kraft, 543
Krull, 177, 211

Letzter, 383
Levitzki, 5, 52, 66, 75, 173, 411, 412,

417, 423, 429, 565, 566
Lie, 283

Mal′cev, 82, 175, 360
Martindale, 176, 415
McConnell, 484
McKinnie, 468
Merkurjev, 477, 478
Montgomery, 547, 597, 598
Morita, 523
Myasnikov, 186

Nagata, 423
Nastasescu, 547
Nazarova, 543
Ng, 552
Nichols, 559, 561
Nijenhuis, 226
Noether, 456, 460, 465, 481, 519, 573

Pak, 228
Passman, 211
Pierce, 82
Plücker, 483, 579
Ponomarev, 351–353, 542
Procesi, 412, 538

Quillen, 497, 498

Raianu, 547
Razmyslov, 412, 414, 415, 423, 429, 433,

435
Rentschler, 484
Riedtmann, 543
Rosset, 478, 565, 566
Rowen, 412, 415, 427–429, 431, 432, 434

Sagan, 224, 266
Saltman, 468, 481, 482, 532, 575
Samelson, 339
Schafer, 331
Schelter, 429, 433, 537
Schmidt, 177
Schofield, 82
Serre, 497, 498, 519
Shnider, 547, 596
Skolem, 460
Small, L., 391, 563
Smoktunowicz, 184
Stafford, 178
Stefan, 561
Sternberg, 547, 596
Suslin, 477, 497, 498
Swan, 498
Sweedler, 547, 548, 552, 558, 560

Tate, 183, 478, 575
Teichmüller, 478
Tits, 244, 330, 331, 543
Tsen, 461, 574
Tsuchimoto, 30

Vinberg, 235, 253, 362
Vishne, 184
Von Neumann, 234

Wedderburn, 5, 33, 40, 52, 54, 177, 191,
212, 425, 447, 454, 461, 463, 464,
472, 573, 577

Weibel, 486
Westreich, 547, 562
Wilf, 226

Young, 219, 223

Zassenhaus, 291
Zelmanov, 330, 440, 442, 446, 570, 572
Zhu, 561
Zoeller, 559, 561
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ACC, 74f.

on ideals, 74

on T -ideals, 323

acts

nilpotently, 284

solvably, 285

adjoint action, 595

adjoint algebra, 274

adjoint isomorphism, 162

adjoint map, 274

adjoint pair, 490f., 585

adjoint representation, 230, 278

affine

algebra, see algebra

Lie algebra, see Lie algebra

variety, 157, 191f.

algebra

affine, 87ff., 183

filtered, 105, 183

PI-, 429ff.

Albert, 330, 390

almost commutative, 184, 187

alternative, 324, 326, 385f., 387f., 569

Azumaya, 534ff., 593

Boolean, 413

central simple, see central simple
algebra

Clifford, 156, 190f.

composition, 324, 386, 396

coordinate, 241, 595

crossed product, see crossed product

cyclic, 448f., 463f., 481, 573, 577, 579

division, see division algebra

algebra (cont’d)

enveloping, 331, 391, 484

universal, 331ff., 335f., 393, 551,
556, 597

quantized, see quantized

restricted universal, 392

finite-dimensional, 40, 54ff., 409ff.,
426ff., 538ff.

split, 54

free, see free

Frobenius, 357

Grassmann, 156, 416, 427, 435f., 483,
567f.

group, 204ff., 357, 551, 555f.

of an infinite group, 211

Hopf, see Hopf

hyperword, 184

Jordan, see Jordan

Lie, see Lie

H-module, 555

monoid, 180

monomial, 93, 184

nonassociative, 272

simple, 272, 385

octonion, 325, 387f.

of generic matrices, 426, 450

path, 541

polynomial, 108, 180

quantized matrix, see quantized

quaternion, 41, 166, 325

generalized, 166, 191, 449f.

relatively free, 424, 426

separable, 530ff., 591

637
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algebra (cont’d)
simple, 15, 418, 451; see also algebra,

central simple
symbol, 449, 464, 573

generic, 450, 576
element, 471

symmetric (first meaning), 156
symmetric (second meaning), 357
tensor, 155

algebraic group, 237ff., 364ff., 552
affine, 238
irreducible component of, 239f.
morphism of, 238
solvable, 367

alternator, 410
Amitsur-Levitzki Theorem, 411, 565f.
Amitsur’s Theorems, 58, 60, 171, 566
annihilator, 20
anti-automorphism, 15
anti-symmetric element, 43
antipode, 241, 551, 594
arrow, 541
Artin combing procedure, 364
Artinian

module, 37
ring, left, 15, 50, 169
simple, 15, 51, 76

Artin-Procesi Theorem, 536f.
Artin-Tate symbol, 575
Artin’s Theorem on alternative

algebras, 386
Artin’s Theorem on characters, 269
ascending chain condition, see ACC
associator, 322
augmentation

ideal, 206
map, 206, 553f.

of a group algebra, 206, 357
of a Hopf algebra, 552
of a projective resolution, 495
of a standard resolution, 517
of a universal enveloping algebra,

332
automorphism

inner, 31
averaging procedure, 210

Baer-Levitzki-Goldie-Herstein program,
66

Baer radical, 173
Baer’s criterion, 584
balanced map, 139

bar resolution, 517
basic subring, 540
Bergman Gap Theorem, 112
Bergman’s Method, 132ff.
bialgebra, 550ff.
bicomplex, 586
bifunctor, 586
bimodule, 20, 159
block upper triangular form, 544f.
boundary, 503
boundary map, 502
bouquet, 123, 185
Brauer equivalent, 452
Brauer group

of a field, 453ff., 519, 573ff., 578
of a commutative ring, 536
relative, 454

Braun’s criterion, 593
Burnside Problem, 134, 187f., 231, 361

generalized, 134
restricted, 135, 374, 440ff.

Burnside’s Theorem, 259f.

Cartan
matrix, 310

equivalent, 310
generalized, 316, 379, 396

number, 310ff.
subalgebra, 296ff., 377

Cartan’s first criterion, 287
Cartan’s second criterion, 289
Cartan-Stieffel diagram, 379
Casimir element 292, 375f., 393
categorical kernel, 487
category

Abelian, 487
monoidal, 554, 596

braided, 597
multiplication on, 554
pre-additive, 486
skeletally small, 593

cda, see division algebra
center

of a group algebra, 215ff.
of a Lie algebra, 276
of a ring, 16

central localization, 149, 422
central simple algebra, 447ff., 536, 561ff.

exponent of, 469, 477, 482
in characteristic p, 466f., 575
maximal subfields of, 460ff.
order of, 469
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central simple algebra (cont’d)
over a local field, 478ff.
over an algebraic number field, 482
period of, 469
separable subfields of, 465f., 574
split, 447, 461f.
splitting fields of, see splitting field
subfields of, 455ff.

centralize, 65
centralizer, 455ff., 533
chain, 341

complex, 502
acyclic, 503
bounded, 502
concentrated in dimension 0, 502
total, 586

homotopy equivalent, 510
map, 502

homotopic, 512
character, 249, 368ff.

irreducible, 250
monomial, 263
product of, 262
table, 254, 368
unit, 250

characteristic closure, 433
change of scalars, 149
Chevalley-Eilenberg complex, 522
Chinese Remainder Theorem, 17
circuit, 101
class function, 251
Clifford, see algebra
coalgebra, 548ff., 594f.

coopposite, 594
cosemisimple, 560
morphism of, 549
simple, 560

coassociativity, 548
coboundary, 504, 575
coboundary map, 503
cocommutative, 549
cochain complex, 503, 586
cocycle, 504
codimension, 428
cohomology, 504, 516ff.

of groups, 517ff., 588f.
of Lie algebras, 522f., 589

coideal, 594
coinvariants, 555
cokernel, 486
column permutation, 220

comodule, 553, 595
compact, 233
comultiplication, 241, 261, 547ff.
conjugate

in algebra, 460
in group, 94
subsets, 460

connected, 233
complement, 34
complex, 122, 503

chain, see chain
connected, 122
covering, 123, 185
essential, 35
simplicial, 122

connected component, 233
convolution, 383, 550, 594
core, 167
corestriction, 475f., 520, 577f.
counit, 241, 547ff.
Coxeter

bilinear form, 348
generator, 347
graph, 347, 398

abstract, 349ff.
group, 347, 397ff.
system, 347

crossed product, 450f., 465f., 468, 519,
574, 575

crossword dictionary order, 91
weighted, 96

Coxeter-Dynkin graph, see Dynkin
diagram

csa, see central simple algebra
cycle, 503

DCC, 50
deformation, 83
degree

of a central simple algebra, 454
of a character, 249, 369f.
of a group representation, 197
of a monomial, 91
of a polynomial, 91
of a vertex, 100

Dehn’s algorithm, 130
denominator set, 174
Density Theorem, 56
derivation, 276, 291, 592f.

inner, 276, 592
σ-derivation, 164
descending chain condition, see DCC
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diagonal action, 261
diagram chasing, 489, 505
Diamond Lemma, 128, 335
dimension shifting, 514
direct product

of rings, 16ff.
direct sum

of modules, 23, 34, 142, 189, 492
discriminant, xxv
division

algebra, 40ff., 60, 484, 574
central, 447
generic, 467, 576
of quaternions, see quaternion
underlying, 447
universal, 467

ring, 13, 15, 27, 40, 69, 181
with valuation, 479, 578f.

Dixmier’s Conjecture, 30, 164
domain, 9, 92, 161, 162, 175
dominant eigenvalue, 246
Double Centralizer Theorem 359, 458
double complex, 586
dual

algebra, 550
basis lemma, 493
category, 487, 506
finite, 595
Hopf algebra, see Hopf
module, 499
Pontrjagin, 584
root system, 395
space, 355

Dynkin diagram, 338ff., 394ff., 542f.

edge, 101
opposite, 101

eigenspace decomposition, 294
Eilenberg’s trick, 583
Engel identity, 441, 570

multilinearized, 441, 570
Engel Problem, 441ff.
Engel’s Theorem, 284
evaluation, 407
even element, 416, 435
exact sequence

long, 508, 513
of chain complexes, 506f.
short, 487

exponent (of a central simple algebra),
see central simple algebra

Ext, 513, 515, 520, 587f., 592f.

extended centroid, 176f.
extension

Abelian (of Hopf algebras), 595
central, 65, 409
centralizing, 65
field, xxv

separable, 191, 192, 531, 533
normalizing, 170
of a group representation, 217
of a Lie algebra,

by a bilinear form, 319
by a derivation, 318

of groups, 520
of modules, 516
Ore, 164f.
split, 520

exterior algebra, see algebra,
Grassmann

factor set, 451
faithful

Lie representation, 278, 392
module, 20,
projective module, 500, 526
representation, 21, 197

Farkas’ Theorem, 380
f.g., see finitely generated
field

extension, see extension
finite-dimensional algebras, see algebra
finitely generated

algebraic structure, 184
group, see group

finitely presented, 121
finite representation type, 80
Fitting’s Lemma, 81
free

Abelian, 89, 213
algebra (associative), 90, 180f., 182
algebraic structure, 88
group, 93ff., 129f., 180f., 182, 185
module, see module
monoid, 89
nonassociative, 320

relatively free, 439
Frobenius Reciprocity Theorem, 268,

370f.
Frobenius’ Theorem for degrees of

characters, 258, 561
Frobenius’ Theorem for quaternion

algebras, 43, 453, 572f.
f.r.t., 80
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functor
δ-, 509, 586

morphism of, 510
universal, 515

additive, 487
contravariant, 486
covariant, 486
derived, 510ff.
exact, 488

half-, 488
left, 488, 489, 585
right, 488, 489, 585

tensor, 489
Fundamental Theorem of coalgebras,

595
Fundamental Theorem of comodules,

595
Fundamental Theorem of Game Theory,

381
Fundamental Theorem of Hopf

modules, 556

G-module, 203
G-space, 203

topological, 234
Gabriel’s Theorem, 542
Galois descent, 474
Gel′fand-Kirillov dimension, 109ff., 184
generator (of a category), 524f.
generic flatness, 587
global dimension, 496
gluing, 545
Goldie’s Theorems 67ff., 175
Goldman element, 476f.
graded 179

algebra, 83f., 192
ring, 178f.

graph, 100, 183, 503
Cayley, 102ff., 183

of group, 103
of monoid, 102
of monomial algebra 103

directed, 100
doubled, 101
finite, 101
foldings of, 186

Grassmann
algebra, see algebra
envelope, 437
identity, 416, 427, 567
involution, 436, 569

Grigorchik’s Example, 188

Gröbner basis, 187
group

algebra, see algebra
algebraic, see algebraic
braid, 363f.
Brauer, see Brauer group
cohomology, 517ff., 588f.
commutator, 94, 224

basic, 98, 182
higher, 96

conjugate, 94
crystallographic, 347, 398
cyclic, 254, 519, 588
dihedral, 121, 257, 369

continuous, 233
infinite, 121

finitely generated, xxiii, 115, 117ff.,
360

free, see free
fundamental, 122ff., 185f.
general linear, 230

projective, 231
homology, 516ff.
hyperbolic, 130f., 187
Klein, 199, 255
Lie, see Lie
linear, 120, 230f., 244, 248

irreducible, 231
locally compact, 233
nilpotent, see nilpotent
of fractions, xxiv
orthogonal, 230, 363, 365
periodic, 134, 231, 361f.
polycyclic, 118
quaternion, 257, 368
representation, 197ff., 249ff.

absolutely irreducible, 355
completely reducible, 209f., 356,

363
complex, 197
complexification, 217
continuous, 234
contragredient, 355
degree 1, 198ff., 355
direct sum of, 200
equivalent, 206
finite-dimensional, 197ff.
induced, 263ff.
irreducible, 207, 211ff., 218, 411
monomial, 264
permutation, 198
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group representation (cont’d)
real, 197, 217f., 368
reducible, 207
reflection, see reflection
regular, 198, 205, 252
unit, 198, 266

signed permutation, 395, 397
solvable, see solvable
special linear, 230
special orthogonal, 231, 363, 365
symmetric, 122, 198, 202, 218ff., 255,

359, 368, 428
symplectic, 231
topological, 232, 362
unipotent, 230
unitary, 230, 363

Coxeter presentation of, 184
virtually nilpotent, 114
virtually solvable, 117

grouplike, 549, 594
growth

exponential, 109
function, 104
intermediate, 109
linear, 108
of algebraic structures, 104ff., 184
of (associative) algebras, 104ff.
of groups, 104, 114ff.
of nonassociative algebras, 391
polynomial, 108
polynomially bounded, 108
rates, 108
subexponential, 109

Haar measure, 234
Hall’s collecting process, 98, 188
Hasse’s Theorem, 481
Herstein’s theorems

on Jordan structure, 328, 390
on Lie structure, 372f.

Hilbert series, 105ff., 184, 566
Hilbert’s Theorem 90, 519
Hochschild cohomology, 591
Hom 19, 23ff., 162
homological δ-functor, see δ-functor
homology, 503, 508ff., 516ff.

on projective resolutions, 510ff.
homotopy equivalence, 510ff.
hook, 226
Hopf

algebra, 550ff., 594ff.
almost cocommutative, 557, 597

Hopf (cont’d)
dual, 552
finite-dimensional, 559ff.
of Frobenius type, 561
of low dimension, 597
quasitriangular, 557f., 596f.
semisimple, 559, 561f.
triangular, 557f.
trivial, 561

cohomology, 558f.
duality, 598
ideal, 555
module, 553f., 595
submodule, 555

Hopkins-Levitzki Theorem, 52
Horseshoe Lemma, 506
Hurwitz’ Theorem, 387
hyperplane, 379

reflection, 346
hyperword, 111, 184, 431

quasiperiodic, 112

IBN, 77f.
ideal, 5

Hopf, see Hopf
invertible, 495, 581f.
left, see left
of a tensor product, 156
maximal, 38, 66
minimal, 74
prime, 65ff., 177
primitive, 46ff., 167
singular, 176
T -, 423f., 427f., 435ff., 566, 568

T -prime, 439, 568
T2-, 435ff.

idempotent, 8, 161f., 191, 494, 531f.
basic, 540
central, 16
in an alternative algebra, 388
1-sum set, 8
orthogonal, 8
primitive, 539
separability, 531f.
trivial, 8

identity, see also polynomial identity
linear generalized, 415
of an algebra, 322
weak, 414

index
finite, xxiii
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index (cont’d)
of a central simple algebra, 454, 469f.,

574
of nilpotence, 423, 432
reduction, 459, 469

injective
dimension, 501
hull, 500, 585
module, 500f., 584f.
resolution, 501

integral (of Hopf algebra), 560, 594
invariant base number, see IBN
invariants, 555
involution, 43, 166, 324, standard

canonical symplectic, 43, 166
exchange, 167
Grassmann, 436
of a group algebra, 353
standard, 43
transpose, 43

Hermitian, 43, 166

Jacobian conjecture, 30, 164
Jacobson Density Theorem, see Density

Theorem
Jacobson program, 50
Jacobson radical, 50, 58f., 80, 169,

170f., 179, 192, 358, 564
Jordan

algebra, 327ff., 389
exceptional, 329
free, 439
free special, 440
simple, 327
norm form, 389
quadratic, 327, 389
simple, 327
special, 327, 389

ideal, 327, 389
triple product, 390

Jordan decomposition, xxivf., 281
Jordan’s Theorem, 362

Kac-Moody algebra, 380
Kaplansky’s conjectures, 561
Kaplansky’s Theorem, 418
Kemer’s correspondence, 435
Kemer’s Finite-Dimensionality

Theorem, 434
Kemer index, 434
Killing form, 287, 289

Koethe-Noether-Jacobson Theorem,
465f., 573

Koethe question, 66
Kolchin problem, 62, 171f.
Kolchin’s Theorem, 61, 367
König Graph Theorem, 102, 183, 432
Kronecker delta, 7
Krull-Schmidt Theorem, 177, 539
Kurosh Problem, 134

large
left ideal, 70ff.
submodule, 35, 71, 166

left ideal
in semisimple rings, 37, 39
independent, 70
large, see large
maximal, 47
minimal, 14, 33, 162, 165

of semiprime rings, 169
length

of word, 89
Leibniz identities, 382
Levi’s Theorem, 377, 522
Levitzki problem, 134
LGI, 413
Lie

algebra, 237, 273ff., 371ff.
Abelian, 274
affine, 316ff., 379f., 561
classical, 274, 372, 384, 394f.
exceptional, 329f., 339, 396
free, 439
Hom, 488
homomorphism of, 275
linear, 274, 375, 392
nilpotent, see nilpotent
of an algebraic group, 320, 383
of a Jordan algebra, 330, 390, 396
of upper triangular matrices, 274,

566
orthogonal, 372
restricted, 282, 392
semisimple, 288ff., 293ff., 298ff.,

312ff., 345, 378f.
simple, 277, 372
symplectic, 372
unitary, 372

commutator, 273, 567
group, 235ff.
ideal, 275

homomorphism of, 236
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Lie ideal (cont’d)
nilpotent, 374

identities, 440, 570
module, 278ff., 301ff., 374

simple, 278
representation, 278ff.
ring of a nilpotent group, 444
subalgebra, 273

nilpotent, see nilpotent
toral, 299, 377

subgroup, 236
closed, 366

submodule, 278
word, 440

Lie’s Theorem, 285
linearization, 413

partial, 413
locally nilpotent, 443, 569

radical, 444
loop algebra, 319
lower central series, 95
lower p-central series, 446

MacLane’s pentagon, 555
Magnus’ Theorem, 182
Magnus-Witt Theorem, 182
mapping cone, 586f.
Maschke’s Theorem, 209ff., 358, 560
matrix

generic, 426
ring, see ring
unit, 7, 11ff.
unipotent, 60

maximal eigenvector, 302
Merkurjev-Suslin Theorem, 477f., 577f.
Milnor-Wolf Theorem, 117
module, 6

coinduced, 267
complemented, 34
divisible, 584
extended from N , 146
finitely presented, 587
flat, 514, 587
free, 14, 89, 143, 491
Hopf, see Hopf
indecomposable, 80ff., 356, 539ff.
injective, see injective
invertible, 499
LE, 81, 177
Noetherian, see Noetherian
over a direct product, 18
over a group, 203

module (cont’d)
over a monoid, 203
permutation, 356
projective, see projective
semisimple, 33ff
simple, 6
stably free, 497

monoid algebra, see algebra
monomial, 91, 408

algebra, see algebra
leading, 92

Morita
context, 527ff., 590, 598

dual, 527
duality, 527ff.
equivalence, 523, 589f.
ring, 590

Morita’s Theorem, 529, 590f.
Moufang identities, 286
multilinearization, 413, 564f.

Nichols-Zoeller Theorem, 560, 561
Nielsen-Schreier Theorem, 124
nil

ideal, 58, 65, 169, 171, 211
left ideal, 74
of bounded index, 423
subset, 11, 52, 77, 419

nilpotent
algebra of index n, 423, 432
element, 10
group, 114, 184, 444, 570
ideal, 65, 74
Lie algebra, 282ff., 442ff., 571
Lie subalgebra, 294ff.
nonassociative algebra, 443
subset, 49

nilradical
lower, 65, 173
upper, 66, 173

Noetherian
module, 37, 80
ring, left 15, 63ff., 164, 172, 498

prime, 75f.
semiprime, 75

normalizer, 277
nucleus, 385
null component

of ada, 294
of a nilpotent subalgebra, 295

odd element, 416
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Ore condition, 68
Ore domain, 69
Ore extension, 164f.
partition, 219
path, 101

infinite, 102
monoid, 541
reverse, 101

PBW Theorem,
see Poincaré-Birkhoff-Witt

Peirce decomposition, 9, 162, 388
PI, 408, 544
PI-

algebra, 408ff., 536
class, 417ff.
equivalent, 424, 465
ring, 408

prime, 419
semiprime, 418
simple, 418f.
without 1, 422, 566

Picard group, 499
Pingpong Lemma, 94
PLID, 27, 29, 163, 494, 581
Plücker coordinates, 580
Plücker equations, 580
Poincaré-Birkhoff-Witt Theorem, 333,

391
Poincaré series, see Hilbert series
Poisson algebra, 382
Poisson bracket, 382
polarization, 565
polynomial (noncommutative), 90, 408

alternating, 409, 420ff., 565
Capelli, 410, 416
central, 413, 566, 569
completely homogeneous, 565, 567
function, 108
growth, see growth
homogeneous, 91
identity, 407; see also PI
linear, 323, 408
multilinear, 323, 408
nonassociative, 321, 385ff., 439ff.
Spechtian, 567
standard, 410

polynomial algebra, see algebra
polynomial ring, see ring
polynomially bounded growth,

see growth
presentation, 89

of groups, 121
prime spectrum 173
primitive element, 549
principal left ideal domain, see PLID
progenerator, 526ff.
projection formula, 578
projective

cover, 585
dimension, 496, 582f.
faithfully, 526
module, 491ff., 498ff., 506ff., 511ff.,

514, 515ff., 526ff., 530ff., 539,
581ff.

rank of, 499, 582, 593
resolution, 496, 511

projectively equivalent, 582

quantization, 84
quantized

enveloping algebra, 334f., 393f., 598
matrix algebra, 85, 598

quantum
affine space, 179
coordinate algebra, 85
determinant, 85
exterior algebra, 180
group, 334, 598
plane, 85
torus, 180
Yang-Baxter equations, see QYBE

quasicompact, 233
quaternion

algebra, see algebra
group, see group

Quillen-Suslin Theorem, 498
quiver, 541, 594
QYBE, 557f., 596f.

radical
Jacobson, see Jacobson
of Lie algebra, 288, 375, 377

ramification degree, 480
rank

of element, 168
of free group, 93
of projective module, see projective

module
recursively enumerable, 126
reduced

characteristic polynomial, 472
norm, 472, 473, 574, 577
trace, 472, 473, 574, 577
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reduction, 124
irreducible, 125
procedure, 124

on algebras, 131
on free groups, 129
on monoids, 127

reduction-final, 125
reflection, 305, 346, 348, 396

functor, 542
group, 346, 396ff., 400

Regev’s Theorem, 427f.
regular element, 68
relation, 89
representation, see also group

representation
in bilinear forms, 360
into a left Artinian ring, 82
of an algebra, 21, 25, 79ff., 205
of a graph, 351
type

finite, 80, 542
tame, 543
wild, 543

of a group, see group
of a ring, 21, 163

regular, 25, 28ff., 78
residue degree, 480
residue ring, 479
resolution

for a group, 517
for a Hopf algebra, 558
for a Lie algebra, 522
of a module

f.g. free, 99, 183
free, 99
projective, see projective

restriction map, 454
ring

basic, 540
commutator, 28

basic, 182
differential polynomial, 164
division, see division ring
Goldie, 175, 184, 484
hereditary, 581
irreducible, 174
left Artinian, see Artinian
left Noetherian, see Noetherian
local, 170, 494, 535f.
matrix, 7, 12ff., 410ff., 417
Noetherian, see Noetherian

ring (cont’d)
of central fractions, 419, 450
of formal power series, 27, 163, 550

over an ordered monoid, 181
of fractions, 69, 71, 75f., 174
of quotients, 176, 585
opposite, 15, 167
polynomial, 27, 550
prime, 49ff., 64ff.
primitive, 46ff., 64, 168f., 181
quasi-Frobenius, 516
representable, 405, 411, 418, 433,

561f.
semiprime, 49, 66, 168

with involution, 168
semiprimitive, 50
semisimple, 37ff., 71, 80, 151, 191,

210, 493, 501, 540
simple, 15, 64

Artinian, 40
skew polynomial, 30, 164
von Neumann regular, 176
weakly Noetherian, 74
weakly primitive, 173
with involution, 43;

see also involution
simple, 167

root (of nilpotent Lie subalgebra),
294ff., 307ff., 399f.

height of, 309
positive, 307
simple, 308
space, 294, 299

decomposition, 294, 379
system, 307ff., 378

crystallographic, 307, 311
dual, 395
of a Coxeter group, 399f.
of a reflection group, 396f.
simple, 308
indecomposable 315

root (of polynomial), 472f.
row permutation, 220

sandwich, 446
n-thick, 570f.

Schanuel’s Lemma, 582f.
Schur inner product, 251
Schur’s Lemma, 21, 41, 79, 355
Schur’s orthogonality relations, 250ff.,

368
semidirect product, 520



Index 647

separability idempotent, 531f.
Serre’s Conjecture, 497
shape, 219

reduced, 226
Shapiro’s Lemma, 519, 589
shift functor, 504
Shirshov’s Dichotomy Lemma, 431, 572
Shirshov’s Theorems, 430ff.
simple algebra, see algebra
simple tensor, 137, 189
simplex, 122
skew field, 13
skew group algebra, 358
skew-symmetric

element, 43
matrices, 272, 360

Skolem-Noether Theorem, 460
smash product, 597f.
Snake Lemma, 504
socle, 33, 166, 168
solvable

group, 117ff., 260
Lie algebra, 282ff., 286

specialization, 407
radical, 434
semisimple, 434

Specht’s problem, 427
splitting (of a group extension), 520

conjugacy class of, 521
splitting field

of an algebra, 151f.
of a central simple algebra, 454f., 456,

460
of a group, 212

string (of roots), 299, 303ff.
sub-comodule, 555, 595
subdiagram, 340
subdirect product, 18
submodule

essential, 34
Hopf, see Hopf
large, see large
simple, 37
small, 585

superalgebra, 83, 435, 569
supercommutativity, 435
superidentity, 435
superpolynomial, 435

supercentral, 569
support

of polynomial, 91

support (cont’d)
of root, 309

symmetric
element, 43
matrices, 272, 360

Sweedler complex, 558
syzygy, 495

tangent map, 236
tensor algebra, see algebra
tensor product, 139

of algebras, 147, 190
of bimodules, 141
of central division algebras, 470
of central simple algebras, 452ff.
of crossed products, 575
of generic symbols, 576
of group algebras, 260f.
of Hopf modules, 596
of matrix algebras, 153
of PI-algebras, 428f.
of projective modules, 498f.
of simple algebras, 451
over a field, 150

Tits alternative, 244ff., 365f.
Tits quadratic form, 543
Tor, 513f., 587
trace

bilinear form, xxv, 287, 290
identity, 412

Hamilton-Cayley, 412
ideal, 525
map (of group algebra), 357

transfer map, 520
transversal, 263
tree, 101
Tsen’s Theorem, 574
twist

isomorphism, 145
map, 549

valuation, 479
value group, 479
value ideal, 479
value ring, 479
variety

defined over a field, 482
of algebras, 423
Severi-Brauer-Chatelet-Amitsur, 483

vector space over a group, 202
vertex, 100
Virasoro algebra, 380
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Virasoro algebra (cont’d)
initial, 100

for graph 102
terminal, 100

Wedderburn-Artin Theorem, 40, 48,
165, 530f.

Wedderburn decomposition, 55
Wedderburn’s factorization method,

472f., 577
Wedderburn’s Principal Theorem, 54,

191, 592
Wedderburn’s Theorem (on finite

division rings), 425f., 461, 574
wedge, 156
weight

in Dynkin diagram, 344
in quiver, 541
module, 378
of higher commutator, 96
of Lie module, 377
space, 378

Weyl algebra, 28ff., 45, 63, 484, 598
Weyl chamber, 379
Weyl group, 307, 346, 394f.
Weyl’s Theorem, 292, 376, 589
Whitehead’s Lemmas, 376, 522
Witt algebra, 380
word, 89

d-decomposable, 430, 572
linear, 408

Word Problem, 127
for groups, 130

Young
diagram, 219
tableau, 219, 359, 428f., 568f.

standard, 223

Zassenhaus’ Theorem, 291
Zelmanov’s Theorem, 442ff., 570ff.
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