Graduate Algebra: Noncommutative View

Louis Halle Rowen

Graduate Studies in Mathematics
Volume 91

American Mathematical Society
Graduate Algebra: Noncommutative View
To the memory of my beloved mother
Ruth Halle Rowen, April 5, 1918 – January 5, 2007
Contents

Introduction \hspace{1cm} xiii
List of symbols \hspace{1cm} xvii
Prerequisites \hspace{1cm} xxiii

Part IV. The Structure of Rings
Introduction \hspace{1cm} 1

Chapter 13. Fundamental Concepts in Ring Theory
Matrix rings \hspace{1cm} 5
Basic notions for noncommutative rings \hspace{1cm} 7
Direct products of rings \hspace{1cm} 14
The structure of $\text{Hom}(M, N)$ \hspace{1cm} 16
Representations of rings and algebras \hspace{1cm} 19
The regular representation of an algebra \hspace{1cm} 21
Supplement: Polynomial rings \hspace{1cm} 25
Appendix 13A. Ring constructions using the regular representation \hspace{1cm} 26

Chapter 14. Semisimple Modules and Rings and the Wedderburn-Artin Theorem
Semisimple modules \hspace{1cm} 33
Semisimple rings \hspace{1cm} 37
The Wedderburn-Artin Theorem \hspace{1cm} 40
Supplement: Rings with involution 43

Chapter 15. The Jacobson Program Applied to Left Artinian Rings 45
 Primitive rings and ideals 46
 The Jacobson radical 50
 The structure of left Artinian rings 50
 Supplement: The classical theory of finite-dimensional algebras 54
 Appendix 15A: Structure theorems for rings and algebras 55
 Appendix 15B. Kolchin’s Theorem and the Kolchin Problem 60

Chapter 16. Noetherian Rings and the Role of Prime Rings 63
 Prime rings 64
 Rings of fractions and Goldie’s Theorems 67
 Applications to left Noetherian rings 77
 The representation theory of rings and algebras: An introduction 78
 Supplement: Graded and filtered algebras 82
 Appendix 16A: Deformations and quantum algebras 83

Chapter 17. Algebras in Terms of Generators and Relations 87
 Free algebraic structures 88
 The free group 93
 Resolutions of modules 99
 Graphs 100
 Growth of algebraic structures 104
 Gel’fand-Kirillov dimension 109
 Growth of groups 114
 Appendix 17A. Presentations of groups 121
 Groups as fundamental groups 122
 Appendix 17B. Decision problems and reduction procedures 124
 Appendix 17C: An introduction to the Burnside Problem 134

Chapter 18. Tensor Products 137
 The basic construction 138
 Tensor products of algebras 147
Applications of tensor products 150

Exercises – Part IV 161
 Chapter 13 161
 Appendix 13A 164
 Chapter 14 165
 Chapter 15 167
 Appendix 15A 170
 Appendix 15B 171
 Chapter 16 173
 Appendix 16A 179
 Chapter 17 180
 Appendix 17A 184
 Appendix 17B 187
 Appendix 17C 187
 Chapter 18 189

Part V. Representations of Groups and Lie Algebras 193
 Introduction 195

Chapter 19. Group Representations and Group Algebras 197
 Group representations 197
 Modules and vector spaces over groups 202
 Group algebras 204
 Group algebras over splitting fields 211
 The case when F is not a splitting field 216
 Supplement: Group algebras of symmetric groups 218
 Appendix 19A. Representations of infinite groups 228
 Linear groups 230
 Appendix 19B: Algebraic groups 238
 The Tits alternative 244

Chapter 20. Characters of Finite Groups 249
 Schur's orthogonality relations 250
 The character table 254
 Arithmetic properties of characters 257
Tensor products of representations 260
Induced representations and their characters 263

Chapter 21. Lie Algebras and Other Nonassociative Algebras 271
Lie algebras 273
Lie representations 278
Nilpotent and solvable Lie algebras 282
Semisimple Lie algebras 288
The structure of f.d. semisimple Lie algebras 293
Cartan subalgebras 296
Lie structure in terms of sl(2, F) 301
Abstract root systems 307
Cartan’s classification of semisimple Lie algebras 311
Affine Lie algebras 316
Appendix 21A. The Lie algebra of an algebraic group 320
Appendix 21B: General introduction to nonassociative algebras 321
Some important classes of nonassociative algebras 323
Appendix 21C: Enveloping algebras of Lie algebras 331

Chapter 22. Dynkin Diagrams (Coxeter-Dynkin Graphs and Coxeter Groups) 337
Dynkin diagrams 338
Reflection groups 346
A categorical interpretation of abstract Coxeter graphs 349

Exercises – Part V 355
Chapter 19 355
Appendix 19A 360
Appendix 19B 365
Chapter 20 368
Chapter 21 371
Appendix 21A 383
Appendix 21B 385
Appendix 21C 391
Chapter 22 394
Part VI. Representable Algebras

Chapter 23. Polynomial Identities and Representable Algebras
- Identities of finite-dimensional algebras
- Central polynomials
- The Grassmann algebra
- Main theorems in PI-structure theory
- Varieties and relatively free algebras
- PI-theory and the symmetric group
- Appendix 23A: Affine PI-algebras
- Kemer’s solution of Specht’s conjecture in characteristic 0
- Appendix 23B: Identities of nonassociative algebras
- Identities of Lie algebras and the Restricted Burnside Problem

Chapter 24. Central Simple Algebras and the Brauer Group
- Basic examples
- The Brauer group
- Subfields and centralizers
- Division algebras described in terms of maximal subfields
- The exponent
- Techniques generalized from field theory
- Galois descent and the corestriction map
- Central simple algebras over local fields
- Appendix 24A: Csa’s and geometry
- Appendix 24B: Infinite-dimensional division algebras

Chapter 25. Homological Algebra and Categories of Modules
- Exact and half-exact functors
- Projective modules
- Injective modules
- Homology and cohomology
- δ-functors and derived functors
- Examples of homology and cohomology
- Appendix 25A: Morita’s theory of categorical equivalence
Appendix 25B: Separable algebras 530
Azumaya algebras 534
Appendix 25C: Finite-dimensional algebras revisited 538

Chapter 26. Hopf Algebras 547
Coalgebras and bialgebras 547
Hopf modules 553
Quasi-triangular Hopf algebras and the quantum Yang-Baxter equations (QYBEs) 556
Finite-dimensional Hopf algebras 559

Exercises – Part VI 563
Chapter 23 563
Appendix 23A 569
Appendix 23B 569
Chapter 24 572
Appendix 24A 579
Chapter 25 581
Appendix 25A 589
Appendix 25B 591
Appendix 25C 593
Chapter 26 594

List of major results 599

Bibliography 627

List of names 635

Index 637
Introduction

As indicated in the title, this volume is concerned primarily with noncommutative algebraic structures, having grown from a course introducing complex representations of finite groups via the structure of group algebras and their modules. Our emphasis is on algebras, although we also treat some major classes of finite and infinite groups. Since this volume was conceived as a continuation of Volume 1 (Graduate Algebra: Commutative View, Graduate Studies in Mathematics, volume 73), the numeration of chapters starts with Chapter 13, Part IV, and we use the basics of rings and modules developed in Part I of Volume 1 (Chapters 1–3). Nevertheless, Chapters 13–15 and 18 can largely be read independently of Volume 1.

In the last one hundred years there has been a vast literature in noncommutative theory, and our goal here has been to find as much of a common framework as possible. Much of the theory can be cast in terms of representations into matrix algebras, which is our major theme, dominating our treatment of algebras, groups, Lie algebras, and Hopf algebras. A secondary theme is the description of algebraic structures in terms of generators and relations, pursued in the appendices of Chapter 17, and leading to a discussion of free structures, growth, word problems, and Zelmanov's solution of the Restricted Burnside Problem.

One main divergence of noncommutative theory from commutative theory is that left ideals need not be ideals. Thus, the important notion of “principal ideal” from commutative theory becomes cumbersome; whereas the principal left ideal Ra is described concisely, the smallest ideal of a noncommutative ring QR containing an element a includes all elements of the form

$$r_{1,1}ar_{1,2} + \cdots + r_{m,1}ar_{m,2}, \quad \forall r_{i,1}, r_{i,2}, \in R,$$
where m can be arbitrarily large. This forces us to be careful in distinguishing “left” (or “right”) properties from two-sided properties, and leads us to rely heavily on modules.

There are many approaches to structure theory. We have tried to keep our proofs as basic as possible, while at the same time attempting to appeal to a wider audience. Thus, projective modules (Chapter 25) are introduced relatively late in this volume.

The exposition is largely self-contained. Part IV requires basic module theory, especially composition series (Chapter 3 of Volume 1). Chapter 16 draws on material about localization and Noetherian rings from Chapters 8 and 9 of Volume 1. Chapter 17, which goes off in a different direction, requires some material (mostly group theory) given in the prerequisites of this volume. Appendix 17B generalizes the theory of Gröbner bases from Appendix 7B of Volume 1. Chapter 18 has applications to field theory (Chapter 4 of Volume 1).

Parts V and VI occasionally refer to results from Chapters 4, 8, and 10 of Volume 1. At times, we utilize quadratic forms (Appendix 0A) and, occasionally, derivations (Appendix 6B). The end of Chapter 24 draws on material on local fields from Chapter 12. Chapters 25 and 26 require basic concepts from category theory, treated in Appendix 1A.

There is considerable overlap between parts of this volume and my earlier book, Ring Theory (student edition), but the philosophy and organization is usually quite different. In Ring Theory the emphasis is on the general structure theory of rings, via Jacobson’s Density Theorem, in order to lay the foundations for applications to various kinds of rings.

The course on which this book is based was more goal-oriented — to develop enough of the theory of rings for basic representation theory, i.e., to prove and utilize the Wedderburn-Artin Theorem and Maschke’s Theorem. Accordingly, the emphasis here is on semisimple and Artinian rings, with a short, direct proof. Similarly, the treatment of Noetherian rings here is limited mainly to Goldie’s Theorem, which provides most of the non-technical applications needed later on.

Likewise, whereas in Ring Theory we approached representation theory of groups and Lie algebras via ring-theoretic properties of group algebras and enveloping algebras, we focus in Part V of this volume on the actual groups and Lie algebras.

Thanks to Dror Pak for pointing me to the proofs of the hook categories, to Luda Markus-Epstein for material on Stallings foldings, to Alexei Belov for gluing components in the Wedderburn decomposition, and to Sue Montgomery for a description of the current state of the classification of
finite dimensional Hopf algebras. Steve Shnider, Tal Perri, Shai Sarussi, and Luie Polev provided many helpful comments. Again, as with Volume 1, I would like to express special gratitude to David Saltman, in particular for his valuable suggestions concerning Chapter 24 and Chapter 25, and also to Uzi Vishne. Thanks to Sergei Gelfand for having been patient for another two years. And, of course, many thanks to Miriam Beller for much of the technical preparation of the manuscript.

Needless to say, I am deeply indebted to Rachel Rowen, my helpmate, for her steadfast support all of these years.
List of Symbols

Warning: Some notations have multiple meanings.

\[[G : H] \quad xxiii \]
\[A_Q \quad xxiv \]
\[M_n(R) \quad 5 \]
\[L \neq R, \ Ann_R a \quad 6 \]
\[e_{ij}, \delta_{ij} \quad 7 \]
\[R^{op} \quad 15 \]
\[\text{Cent}(R), \prod R_i, \pi_i, \nu_i \quad 16 \]
\[\text{Hom}_R(M, N) \quad 19 \]
\[\text{End}_R(M), \text{End}_R(M)_W, \text{Ann}_R S \quad 20 \]
\[W^{(n)} \quad 22 \]
\[\ell_r \quad 25 \]
\[R[\lambda], R[[\lambda]] \quad 27 \]
\[[a, b], \mathcal{A}_1(F) \quad 28 \]
\[\mathcal{A}_n(F) \quad 30 \]
\[\text{soc}(M), \text{soc}(R) \quad 33 \]
\[\mathbb{H} \quad 41 \]
\[S, K \quad 43 \]
\[L_1L_2, RaR \quad 45 \]
\[A^2, A^k \quad 49 \]
\[\text{Jac}(R) \quad 50 \]
\[N(R) \quad 65 \]
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q(R)$</td>
<td>69</td>
</tr>
<tr>
<td>$N <_e R$</td>
<td>70</td>
</tr>
<tr>
<td>R_q</td>
<td>84</td>
</tr>
<tr>
<td>$O_q(F^{(2)}), O_q(M_2(F))$</td>
<td>85</td>
</tr>
<tr>
<td>$</td>
<td>w</td>
</tr>
<tr>
<td>$C{X}, C{x_1, \ldots, x_n}$</td>
<td>90</td>
</tr>
<tr>
<td>$\text{supp}(f)$</td>
<td>91</td>
</tr>
<tr>
<td>$b^n, (a, b)$</td>
<td>94</td>
</tr>
<tr>
<td>$(H, K), G' \gamma_i$</td>
<td>95</td>
</tr>
<tr>
<td>$\Gamma(V, E)$</td>
<td>100</td>
</tr>
<tr>
<td>\tilde{e}, \tilde{p}</td>
<td>101</td>
</tr>
<tr>
<td>$g_{x}, d_k(R)$</td>
<td>104</td>
</tr>
<tr>
<td>$\text{gr} R$</td>
<td>105</td>
</tr>
<tr>
<td>$\mu(G), \mu(R), p_m, e_t$</td>
<td>108</td>
</tr>
<tr>
<td>$\text{GK}(R)$</td>
<td>110</td>
</tr>
<tr>
<td>D_n, D_∞, S_n</td>
<td>121</td>
</tr>
<tr>
<td>$\pi_1(K, v)$</td>
<td>122</td>
</tr>
<tr>
<td>$RBP(m, n)$</td>
<td>125</td>
</tr>
<tr>
<td>$M \otimes_R N$</td>
<td>139</td>
</tr>
<tr>
<td>$\bar{\psi}, f \otimes g$</td>
<td>140</td>
</tr>
<tr>
<td>$\mu: R \times R \to R$</td>
<td>146</td>
</tr>
<tr>
<td>$T(M)$</td>
<td>155</td>
</tr>
<tr>
<td>$S(M), C(V, Q), E(V) \wedge$</td>
<td>156</td>
</tr>
<tr>
<td>R^e</td>
<td>158</td>
</tr>
<tr>
<td>$R[\lambda; \sigma, \delta]$</td>
<td>164</td>
</tr>
<tr>
<td>$\text{Spec}(R)$</td>
<td>173</td>
</tr>
<tr>
<td>$C[M]$</td>
<td>180</td>
</tr>
<tr>
<td>$R^M, R[[M]]$</td>
<td>181</td>
</tr>
<tr>
<td>$\text{Unit}(R)$</td>
<td>182</td>
</tr>
<tr>
<td>$GL(V)$</td>
<td>197</td>
</tr>
<tr>
<td>$\rho_{\text{reg}}, 1$</td>
<td>198</td>
</tr>
<tr>
<td>sgn</td>
<td>200</td>
</tr>
<tr>
<td>$C[G]$</td>
<td>204</td>
</tr>
<tr>
<td>z_G</td>
<td>215</td>
</tr>
</tbody>
</table>
λ

$P(T), Q(T)$

I_{λ}

$H_{i,j}, h_{i,j}$

$\text{GL}(n, F), \text{SL}(n, F), \text{D}(n, F), \text{UT}(n, F), \text{UT}(n, F), \text{O}(n, F), \text{U}(n, \mathbb{C})$

$\text{Sp}(n, F), \text{SO}(n, F), \text{PGL}(n, F)$

G_{g}, G_{e}

Δ, ϵ

ξ, ρ

\mathbb{R}

$\rho \otimes \tau$

ρ^{G}

$[ab], [a, b], R^{-}$

$\text{ad}_a, \text{ad}_L, \text{ad}_L H, A_n, B_n, C_n, D_n, gl(n, F), sl(n + 1), F$

$Z(L)$

$N_L(A),$

$L,$

s, n

$a[p], L^k, L^{(k)}, L'$

$\text{rad}(L)$

I^{\perp}

e^*_1, \ldots, e^*_n

c_ρ

$\text{Null}(a), a, L_a$

$\text{Null}(N)$

$r_f, \langle f, g \rangle, \langle a, b \rangle,$

P, S

m_{ij}

$\mathbf{v} > 0; \mathbf{v} \geq 0$

$Lie(G) T(G)_e$

$[x, y, z]$

$S(R, *)$

$J(V, Q)$

$U(L)$
Symbols

$U_q(sl(2, F))$
$U(J)$
$A_n, B_n, C_n, D_n, E_n, F_n, G_n$
m_{ij}
$R \# G$
B_n
$x_i \mapsto r_i, f(R), \text{id}(R)$
h_{alt}, s_t, c_t
$\Delta_i f$
$g_n, E(V)$
h_n
$\text{id}(ValV)$
$C\{Y\}_n$
$I_n(R), c_n(R)$
$F\{Y, Z\}, \text{id}_2(R)$
$e(\pi, I), f_I$
$G(R)$
$\mathcal{F} \mathcal{J}$
$\mathcal{F} \mathcal{S} \mathcal{J}$
e_n, \tilde{e}_n
$e_{S, n}$
$L_\gamma(G)$
$\hat{\gamma}_i, L_\gamma(G)$
$(K, \sigma, \beta), (\alpha, \beta; F; \zeta)_n, (\alpha, \beta)_n$
$UD(n, F)$
$(K, G, (c_{\sigma, \tau}))$
$R_1 \sim R_2, R \sim 1, [R], \text{Br}(F)$
$[R:F]$
$res_{L/F}, \deg(R), \text{ind}(R)$
$C_R(A)$
$\exp(R)$
$\text{Br}(F)_m$
$\text{tr}_{\text{red}}, N_{\text{red}}$
$cor_{E/F}$
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_D, P_D, \Gamma_D, \bar{D}$</td>
<td>479</td>
</tr>
<tr>
<td>$e, e(D, F), f, f(D, F)$</td>
<td>480</td>
</tr>
<tr>
<td>\mathcal{B}_R</td>
<td>483</td>
</tr>
<tr>
<td>$\mathcal{D}(F)$</td>
<td>484</td>
</tr>
<tr>
<td>$\text{Hom}(C, -) f_#$</td>
<td>488</td>
</tr>
<tr>
<td>$\text{Hom}(-, C), f^#, M \otimes_R -, - \otimes T M$</td>
<td>489</td>
</tr>
<tr>
<td>pd gldim</td>
<td>496</td>
</tr>
<tr>
<td>$K_0(R)$</td>
<td>497</td>
</tr>
<tr>
<td>rank_p</td>
<td>499</td>
</tr>
<tr>
<td>$\text{Ch}, \text{Ch}(C)$</td>
<td>502</td>
</tr>
<tr>
<td>$B, B_n(A), Z, Z_n(A), H_n(A)$</td>
<td>503</td>
</tr>
<tr>
<td>$(S(A), (S(d))$</td>
<td>504</td>
</tr>
<tr>
<td>L_nF, R^nF</td>
<td>512</td>
</tr>
<tr>
<td>$\text{Tor}_n, \text{Ext}^n$</td>
<td>513</td>
</tr>
<tr>
<td>R', M^*</td>
<td>524</td>
</tr>
<tr>
<td>$T(M), \tau, \tau'$</td>
<td>525</td>
</tr>
<tr>
<td>$(R, R', M, M', \tau, \tau')$</td>
<td>527</td>
</tr>
<tr>
<td>R^e</td>
<td>530</td>
</tr>
<tr>
<td>p, J</td>
<td>531</td>
</tr>
<tr>
<td>M^R</td>
<td>533</td>
</tr>
<tr>
<td>$\hat{\Gamma}, F[\Gamma]$</td>
<td>541</td>
</tr>
<tr>
<td>$\Delta: C \to C \otimes C, \epsilon: C \to F$</td>
<td>547</td>
</tr>
<tr>
<td>$(C, \Delta, \epsilon), \Delta(a) = \sum a_1 \otimes a_2$</td>
<td>548</td>
</tr>
<tr>
<td>$f \ast g, C^*, S$</td>
<td>550</td>
</tr>
<tr>
<td>$M^H, M^{\infty H}$</td>
<td>555</td>
</tr>
<tr>
<td>$A#H$</td>
<td>597</td>
</tr>
</tbody>
</table>
Prerequisites

As mentioned in the Introduction, most of Part IV of Volume 2 is self-contained, modulo some basic results on rings and modules. In Chapter 17, we need a few extra general basic results, mostly concerning finitely generated groups, which we list here.

Finitely generated (f.g.) groups.

A fair part of Chapter 17 concerns f.g. groups, introduced briefly in Volume 1, namely on p. 13 and Exercises 0.23–0.27. Often we look for f.g. subgroups of a given f.g. group. The following straightforward facts often come in handy. Recall that a subgroup H has finite index G if H has finitely many cosets in G, the number of which is designated as $[G:H]$.

Remark 00.1. Any subgroup H of finite index in a f.g. group G is also f.g. (This was stated in Exercise 0.27 of Volume 1, with an extensive hint.) The same proof shows, more precisely, that if G is generated by t elements and $[G:H] = m$, then H is generated by tm elements.

Lemma 00.2. For any $n \in \mathbb{N}$, any f.g. group G has finitely many subgroups of index n.

Proof. We elaborate on Exercise 0.25 of Volume 1. For any subgroup H of index n, we have a homomorphism $\psi_H : G \rightarrow S_n$, given by left multiplication on the cosets of H. But any element a of $\ker \psi_H$ satisfies $aH = H$, implying $\ker \psi_H \subseteq H$, and thus $H = \psi_H^{-1}(\mathbb{T})$ for some subgroup \mathbb{T} of S_n.

Working backwards, since G is f.g., there are only finitely many homomorphisms from G to S_n, which has finitely many possible subgroups \mathbb{T}. Since any subgroup H of index n can be recovered in this way, we have only finitely many possibilities for H. □
Proposition 00.3. If H is a f.g. normal subgroup of G, and K is a subgroup of finite index in H, then K contains a f.g. normal subgroup of G that has finite index in H. (The special case for $H = G$ was given in Exercise 0.25 of Volume 1.)

Proof. For each $g \in G$, gKg^{-1} is a subgroup of $gHg^{-1} = H$ of the same index as K; by the lemma, there are only finitely many of these, so, by Exercise 0.24 of Volume 1, $\bigcap_{g \in G} gKg^{-1}$ is a normal subgroup of G having finite index in H. □

Groups of fractions.

In the proof of Theorem 17.61 we also need the following easy special case of the construction of Exercise 8.26 of Volume 1:

Definition 00.4. Suppose $(A, +)$ is a torsion-free Abelian group. The group $A_{\mathbb{Q}}$ is defined as follows:

Define an equivalence on $A \times \mathbb{N}^+$ by putting $(a, m) \sim (b, n)$, iff $an = bm$. Writing $\frac{a}{m}$ for the equivalence class $[(a, m)]$, we define $A_{\mathbb{Q}}$ to be the set of equivalence classes, endowed with the operation

$$\frac{a}{m} + \frac{b}{n} = \frac{an + bm}{mn}.$$

Remark 00.5. $A_{\mathbb{Q}}$ is a group, and in fact is a \mathbb{Q}-module in the natural way, namely

$$\frac{u}{v} \cdot \frac{a}{m} = \frac{ua}{vm}, \quad a \in A, \ u \in \mathbb{Z}, \ m, v \in \mathbb{N}^+.$$

There is a group injection $A \to A_{\mathbb{Q}}$ given by $A \mapsto \frac{a}{1}$. Furthermore, any automorphism σ of A extends naturally to an automorphism of $A_{\mathbb{Q}}$ via the action $\sigma(\frac{a}{m}) = \frac{\sigma(a)}{m}$.

(The verifications are along the lines of those in the proof of Proposition 12.18 of Volume 1. Alternatively, once we have tensor products from Chapter 18, we could view $A_{\mathbb{Q}}$ as $A \otimes_{\mathbb{Z}} \mathbb{Q}$.)

Jordan decomposition.

The Jordan decomposition of Theorem 2.75 of Volume 1 has an easy but useful application in nonzero characteristic:

Proposition 00.6. Over a field of characteristic $p > 0$, any $n \times n$ matrix T has a power whose radical component is 0.
Proof. Write the Jordan decomposition $T = T_s + T_n$, where the semisimple component T_s and the nilpotent component T_n commute. Then, as in Corollary 4.69 of Volume 1,

$$T^p = (T_s + T_n)^p = T_s^p + T_n^p$$

for each k, but $T_n^k = 0$ whenever $p^k > n$, so we conclude for such k that $T^p = T_s^p$ is semisimple. □

Galois theory.

We also need a fact from Galois theory, which was missed in Volume 1.

Proposition 00.7. Suppose F is a finite field extension of \mathbb{Q}, and $a \in F$ is integral over \mathbb{Z}. If $|\sigma(a)| \leq 1$ for every embedding $\sigma: F \to \mathbb{C}$, then a is a root of unity.

Proof. The minimal monic polynomial $f_a \in \mathbb{Z}[\lambda]$ of a over \mathbb{Z} has some degree n; its coefficients are sums of products of conjugates of a, and so by hypothesis have absolute value $\leq n$. But there are at most $(2n + 1)^n$ possibilities for such a polynomial; moreover, the hypothesis also holds for each power of a, which must thus be a root of one of these polynomials. We conclude that there are only finitely many distinct powers of a, which means a is a root of unity. □

The trace bilinear form.

We need a result about the **trace bilinear form** on the matrix algebra $M_n(F)$ over a field F, given by $\langle x, y \rangle = \text{tr}(xy)$. Clearly this form is symmetric and also nondegenerate, for if $x = (a_{ij})$ with $a_{i_0 j_0} \neq 0$, then $\text{tr}(x e_{i_0 j_0}) = a_{i_0 j_0} \neq 0$. The **discriminant** of a base $B = \{b_1, \ldots, b_n\}$ of $M_n(F)$ is defined as the determinant of the $n^2 \times n^2$ matrix $(\text{tr}(b_i b_j))$. In view of Remark 4B.5 of Volume 1, the discriminant of any base B is nonzero (since there exists an orthogonal base with respect to the trace bilinear form).

Lemma 00.8. Suppose $\{b_1, \ldots, b_n\}$ is a base of $M_n(F)$ over F. Then for any $\alpha_1, \ldots, \alpha_n^2 \in F$, the system of n^2 equations $\{\text{tr}(b_i x) = \alpha_i : 1 \leq i \leq n^2\}$ has at most one solution for $x \in M_n(F)$.

Proof. Write $x = \sum_{j=1}^{n^2} \gamma_j b_j$. Then $\alpha_i = \sum_{j=1}^{n^2} \gamma_j \text{tr}(b_i b_j)$, $1 \leq i \leq n^2$, can be viewed as n^2 equations in the γ_j; since the discriminant $\det(\text{tr}(b_i b_j))$ is nonzero, one can solve these equations using Cramer’s rule.

To prove uniqueness, suppose there were two matrices x_1 and x_2 such that $\text{tr}(b_i x_1) = \text{tr}(b_i x_2)$, $1 \leq i \leq n^2$. Then $\text{tr}(b_i (x_1 - x_2)) = 0$ for each i, which implies $x_1 - x_2 = 0$ since the trace form is nondegenerate; thus, $x_1 = x_2$. □
List of Major Results

The prefix E denotes that the referred result is an exercise, such as E0.5. Since the exercises do not necessarily follow a chapter immediately, their page numbers may be out of sequence.

Prerequisites.

00.3. Any subgroup of finite index in a f.g. normal subgroup H contains a f.g. normal subgroup of G of finite index in H xxiv

00.6. Any $n \times n$ matrix has a power that is semisimple. xxiv

00.7. If $a \in F$ is integral over \mathbb{Z} and $|\sigma(a)| \leq 1$ for every embedding $\sigma: F \to \mathbb{C}$, then a is a root of unity. xxv

Chapter 13.

13.9. Any ring W having a set of $n \times n$ matrix units has the form $M_n(R)$, where $R = e_{11}We_{11}$. 10

13.14. There is a lattice isomorphism \{Ideals of R\} \to \{Ideals of $M_n(R)$\} given by $A \mapsto M_n(A)$. 13

13.18. For any division ring D, the ring $M_n(D)$ is a direct sum of n minimal left ideals, and thus has composition length n. 14

13.31. Determination of the modules, left ideals, and ideals for a finite direct product of rings. 18

13.40 (Schur’s Lemma). If M is a simple module, then $\text{End}_R M$ is a division ring. 22

599
13.42. $M_n(W) \cong (\text{End}_W W^{(n)})^{\text{op}}$ as rings.

13.44. $\text{Hom}(\bigoplus_{i \in I} M_i, \bigoplus_{j \in J} N_j)_W \cong \bigoplus_{i,j} \text{Hom}(M_i, N_j)_W$ as additive groups, for any right W-modules M_i, N_j.

13.47. $\text{End}_R(S_{1})^{1} \oplus \cdots \oplus S_{t}^{t} \cong \prod_{i=1}^{t} M_{n_{i}}(D_{i})$, for simple pairwise nonisomorphic simple R-modules S_{i}, where $D_{i} = \text{End} S_{i}$.

13.53. For any division ring D, the polynomial ring $D[\lambda]$ satisfies the Euclidean algorithm and is a PLID.

E13.9. Any 1-sum set of orthogonal idempotents e_{1}, \ldots, e_{n}, yields the Peirce decomposition $R = \bigoplus_{i=1}^{n} e_{i}Re_{j}$.

E13.24. The power series ring $R[[\lambda]]$ is a domain when R is a domain; $R[[\lambda]]$ is Noetherian when R is Noetherian.

E13A.7. If a ring W contains a left Noetherian subring R and an element a such that $W = R + aR = R + Ra$, then W also is left Noetherian.

E13A.8. Any Ore extension of a division ring is a PLID.

Chapter 14.

14.8. Any submodule of a complemented module is complemented.

14.13. A module M is semisimple iff M is complemented, iff M has no proper large submodules.

14.16. A semisimple module M is Artinian iff M is Noetherian, iff M is a finite direct sum of simple submodules.

14.19. A ring R is semisimple iff $R \cong \prod_{i=1}^{t} M_{n_{i}}(D_{i})$ for suitable division rings D_{i}.

14.23. Any module over a semisimple ring is a semisimple module.

14.24 (Wedderburn-Artin). A ring R is simple with a minimal (nonzero) left ideal iff $R \cong M_{n}(D)$ for a division ring D.

14.27. Any f.d. semisimple algebra over an algebraically closed field F is isomorphic to a direct product of matrix algebras over F.

14.28 (Another formulation of Schur’s Lemma). Suppose, for F an algebraically closed field, $M = F^{(n)}$ is simple as an R-module. Then any endomorphism of M is given by scalar multiplication.

E14.8. $\text{soc}(M) = \bigcap \{\text{Large submodules of } M\}$.

600
E14.21. If R is simple and finite-dimensional over an algebraically closed field F, and R has an involution (\ast), then $(R, \ast) \cong (M_n(F), J)$, where J is either the transpose or the canonical symplectic involution. 167

Chapter 15.

15.7. If a prime ring R has a minimal nonzero left ideal L, then R is primitive and every faithful simple R-module is isomorphic to L. 47

15.9, 15.10. The Wedderburn-Artin decomposition $R = M_n(D)$ of a simple Artinian ring is unique. Every semisimple ring has finitely many simple nonisomorphic modules. 48

15.18–15.20. Any left Artinian ring R has only finitely many primitive ideals, and each primitive ideal is maximal. Their intersection is the Jacobson radical J, which is nilpotent, and R/J is a semisimple ring. Consequently, any prime left Artinian ring is simple Artinian; any semiprime left Artinian ring is semisimple Artinian. 50, 51

15.21 (Hopkins-Levitzki). Any left Artinian ring is also left Noetherian. 52

15.23. If R is left Artinian and N is a nil subset satisfying the condition that for any a_1, a_2 in N there is $\nu = \nu(a_1, a_2) \in \mathbb{Z}$ with $a_1a_2 + \nu a_2 a_1 \in N$, then N is nilpotent. 52

15.26 (Wedderburn’s Principal Theorem). If R is a f.d. algebra over an algebraically closed field F, then $R = S \oplus J$ where S is a subalgebra of R isomorphic to R/J. 54

15A.2 (Jacobson Density Theorem for simple modules). Suppose M is a simple R-module, and $D = \text{End}_R M$. For any $n \in \mathbb{N}$, any D-independent elements $a_1, \ldots, a_n \in M$, and any elements b_1, \ldots, b_n of M, there is $r \in R$ such that $r a_i = b_i$ for $1 \leq i \leq n$. 57

15A.4. If A is a subalgebra of $M_n(F) = \text{End} F^{(n)}$ for F an algebraically closed field, and $F^{(n)}$ is simple as an A-module, then $A = M_n(F)$. 58

15A.5 (Amitsur). $\text{Jac}(R[\lambda]) = 0$ whenever R has no nonzero nil ideals. 58

15A.8 (Amitsur). If R is a division algebra over a field F such that $\dim_F R < |F|$, then R is algebraic over F. 60

15B.4 (Kolchin). If S is a monoid of unipotent matrices of $M_n(F)$ with F algebraically closed field F, then S can be simultaneously triangularized via a suitable change of base. 61
E15.3. A ring R is primitive iff R has a left ideal comaximal with all prime ideals.

E15.6. Any prime ring having a faithful module of finite composition length is primitive.

E15.7. For $W = \text{End}_D M$ and $f \in W$, the left ideal Wf is minimal iff f has rank 1. Also, the set of elements of W having finite rank is an ideal of W, which is precisely $\text{soc}(W)$.

E15.21. For any semiprime ring, $\text{soc}(R)$ is also the sum of the minimal right ideals of R.

E15.24. $\text{Jac}(R)$ is a quasi-invertible ideal that contains every quasi-invertible left ideal of R.

E15.26. $\text{Jac}(R)$ is the intersection of all maximal right ideals of R.

E15A.1. For any faithful simple R-module M that is infinite-dimensional over $D = \text{End}_R M$, and each n, $M_n(D)$ is isomorphic to a homomorphic image of a subring of R.

E15A.3. If W is a finite normalizing extension of R, then any simple W-module is a finite direct sum of simple R-modules.

E15A.4. $\text{Jac}(R) \subseteq \text{Jac}(W)$ for any finite normalizing extension W of R.

E15A.6. $R \cap \text{Jac}(W) \subseteq \text{Jac}(R)$ whenever the ring R is a direct summand of W as an R-module.

E15A.8. For any algebra W over a field, every element of $\text{Jac}(W)$ is either nilpotent or transcendental.

E15A.9 (Amitsur). $\text{Jac}(R)$ is nil whenever R is an algebra over an infinite field F satisfying the condition $\dim_F R < |F|$.

E15B.9. Kolchin’s Problem has an affirmative answer for locally solvable groups and for locally metabelian groups.

E15B.12. (Derakhshan). Kolchin’s Problem has an affirmative answer in characteristic 2.

Chapter 16.

16.17. If $L < R$ and $Rs \cap L = 0$ with $s \in R$ left regular, then the left ideals L, Ls, Ls^2, \ldots are independent.
16.23 (Goldie). A ring R has a semisimple left ring of fractions iff R satisfies the following two properties: (i) $Rs<_{s}R$ for each regular element s. (ii) Every large left ideal L of R contains a regular element.

16.24. Any ring R satisfying ACC(ideals) has only finitely many minimal prime ideals, and some finite product of them is 0.

16.26 (Levitzki). Any semiprime ring satisfying ACC on left ideals of the form $\{\ell(r) : r \in R\}$ has no nonzero nil right ideals and no nonzero nil left ideals.

16.29 (Goldie). Any semiprime left Noetherian ring has a semisimple left ring of fractions. Any prime left Noetherian ring R has a simple Artinian left ring of fractions.

16.31. Generalization of Theorem 15.23 to left Noetherian rings.

16.35. Any left Noetherian ring R has IBN.

16.46 (Fitting’s Lemma). If M has finite composition length n, then $M = f^n(M) \oplus \ker f^n$ for any map $f: M \to M$; furthermore, f restricts to an isomorphism on $f^n(M)$ and a nilpotent map on $\ker f^n$.

E16.4 (Levitzki). A ring R is semiprime iff $N(R) = 0$.

E16.6. The upper nilradical of R is the intersection of certain prime ideals, and is a nil ideal that contains all the nil ideals of R.

E16.8. If R is weakly primitive, then R is a primitive ring.

E16.15 (Goldie’s Second Theorem). A ring R has a semisimple left ring of fractions iff R is a semiprime left Goldie ring.

E16.16 (Goldie’s First Theorem). The ring of fractions of any prime Goldie ring is simple Artinian.

E16.17. $ab = 1$ implies $ba = 1$ in a left Noetherian ring.

E16.25 (Martindale). If R is a prime ring and $a, b \in R$ with $arb = bra$ for all $r \in R$, then $a = cb$ for some c in the extended centroid.

E16.29. (Wedderburn-Krull-Schmidt-Azumaya-Beck). For any finite direct sum of LE-modules, every other decomposition as a direct sum of indecomposables is the same, up to isomorphism and permutation of summands. In particular, this is true for modules of finite composition length.
E16.30. Suppose the ring $R = Re_1 \oplus \cdots \oplus Re_t = Re'_1 \oplus \cdots \oplus Re'_t$ is written in two ways as a direct sum of indecomposable left ideals. Then $t' = t$ and there is some invertible element $u \in R$ and permutation π such that $e'_{\pi(i)} = ue_iu^{-1}$ for each $1 \leq i \leq t$.

E16.33. A graded module M is gr-semisimple iff every graded submodule has a graded complement.

E16.34 (Graded Wedderburn-Artin.). Any gr-left Artinian, gr-simple ring has the form $\text{END}(M)_D$, where M is f.g. over a gr-division ring D.

E16.36 (Graded First Goldie Theorem – Goodearl and Stafford). If R is graded by an Abelian group G and is gr-prime and left gr-Goldie, then R has a gr-simple left gr-Artinian graded ring of (left) fractions.

E16.40 (Bergman). $\text{Jac}(R)$ is a graded ideal of any \mathbb{Z}-graded ring R.

E16A.4. The quantized matrix algebra, quantum affine space, and the quantum torus all are Noetherian domains.

Chapter 17.

17.12. Any domain R is either an Ore domain or contains a free algebra on two generators.

17.16 (The Pingpong Lemma). Suppose a group G acts on a set S, and $A, B \subseteq G$. If S has disjoint subsets Γ_A and Γ_B satisfying $a\Gamma_B \subseteq \Gamma_A$, $b\Gamma_A \subseteq \Gamma_B$, and $b\Gamma_B \cap \Gamma_B \neq \emptyset$ for all $a \in A \setminus \{e\}$ and $b \in B \setminus \{e\}$, then A and B interact freely.

17.20. If $0 \rightarrow M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} \cdots \rightarrow M_k \rightarrow 0$ is an exact sequence of f.g. modules over a left Artinian ring, then $\sum_{j=1}^k (-1)^j \ell(M_j) = 0$.

17.25 (König Graph Theorem). Any infinite connected, directed graph has an infinite path.

17.38. The Hilbert series of a commutative affine algebra is rational.

17.49. Any commutative affine algebra has integral Gel’fand-Kirillov dimension, equal both to its Krull dimension and to its transcendence degree. For any algebra with filtration whose associated graded algebra is commutative affine, the Gel’fand-Kirillov dimension is an integer.

17.55 (Bergman Gap Theorem). The Gel’fand-Kirillov dimension cannot be between 1 and 2.
17.60. The growth rate of each nilpotent group is polynomially bounded. 115

17.61 (Milnor-Wolf). Any f.g. virtually solvable group of subexponential growth is virtually nilpotent. 117

17.66. Every f.g. linear group of subexponential growth is of polynomial growth. 120

17A.9 (Nielsen-Schreier). Every subgroup of a free group is free. 124

17B.5 (The Diamond Lemma). A reduction procedure is reduction-unique on A iff for each $r \in A$ and any reductions ρ, τ, the elements $\rho(r)$ and $\tau(r)$ have chains of reductions arriving at the same element. 128

17B.7. The word problem is solvable in any group satisfying Dehn’s algorithm. 130

17B.13 (Bergman). Any set of relations can be expanded to a set of relations for which any given word h becomes reduction-unique. 133

17C.2. The generalized BP has a positive answer for solvable groups. 134

E17.8. The free group on a countably infinite set can be embedded into the free group G on two letters. 181

E17.9. The free group G can be embedded into $GL(2, F)$. 181

E17.13. $D[[M]]$ is a division ring, for any ordered group M and any division ring D. 181

E17.22. γ_t/γ_{t+1} is a free f.g. Abelian group, for every t. 182

E17.23 (Magnus-Witt). The free group G is an ordered group. 182

E17.24. $F[[G]]$ is a division ring containing the free algebra $F\{X\}$. 182

E17.31 (Generalized Artin-Tate Lemma). If is an affine algebra is f.g. over a commutative (not necessarily central) subalgebra C, then C is affine. 183

E17.32. Any affine algebra that is f.g. over a commutative subalgebra has a rational Hilbert series with respect to a suitable generating set. 183

E17.37. $GK(R/I) \leq GK(R) - 1$ for any $I \triangleleft R$ containing a regular element of R. 183

E17.44. Under the hypotheses of Theorem 17.60, the nilpotent group N has polynomial growth of degree $\sum_j jd_j$. 184
E17A.1. The symmetric group \(S_n \) has the Coxeter presentation \(\sigma_i^2 = 1, \)
\((\sigma_i \sigma_{i+1})^3 = 1, \) and \((\sigma_i \sigma_j)^2 = 1 \) for \(|j - i| > 1\).

E17A.7. Any subgroup of index \(m \) in a free group of rank \(n \) is free of rank \(mn - m + 1 \).

E17A.9. Any group \(G \) is the fundamental group of a complex \(K \) of dimension 2. \(G \) is finitely presented iff \(K \) can be taken finite.

E17B.1. Any set of relations can be expanded to a Gröbner-Shirshov basis.

E17C.1. The Burnside group \(B(m, 3) \) is finite for all \(m \).

E17C.3. The Burnside group \(B(m, 4) \) is finite for all \(m \).

E17C.7, E17C.8. Grigorchuk’s group is infinite but torsion; every element has order a power of 2.

Chapter 18.

18.4. Any balanced map \(\psi: M \times N \to G \) yields a group homomorphism \(\overline{\psi}: M \otimes N \to G \) given by \(\overline{\psi}(a \otimes b) = \psi(a, b) \).

18.5. For any map \(f: M \to M' \) of right \(R \)-modules and map \(g: N \to N' \) of \(R \)-modules, there is a group homomorphism \(f \otimes g: M \otimes_R N \to M' \otimes N' \) given by \((f \otimes g)(a \otimes b) = f(a) \otimes g(b) \).

18.11. \((M_1 \oplus \ldots \oplus M_t) \otimes N \cong (M_1 \otimes N) \oplus \cdots \oplus (M_t \otimes N) \).

18.12. Suppose \(M \) is a free right \(R \)-module with base \(B = \{b_i : i \in I\} \), and \(N \) is an \(R \)-module. Then every element of \(M \otimes N \) can be written uniquely in the form \(\sum_{i \in I} b_i \otimes v_i \) for \(v_i \) in \(N \).

18.13. \(C^{(m)} \otimes_C C^{(n)} \cong C^{(mn)} \).

18.15. \(M_1 \otimes_{R_2} (M_2 \otimes_{R_3} M_3) \cong (M_1 \otimes_{R_2} M_2) \otimes_{R_3} M_3 \).

18.16. \(\tau: A \otimes_C B \cong B \otimes_C A \).

18.21. If \(A \) and \(B \) are \(C \)-algebras, then \(A \otimes_C B \) is also a \(C \)-algebra with multiplication \((a \otimes b)(a' \otimes b') = aa' \otimes bb' \) and \(c(a \otimes b) = ca \otimes b \).

18.25. The following algebra isomorphisms hold for any \(C \)-algebras: \(A \otimes_C C \cong C \otimes_C A \cong A; \ A_1 \otimes A_2 \cong A_2 \otimes A_1; \ A_1 \otimes (A_2 \otimes A_3) \cong (A_1 \otimes A_2) \otimes A_3. \)

18.29'. A finite field extension \(K \supseteq F \) is separable iff the ring \(K \otimes_{F} K \) is semisimple.
18.31. Any splitting field K of an F-algebra R contains some subfield K_0 f.g. over F such that K_0 also splits R.

18.33. If R is simple with center a field F, and W is an F-algebra, then any nonzero ideal I of the tensor product $R \otimes_F W$ contains $1 \otimes w$ for some $w \in W$. In particular, if W is simple, then $R \otimes_F W$ is also simple.

18.36. $M_m(C) \otimes M_n(C) \cong M_{mn}(C)$.

18.41. The tensor product of two integral domains over an algebraically closed field F is an integral domain.

18.42. If X and Y are affine varieties over an algebraically closed field F, then $X \times Y$ is an affine variety, with $F[X] \otimes F[Y] \cong F[X \times Y]$.

18.44. $\Phi : \text{Hom}_R(A \otimes_S B, C) \cong \text{Hom}_S(B, \text{Hom}_R(A, C))$.

E18.2. $(\bigoplus_{i \in I} M_i) \otimes N \cong \bigoplus_{i \in I} (M_i \otimes N)$.

E18.7. If $K \rightarrow N \rightarrow P \rightarrow 0$ is an exact sequence of right R-modules, then $K \otimes M \rightarrow N \otimes M \rightarrow P \otimes M \rightarrow 0$ is also exact.

E18.12. $C(V, Q)$ has an involution (\ast) satisfying $v^* = v$, $\forall v \in V$.

E18.16. For any separable field extension K of F, $K \otimes_F K$ has a simple idempotent e with $(a \otimes b) e = (b \otimes a) e$ for all $a, b \in K$.

E18.18 (Wedderburn’s Principal Theorem). Any finite-dimensional algebra R over a perfect field F has a Wedderburn decomposition $R = S \oplus J$ for a suitable semisimple subalgebra $S \cong R/J$ of R.

E18.19. The tensor product of two reduced algebras over an algebraically closed field is reduced.

E18.23 (Amitsur). If R is an algebra without nonzero nil ideals over a field F, then $\text{Jac}(R \otimes_F F(\lambda)) = 0$.

E18.24. $K \otimes_F \text{Jac}(R) \subseteq \text{Jac}(K \otimes_F R)$ whenever $K \supseteq F$ are fields and R is an algebra over F, equality holding if K/F is separable.

Chapter 19.

19.18. For any vector space V over a field F, there is a 1:1 correspondence among: group representations $\rho : G \rightarrow \text{GL}(V)$, algebra representations $F[G] \rightarrow \text{End}_F V$, G-space structures on V, and $F[G]$-module structures on V.

19.22. A group representation ρ of degree n is reducible iff there is a representation τ equivalent to ρ for which each matrix $\tau(g)$, $g \in G$, has the form (19.4) (for suitable $1 \leq m < n$).

19.26 (Maschke’s Theorem). $F[G]$ is a semisimple ring, for any finite group G whose order is not divisible by $\text{char}(F)$.

19.33. Any finite group G has a splitting field that is finite over \mathbb{Q}.

19.36. For any splitting field F of the group G, a representation ρ of degree n is irreducible iff $\{\rho(g) : g \in G\}$ spans $M_n(F)$.

19.38. The following are equivalent, for F a splitting field of a finite group G: (i) G is Abelian; (ii) The group algebra $F[G]$ is commutative; (iii) $F[G] \cong F \times F \times \cdots \times F$; (iv) Every irreducible representation of G has degree 1.

19.42. $\text{Cent}(C[G])$ is free as a C-module.

19.43. The following numbers are equal, for F a splitting field of a finite group G: (i) the number of conjugacy classes of G; (ii) the number of inequivalent irreducible representations of G; (iii) the number of simple components of $F[G]$; (iv) $\dim_F \text{Cent}(F[G])$.

19.48. Any complex irreducible representation of G of degree n_i either is extended from a real irreducible representation or corresponds to a real irreducible representation of degree $2n_i$.

19.61. If $\text{char}(F) = 0$ or $\text{char}(F) > n$, then $I_{\lambda} = \bigoplus_{T_{\lambda} \text{standard}} F[S_n]_{eT_{\lambda}}$.

19.64 (Frame, Robinson, and Thrall). $f_{\lambda} = \frac{n!}{\prod_{k_{ij}} k_{ij}}$.

19A.4. If $\{(a, b) : a \in A, b \in B\}$ is finite for $A, B \triangleleft G$, then the group (A, B) is finite.

19A.9 (Burnside, Schur). In characteristic 0, every linear group of finite exponent is finite, and any f.g. periodic linear group is finite.

19A.12. Every open subgroup of a quasicompact group is closed of finite index.

19A.16. Every continuous f.d. representation of a compact (Hausdorff) group is a finite direct sum of continuous irreducible representations.

19A.19. Any Lie homomorphism $\phi: G \to H$ of Lie groups (G connected) is uniquely determined by its tangent map $d_e\phi$.
19B.4. In any algebraic group G, each open subgroup of G is closed of finite index, each closed subgroup H of G of finite index is open, and G_e is clopen of finite index in G. 239

19B.11. If $H \leq G$, then $\overline{H} \leq G$; furthermore, if H contains a nonempty open subset U of \overline{H}, then H is closed. 240

19B.19. Every affine algebraic group is linear. 243

19B.21 (The Tits alternative). Every f.g. linear group either is virtually solvable or contains a free subgroup. 244

19B.24 (Breuillard-Gelanter). Any f.g. linear group contains either a free subgroup that is Zariski dense (in the relative topology), or a Zariski open solvable subgroup. 248

E19.6 (Schur’s Lemma, representation-theoretic formulation). For F a splitting field for G, $\text{End}_F[G](L_i) \cong F$ and $\text{Hom}_F[G](L_i, L_j) = 0$ for all $i \neq j$, where L_i denotes the module corresponding to ρ_i. 355

E19.13. A representation ρ of finite degree ρ is completely reducible whenever its G-space has a G-invariant Hermitian form. 356

E19.31. $C[G]$ is semiprime, for any group G and any integral domain C of characteristic 0. 358

E19.34 (Herstein; Amitsur). $\text{Jac}(F[G]) = 0$ for any uncountable field F of characteristic 0. 358

E19.42 (Schur’s Double Centralizer Theorem.) Suppose V is any f.d. vector space over a field of characteristic 0. The diagonal action of $\text{GL}(V)$ and the permutation action of S_n on $V^\otimes n = V \otimes \cdots \otimes V$ centralize each other, and provide algebra homomorphisms $\hat{\rho}: F[\text{GL}(V)] \rightarrow \text{End}_F V^\otimes n$ and $\hat{\tau}: F[S_n] \rightarrow \text{End}_F V^\otimes n$. Their respective images are the centralizers of each other in $\text{End}_F V^\otimes n$. 359

E19A.6 (Burnside). Any f.g. periodic linear group is finite. 361

E19A.8 (Schur). Each periodic subgroup of $\text{GL}(n, \mathbb{C})$ consists of unitary matrices with respect to some positive definite Hermitian form. 361

E19A.11 (Jordan). Any unitary subgroup $G \subseteq \text{GL}(n, \mathbb{C})$ has a normal Abelian subgroup of index bounded by $(\sqrt{n} + 1)^{2n^2} - (\sqrt{n} - 1)^{2n^2}$. 362

E19A.16. For any continuous complex representation of degree n of a compact topological group G, the vector space $\mathbb{C}^{(n)}$ has a positive definite G-invariant Hermitian form. 362
E19A.18. Any continuous f.d. representation of G having a positive
definite G-invariant Hermitian form is completely reducible

E19A.30 (Artin’s combing procedure). The kernel of the map $P_n \rightarrow P_{n-1}$
obtained by cutting the n-th strand is the free group of rank $n-1$.

E19A.34. The braid group B_n satisfies $B'_n = (B'_n, B_n)$.

E19B.7. The Tits alternative also over fields of any characteristic.

E19B.14. The commutator group of two closed subgroups of an algebraic
\[G \] group G is closed. In particular, all the derived subgroups of G are closed,
\[G \] and all subgroups in its upper central series are closed.

E19B.16. For F algebraically closed, any connected solvable algebraic
\[G \] subgroup G of $GL(n, F)$ is conjugate to a subgroup of $T(n, F)$.

Chapter 20.

20.5. The characters χ_1, \ldots, χ_t comprise an orthonormal base of \mathcal{R} with
\[G \] respect to the Schur inner product.

20.10. $\sum_{g \in G} \chi_i(ga) \overline{\chi_j(g)} = \frac{\delta_{ij}|G|^{|\chi_i(a)|}}{n_i}$ for each $a \in G$.

20.14 (Schur I). $\delta_{ik}|G| = \sum_{j=1}^t m_j \chi_{ij} \overline{\chi_{kj}}$.

20.15 (Schur II). $\sum_{i=1}^t \chi_{ij} \overline{\chi_{ik}} = \delta_{jk} \frac{|G|}{m_k}$.

20.18 (Frobenius). n_i divides $|G|$ for each i.

20.20. If $\text{gcd}(n_i, m_j) = 1$, then either $\chi_{ij} = 0$ or $|\chi_{ij}| = n_i$.

20.22. In a finite nonabelian simple group, the size of a conjugacy class
cannot be a power (other than 1) of a prime number.

20.24 (Burnside). Every group of order $p^u q^v$ (p, q prime) is solvable.

20.32. The character table of $G \times H$ is the tensor product of the character
tables of G and of H.

20.42 (Frobenius Reciprocity Theorem). For $F \subseteq \mathbb{C}$ a splitting field of
\[G \] a finite group G, if σ is an irreducible representation of a subgroup H and
\[G \] ρ is an irreducible representation of G, then the multiplicity of ρ in σ^G
is the same as the multiplicity of σ in ρ^H.

20.43. For $H < K < G$ and a representation ρ of H, the representations
\[G \] $(\rho^K)^G$ and ρ^G are equivalent, $(\rho_1 \oplus \rho_2)^G$ and $\rho_1^G \oplus \rho_2^G$, are equivalent, and
\[G \] $\rho^G \otimes \sigma$ and $(\rho \otimes \sigma_H)^G$ are equivalent for any representation σ of G.
20.44 (Artin). Every complex character of a group is a linear combination (over \mathbb{Q}) of complex characters induced from cyclic subgroups.

E20.20. n_i divides $[G:Z_i]$ for each i.

E20.27. For any representation ρ of finite degree of a subgroup $H \subseteq G$, the contragredient $(\rho^G)^*$ of the induced representation is equivalent to the induced representation $(\rho^*)^G$.

Chapter 21.

21.21. For F algebraically closed, if L is a Lie subalgebra of $\mathfrak{gl}(n, F)$ and $a = s + n$ is the Jordan decomposition of $a \in L$, then $\text{ad}_a = \text{ad}_s + \text{ad}_n$ is the Jordan decomposition of ad_a.

21.27. If L is a Lie subalgebra of R^- and ad_a is nilpotent for every $a \in L$, then $\text{ad} L$ is nilpotent under the multiplication of R, and L is a nilpotent Lie algebra.

21.29 (Engel). Any Lie algebra $L \subseteq \mathfrak{gl}(n, F)$ of nilpotent transformations becomes a Lie subalgebra of the algebra of strictly upper triangular matrices under a suitable choice of base.

21.32 (Lie). If a Lie subalgebra L of $\mathfrak{gl}(n, F)$ acts solvably on $F^{(n)}$, with F an algebraically closed field, then L acts in simultaneous upper triangular form with respect to a suitable base of $F^{(n)}$.

21.38. If $L \subseteq \mathfrak{gl}(n, F)$ in characteristic 0 such that $\text{tr}(aL') = 0$ for all $a \in L$, then L' is a nilpotent Lie algebra.

21.47 (Cartan’s second criterion). A f.d. Lie algebra L of characteristic 0 is semisimple iff its Killing form is nondegenerate.

21.51. Any f.d. semisimple Lie algebra L of characteristic 0 is a direct sum $\bigoplus S_i$ of simple nonabelian Lie subalgebras S_i, with each $S_i \triangleleft L$, and any Lie ideal of L is a direct sum of some of the S_i.

21.53. The trace bilinear form of any representation ρ of a f.d. semisimple Lie algebra is nondegenerate.

21.54 (Zassenhaus). Every derivation of a f.d. semisimple Lie algebra L of characteristic 0 is inner.
21.57. The Casimir element satisfies \(\text{tr}(c_\rho) = n \) and \([\rho(L), c_\rho] = 0\). 292

21.58 (Weyl). Any f.d. representation of a f.d. semisimple Lie algebra \(L \) (of characteristic 0) is completely reducible. 292

21.61. For any given nilpotent Lie subalgebra \(N \) of a f.d. Lie algebra \(L \), there exists a unique root space decomposition \(L = \bigoplus \mathbb{L}_a \). 295

21.64. \(L_b \perp L_a \) for any roots \(a \neq -b \). 296

21.71, 21.72. Any f.d. semisimple Lie algebra over an algebraically closed field of characteristic 0 has a Cartan subalgebra \(\mathfrak{h} \), which is its own nullspace under the corresponding root space decomposition. The restriction of the Killing form to \(\mathfrak{h} \) is nondegenerate. \(\mathfrak{h} \) is Abelian, and \(\text{ad}_h \) is semisimple for all \(h \in \mathfrak{h} \). 298

21.79. For any root \(a \), \(\dim L_a = \dim L_{-a} = 1 \), and \(k a \) is not a root whenever \(1 < |k| \in \mathbb{N} \). 301

21.80. \(\langle h_1, h_2 \rangle = \sum_{a \neq 0} a(h_1)a(h_2) \), \(\forall h_1, h_2 \in \mathfrak{h} \). 301

21.84. Any simple \(\hat{L}_a \)-module \(V \) has an eigenspace decomposition \(V = V_m \oplus V_{m-2} \oplus \cdots \oplus V_{-(m-2)} \oplus V_m \), where each component \(V_{m-2j} = Fv_j \) is a one-dimensional eigenspace of \(h_a \) with eigenvalue \(m - 2j \). In particular, \(V \) is determined up to isomorphism by its dimension \(m + 1 \). 303

21.88. \([L_a L_b] = L_{b+a} \) whenever \(a, b, \) and \(b + a \) are roots. 305

21.91. \(\langle a, a \rangle > 0 \) and \(\langle a, b \rangle \in \mathbb{Q} \) for all nonzero roots \(a, b \). The bilinear form given by Equation (21.18) restricts to a positive form on \(\mathfrak{h}^* \), the \(\mathbb{Q} \)-subspace of \(\mathfrak{h}^* \) spanned by the roots, and \(\mathfrak{h}^* = \mathfrak{h}^*_0 \otimes _\mathbb{Q} F \). 306

21.96. \(\langle a, b \rangle \leq 0 \) for all \(a \neq b \in P \). 308

21.97. The set of simple roots is a base of the vector space \(V \) and is uniquely determined by the given order on \(V \). 308

21.102. The Cartan numbers \(m_{ij} \) satisfy \(m_{ij}m_{ji} < 4 \). 310

21.103. The Cartan numbers are integers. 311

21.108. Suppose \(S = \{a_1, \ldots, a_n\} \) is a simple root system for the semisimple Lie algebra \(L \). Take \(e_i \in L_{a_i}, e'_i \in L_{-a_i} \), and \(h_i = [e_i f_i] \). Writing any positive root \(a = a_{i_1} + \cdots + a_{i_t} \), let \(x_a = [e_{i_1} e_{i_2} \cdots e_{i_t}] \) and \(y_a = [f_{i_1} f_{i_2} \cdots f_{i_t}] \). Then \(\{h_1, \ldots, h_n\} \) together with the \(x_a \) and \(y_a \) comprise a base of \(L \). 313
21.110. The Lie multiplication table of L (with respect to the base in Theorem 21.108) has rational coefficients.

21.111. The split f.d. semisimple Lie algebra L is simple iff its simple root system is indecomposable.

21.115, 21.116. Any indecomposable generalized Cartan matrix A is of finite, affine, or indefinite type. The symmetric bilinear defined by A is positive definite iff A has finite type, and is positive semidefinite (of corank 1) iff A has affine type.

21B.18, 21B.19. Suppose the composition algebra (A, \ast) is the ν-double of (A, \ast). If A is associative, then A is alternative. If A is associative, then A must be commutative.

21B.22. (Herstein). If R is a simple associative algebra, with $\frac{1}{2} \in R$, then R^+ is simple as a Jordan algebra.

21C.5. (PBW Theorem). The map $\nu_L:L \to U(L)^-$ is 1:1.

E21.10. In characteristic $\neq 2$, the classical Lie algebra B_n is simple for each $n \geq 1$, and C_n and D_n are simple Lie algebras for all $n > 2$.

E21.27 (Herstein). For any associative simple ring R of characteristic $\neq 2$, the only proper Lie ideals of R' are central.

E21.28 (Herstein). If T is an additive subgroup of a simple ring R of characteristic $\neq 2$ such that $[T, R'] \subset T$, then either $T \supset R'$ or $T \subset Z$.

E21.41. The radical of a Lie algebra is contained in the radical of the trace bilinear form with respect to any representation.

E21.42. The Casimir element of an irreducible Lie representation is always invertible.

E21.44 (Whitehead’s First Lemma). For any f.d. Lie module V and linear map $f:L \to V$ satisfying $f([ab]) = af(b) - bf(a)$, $\forall a,b \in L$, there is $v \in V$ such that $f(a) = av$, $\forall a \in L$.

E21.47 (Whitehead’s Second Lemma). For any f.d. semisimple Lie algebra L of characteristic 0 and f.d. Lie module V with $f:L \times L \to V$ satisfying $f(a, a) = 0$ and $\sum_{i=1}^{3} f(a_i, [a_{i+1}, a_{i+2}]) + a_i f(a_{i+1}, a_{i+2}) = 0$, subscripts modulo 3, there is a map $g:L \to V$ with $f(a_1, a_2) = a_1 g(a_2) - a_2 g(a_1) - g([a_1 a_2])$.

E21.48 (Levi’s Theorem). Any f.d. Lie algebra L of characteristic 0 can be decomposed as vector spaces $L = S \oplus I$, where $I = \text{rad} L$ and $S \cong L/I$ is a semisimple Lie subalgebra.
E21.50. $L' \cap \text{rad}(L)$ is Lie nilpotent, for any f.d. Lie algebra L of characteristic 0. 377

E21.60. $(\mathbf{a}, \mathbf{a}) = \sum b \langle \mathbf{a}, \mathbf{b} \rangle^2$ for any root \mathbf{a}. 378

E21.63. The formulas $[e_{j_1} e_{j_2} \cdots e_{j_\ell} h_i] = -\sum_{u=1}^\ell m_{ij_u} [e_{j_1} e_{j_2} \cdots e_{j_u}]$ and $[f_{j_1} f_{j_2} \cdots f_{j_\ell} h_i] = \sum_{u=1}^\ell m_{ij_u} [f_{j_1} f_{j_2} \cdots f_{j_u}]$ hold in Theorem 21.108. 378

E21.67. Every root system of a simple Lie algebra L has a unique maximal root. 379

E21.70. The Weyl group acts transitively on simple root systems. 379

E21.75. Equivalent conditions for an indecomposable, symmetric generalized Cartan matrix to have finite type. 380

E21.79 (Farkas). For $\mathbf{a}_i = (\alpha_{i1}, \ldots, \alpha_{i\ell}), 1 \leq i \leq k$, the system $\sum_j \alpha_{ij} \lambda_j > 0$ of linear inequalities for $1 \leq i \leq k$ has a simultaneous solution over \mathbb{R} iff every non-negative, nontrivial, linear combination of the \mathbf{a}_i is nonzero. 381

E21.80 (The Fundamental Theorem of Game Theory). If there does not exist $x > 0$ in $\mathbb{R}^{(\ell)}$ with $Ax < 0$, then there exists $w \geq 0$ (written as a row) in $\mathbb{R}^{(k)}$ with $wA \geq 0$. 381

E21.81. The generalized Cartan matrix A^t has the same type as A. 381

E21.90, E21.91 (Farkas-Letzter). For any prime ring R with a Poisson bracket, there exists c in the extended centroid of R such that $[a, b] = c\{a, b\}$ for every $a, b \in R$. 383

E21A.3. The Lie product in $T(G)e$ corresponds to the natural Lie product of derivations in Lie(G). 383

E21A.4. $d\varphi: T(G)e \rightarrow T(H)e$ preserves the Lie product. 383

E21A.6. Description of the classical simple Lie algebras as the Lie algebras of the algebraic groups SL, O, and Sp. 384

E21B.3. The base field $K \supset F$ of any algebra can be cut down to a field extension of finite transcendence degree over F. 385
E21B.9 (Moufang). Every alternative algebra satisfies the three identities $a(b(ac)) = (aba)c$, $c(a(ba)) = c(aba)$, and $(ab)(ca) = a(bc)a$. 386

E21B.11 (E. Artin). Any alternative algebra generated by two elements is associative. 386

E21B.19. Any composition F-algebra must be either F itself, the direct product of two copies of F (with the exchange involution), a quadratic field extension of F, a generalized quaternion algebra, or a generalized octonion algebra. 387

E21B.20 (Hurwitz). If C satisfies an identity $\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} z_i^2$, where z_i are forms of degree 2 in the x_i and y_j, then $n = 1, 2, 4, \text{or } 8$. 387

E21B.22 (Zorn). Every f.d. simple nonassociative, alternative algebra is a generalized octonion algebra. 388

E21B.26. The Peirce decomposition of an alternative algebra in terms of pairwise orthogonal idempotents. 388

E21B.29. Any simple alternative algebra A containing three pairwise orthogonal idempotents e_1, e_2, and e_3 is associative. 388

E21B.37 (Glennie). Any special Jordan algebra satisfies the Glennie identity. 389

E21B.39. (Herstein). $S(R, \ast)$ is Jordan simple for any simple associative algebra with involution of characteristic $\neq 2$. 390

E21C.4. $U(L)$ is an Ore domain, for any Lie algebra L of subexponential growth. 391

E21C.13 (Ado). Any f.d. Lie algebra of characteristic 0 is linear. 392

E21C.17. $U_q(sl(2, F))$ is a skew polynomial ring. 393

E21C.21. $U_q(L)$ is a Noetherian domain, for any f.d. semisimple Lie algebra L of characteristic 0. 394

Chapter 22.

22.11. Any connected Dynkin diagram is either A_n, $B_n = C_n$, D_n, E_6, E_7, E_8, F_4, or G_2 of Example 22.2. 342

22.13. If any single vertex of the extended Dynkin diagram of a simple affine Lie algebra is erased, the remaining subdiagram is a disjoint union of Dynkin diagrams (of finite type). 345
22.22. For $i \neq j$, the Coxeter bilinear form restricts to a positive semi-
definite form on the two-dimensional subspace $Fe_i + Fe_j$, which is positive
definite iff $\circ(\sigma_i \sigma_j) < \infty$. 348

22.25. The only abstract Coxeter graphs whose quadratic forms are
positive definite are $A_n, D_n, E_6, E_7,$ and E_8. 350

22.28. (Bernstein, Gel’fand, and Ponomarev). If an abstract Coxeter
graph $(\Gamma; \nu)$ has only finitely many nonisomorphic indecomposable rep-
resentations, then its quadratic form is positive definite. 352

E22.1–E22.4. Construction of the classical Lie algebras from their Dynkin
diagrams. 394

E22.10. For any generalized Cartan matrix A of affine type, any proper
subdiagram of its Dynkin diagram is the disjoint union of Dynkin diagrams
of simple f.d. Lie algebras. 396

E22.19. Any finite reflection group is Coxeter. 397

E22.20. Any two positive systems Φ_1 and Φ_2 are conjugate under some
element of the Weyl group. 398

E22.23. Each $m_{i,j} \in \{2, 3, 4, 6\}$ for any crystallographic group. 398

E22.26. The bilinear form of any finite Coxeter group W is positive
definite. 398

E22.36. Every finite Coxeter group is a reflection group. 400

Chapter 23.

23.11. Any t-alternating polynomial f is an identity for every algebra
spanned by fewer than t elements over its center. 410

23.26 (Razmyslov). There is a 1:1 correspondence between multilinear
central polynomials of $M_n(F)$ and multilinear 1-weak identities that are not
identities. 415

23.31 (Kaplansky). Any primitive ring R satisfying a PI of degree d is
simple of dimension n^2 over its center, for some $n \leq \left\lfloor \frac{d}{2} \right\rfloor$. 418

23.32. A semiprime PI-ring R has no nonzero left or right nil ideals. 418

23.33. Any semiprime PI-ring R has some PI-class n, and every ideal A
intersects the center nontrivially. 419

23.34 (Posner et al). The ring of central fractions of a prime PI-ring R
is simple and f.d. over the field of fractions of Cent(R). 419
23.35. Extension of Theorem 15.23 to PI-rings.

23.39. Suppose R has PI-class n and center C, and $1 \in h_n(R)$. Then R is a free C-module of rank n; also, there is a natural 1:1 correspondence between \{ideals of R\} and \{ideals of C\}.

23.48. If R is an algebra over an infinite field F, and H is any commutative F-algebra, then R is PI-equivalent to $R \otimes_F H$.

23.51. The algebra of generic matrices is the relatively free PI-algebra with respect to $\mathcal{I} = \mathcal{M}_{n,C}$.

23.57. Suppose R satisfies a PI of degree d, and $1 + \frac{1}{v} \leq \frac{2}{e(d-1)^2}$, where $e = 2.71828 \cdots$. Then any multilinear polynomial of a Young tableau whose shape contains a $u \times v$ rectangle is an identity of R.

23A.3 (Shirshov’s Dichotomy Lemma). For any ℓ, d, k, there is $\beta \in \mathbb{N}$ such that any word w of length $\geq \beta$ in ℓ letters is either d-decomposable or contains a repeating subword of the form u^k with $1 \leq |u| \leq d$.

23A.5. Any hyperword h is either d-decomposable or has the form vu^∞ for some initial subword v and some subword u with $|u| < d$.

23A.6 (Shirshov’s First Theorem). If $R = C \{r_1, \ldots, r_\ell\}$ satisfies a PI, and each word in the r_i of length $\leq d$ is integral over C, then R is f.g. as a C-module.

23A.7. If R is affine without 1 and satisfies a PI of degree d, and if each word in the generators of length $\leq d$ is nilpotent, then R is nilpotent.

23A.10. Any prime PI-algebra and its characteristic closure have a common nonzero ideal.

23A.11 (Kemer). Any affine PI-algebra over a field F of characteristic 0 is PI-equivalent to a finite-dimensional algebra.

23A.19. For any PI algebra R, the following assertions are equivalent for any multilinear polynomial f of degree n: $f \in \text{id}(R)$; $f_I^* \in \text{id}_2(R \otimes G)$ for some subset $I \subseteq \{1, \ldots, n\}$; $f_I^* \in \text{id}_2(R \otimes G)$ for every subset of $\{1, \ldots, n\}$.

23A.22 (Kemer). Let R be a PI-superalgebra, and $f = f(x_1, \ldots, x_n) = \sum_{\pi \in S_n} \alpha_{\pi} x_{\pi 1} \cdots x_{\pi n}$. Then $f \in \text{id}(G(R))$ iff $f_I^* \in \text{id}_2(R)$ for every subset $I \subseteq \{1, \ldots, n\}$.

23A.23 (Kemer). There is a 1:1 correspondence from \{varieties of superalgebras\} to \{varieties of algebras\} given by $R \mapsto G(R)$.
23B.5 (Kostrikin-Zelmanov). Over a field of characteristic p, any f.g. Lie algebra satisfying the Engel identity e_{p-1} is Lie nilpotent.

442

23B.6 (Zelmanov). If a f.g. restricted Lie algebra L over a field of characteristic p satisfies the Engel identity e_n and all of its partial linearizations, then L is Lie nilpotent.

442

23B.13. The Lie algebra L of a nilpotent group G is indeed a Lie algebra and is \mathbb{N}-graded in the sense that $[L_iL_j] \subseteq L_{i+j}$. L is Lie nilpotent of the same index t as the nilpotence class of the group G.

444

23B.16 (Kostrikin and Zelmanov). Any sandwich algebra is Lie nilpotent.

446

E23.4. Any algebra that is f.g. as a module over a commutative affine subalgebra is representable.

563

E23.6. The Jacobson radical of a representable affine algebra is nilpotent.

564

E23.16. Every identity of an algebra over a field of characteristic 0 is a consequence of its multilinearizations.

565

E23.17. Over an infinite field, every identity is a sum of completely homogeneous identities.

565

E23.22 (Amitsur-Levitzki). The standard polynomial s_{2n} is an identity of $M_n(C)$ for any commutative ring C.

566

E23.24. Every PI-algebra has IBN.

566

E23.26 (Bell). Every prime affine PI-algebra has a rational Hilbert series.

566

E23.30 (Amitsur). Any PI-algebra R satisfies an identity s_d^k.

566

E23.32. If algebras R_1 and R_2 are PI-equivalent, then so are $M_n(R_1)$ and $M_n(R_2)$.

567

E23.36 (Regev). In characteristic 0, the T-ideal $\text{id}(G)$ is generated by the Grassmann identity.

567

E23.40 (Regev). $M_n(G(p))$ satisfies the identity $s_{2n}^{p^2p+1}.

568

E23.42 (Kemer). In any F-algebra, a suitable finite product of T-prime T-ideals is 0. Any T-ideal has only finitely many T-prime T-ideals minimal over it.

568
E23B.1. Any simple alternative, nonassociative algebra satisfies the central polynomial $[x, y]^2$.

E23B.4. Any Lie algebra of characteristic 3 satisfying the Engel ad-

E23B.6. For any nilpotent p-group G of exponent $n=p^k$, the Lie algebra $L_1(G)$ satisfies the multilinearized n-Engel identity \tilde{e}_n and some weak Engel condition $e_{S,2n}$.

E23B.14 (Key step in proving Theorem 23B.16). An enveloping algebra R of a Lie algebra L is nilpotent whenever R is generated by a finite set of 1-thick sandwiches.

E23B.17 (Zelmanov). If a f.g. restricted Lie algebra L satisfies various Engel-type conditions, then its associative enveloping algebra R (without 1) is nilpotent.

Chapter 24.

24.10. If R_1 and R_2 are csa’s, then $R_1 \otimes_F R_2$ is also a csa.

24.14. If R is a csa, then $\Phi: R \otimes_F R^{\text{op}} \rightarrow \text{End}_F R$ is an isomorphism.

24.15. The Brauer group $\text{Br}(F)$ is a group, where $[R]^{-1} = [R]^{\text{op}}$.

24.23, 24.24. $\text{End}_K R \cong C_R(K) \otimes_F R^{\text{op}}$ as K-algebras, for any F-subfield K of R. $C_R(K)$ is a K-csa and $[C_R(K):F] = [R:K]$.

24.25. $R \otimes_K K \sim C_R(K)$ in $\text{Br}(K)$.

24.32 (Double Centralizer Theorem). $C_R(K) \cong A \otimes_K C_R(A)$ and $[A:F][C_R(A):F] = n^2$, for any simple F-subalgebra A of a csa R, where $K = \text{Cent}(A)$.

24.34 (Index Reduction Theorem). The index reduction factor divides the g.c.d. of $\text{ind}(R)$ and $m = [L:F]$.

24.40 (Skolem-Noether Theorem). Suppose A_1 and A_2 are isomorphic simple subalgebras of a csa R. Any F-algebra isomorphism $\varphi: A_1 \rightarrow A_2$ is given by conjugation by some $u \in R^\times$.

24.42 (Wedderburn). Every finite division ring is a field.

24.44. A csa R of degree n over an infinite field F is split iff R contains an element of degree n whose minimal polynomial has a linear factor.

24.48'. $(K, \sigma, \beta_1) \otimes (K, \sigma, \beta_2) \sim (K, \sigma, \beta_1 \beta_2)$.
24.50. Any F-csa R is PI-equivalent to $M_n(F)$ for $n = \deg R$. 465

24.51 (Koethe-Noether-Jacobson). Any separable subfield L of a cda D is contained in a separable maximal subfield of D. 465

24.52. Every csa is similar to a crossed product. 466

24.54. $UD(n, F)$ is a division algebra of degree n (over its center) for every n and every field F of characteristic prime to n. 467

24.57. If D is a cda of degree p^aq with p prime, $p \nmid q$, then there is a field extension L of F with $p \nmid [L : F]$, as well as a splitting field $L_u \supseteq L$ of D together with a sequence of subfields $L_0 = L \subset L_1 \subset L_2 \subset \cdots \subset L_u$ for which $\text{ind}(D \otimes_F L_i) = p^{u-i}$ for each $0 \leq i \leq u$, and each L_i/L_{i-1} is cyclic Galois of dimension p. 468

24.62. $\exp(R)$ divides $\text{ind}(R)$. If a prime number p divides $\text{ind}(R)$, then p divides $\exp(R)$. 469

24.66. Any cda D is isomorphic to the tensor product of cda’s of prime power index. 470

24.68 (Wedderburn). Suppose D is a cda. If $a \in D$ is a root of a monic irreducible polynomial $f \in F[\lambda]$ of degree n, then $f = (\lambda - a_n) \cdots (\lambda - a_1)$ in $D[\lambda]$, where each a_i is a conjugate of a. 472

24.73, 24.74. For any Galois extension E of F, $\text{cor}_{E/F}$ induces a homomorphism of Brauer groups, and $\text{cor}_{E/F} \text{res}_{E/F} R \cong R \otimes [E:F]$. 475

24.82 (Cohn-Wadsworth). A cda D has a valuation extending a given valuation v on F, iff v extends uniquely to a valuation of each maximal subfield of D. 480

24.85 (Hasse). Any cda D of degree n over a local field is a cyclic algebra, having a maximal subfield K isomorphic to the unramified extension of F of dimension n. 481

E24.1 (Frobenius). The only \mathbb{R}-cda other than R is \mathbb{H}. 572

E24.8 (Wedderburn’s criterion). A cyclic algebra (K, σ, β) of degree n has exponent n, if β^j is not a norm from K for all $1 \leq j < n$. 573

E24.25. $(K, G, (c_{\sigma, \tau})) \otimes (K, G, (d_{\sigma, \tau})) \sim (K, G, (c_{\sigma, \tau} d_{\sigma, \tau})).$ 575

E24.31. Any p-algebra is split by a purely inseparable, finite-dimensional field extension. 575
E24.32. If UD(n, F) is a crossed product with respect to a group G, then every F-csa of degree n is a crossed product with respect to G. 576

E24.38. Division algebras of all degrees exist in any characteristic. 577

E24.42. When deg D = 3, any element of reduced norm 1 is a multiplicative commutator. 577

E24.43. When deg D = 3 and char(F) \neq 3, any element of reduced trace 0 is an additive commutator. 577

E24.48 (The Projection Formula). cor_{L/F}(a, b; L) \sim (a, N_{L/F}(b)) when a \in F. 578

E24.49 (Rosset). Any cda D of degree p is similar to the corestriction of a symbol algebra. 578

E24.51. Br(F) is divisible whenever F has enough m-roots of 1. 578

E24.54. e(D/F)f(D/F) \leq [D:F], equality holding when the valuation is discrete and the field F is complete. 579

E24.58. D = (K, \sigma, \pi^n) in Theorem 24.85. 579

E24A.7. (Plücker). The Brauer-Severi variety is a projective variety. 580

E24A.8. A geometric criterion for an n-dimensional subspace of a csa of degree n to be a left ideal. 580

Chapter 25.

25.10. Equivalent conditions for an R-module to be projective. 494

25.11. A direct sum \textstyle \bigoplus P_i of modules is projective iff each of the P_i is projective. 494

25.12'. A ring R is semisimple iff every short exact sequence of R-modules splits, iff every R-module is projective. 495

25.13 (Dual Basis Lemma). An R-module P = \textstyle \sum Ra_i is projective iff there are R-module maps h_i: P \to R satisfying a = \sum_{i \in I} h_i(a)a_i, \forall a \in P, where, for each a, h_i(a) = 0 for almost all i. 495

25.24. If P and Q are modules over a commutative ring C such that \textstyle P \otimes Q \cong C^{(n)}, then P is projective. 501
25.38 (The Snake Lemma). Any commutative diagram
\[
\begin{array}{c}
A'' \xrightarrow{f_1} A_1 \xrightarrow{g_1} A'_1 \xrightarrow{} 0 \\
\downarrow d'' \quad \downarrow d \quad \downarrow d' \\
0 \xrightarrow{} A''_2 \xrightarrow{f_2} A_2 \xrightarrow{g_2} A'_2 \\
\end{array}
\]
gives rise to an exact sequence \(\ker d'' \rightarrow \ker d \rightarrow \ker d' \rightarrow \text{coker } d'' \rightarrow \text{coker } d \rightarrow \text{coker } d' \).

25.44. For any exact sequence \(0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0\) of modules and respective projective resolutions \((P', d')\) and \((P'', d'')\) of \(M'\) and \(M''\), there exists a projective resolution \((P, d)\) of \(M\), such that \(P_n = P'_n \oplus P''_n\) for each \(n\), and the three projective resolutions form a commutative diagram.

25.45. Any short exact sequence \(0 \rightarrow (A'', d'') \xrightarrow{f} (A, d) \xrightarrow{g} (A', d') \rightarrow 0\) of complexes gives rise to a long exact sequence of the homology groups
\[
\cdots \rightarrow H_{n+1}(A'') \xrightarrow{f_*} H_{n+1}(A) \xrightarrow{g_*} H_{n+1}(A') \xrightarrow{\partial_*} H_n(A'') \xrightarrow{f_*} H_n(A) \rightarrow \cdots
\]
where \((\partial_*)_{n+1}: H_{n+1}(A') \rightarrow H_n(A'')\) is obtained via the Snake Lemma.

25.50, 25.51. Given a map \(f: M \rightarrow N\) of modules, a resolution \(A\) of \(N\), and a projective resolution \(P\) of \(M\), one can lift \(f\) to a chain map \(f: P \rightarrow A\) that is unique up to homotopy equivalence. Consequently, any two projective resolutions of a module \(M\) are homotopy equivalent.

25.54. A right exact covariant functor \(F\) is exact iff \(L_1 F = 0\), in which case \(L_n F = 0\) for all \(n\).

25.58. The direct sum \(\bigoplus M_i\) of right modules is flat iff each \(M_i\) is flat.

25.59. Every projective module \(P\) is flat.

25.67 (Shapiro’s Lemma). \(H_n(G, M^L) \cong H_n(L, M)\) for each \(L\)-module \(M\) and all \(n\); \(H^n(G, \text{Coind}^L(G)(M)) \cong H^n(L, M)\) for all \(n\).

25A.8. An \(R\)-module \(M\) is a generator in \(\text{R-Mod}\) iff \(T(M) = R\).

25A.14. If \(R\) and \(R'\) are Morita equivalent rings, then there is an \(R\)-progenerator \(P\) such that \(R' \cong (\text{End}_R P)\text{ op}\).

25A.19 (Morita’s Theorem). Two rings \(R, R'\) are Morita equivalent iff there is an \(R\)-progenerator \(M\) such that \(R' \cong (\text{End}_R M)\text{ op}\); in this case the categorical equivalence \(\text{R-Mod} \rightarrow R'\text{-Mod}\) is given by \(M^* \otimes_R -\).
25A.19’. Notation as in Morita’s Theorem, M is also a progenerator in $\text{Mod-}R'$.

25B.6. The separability idempotent e is indeed an idempotent, and $(r \otimes 1)e = (1 \otimes r)e$ for all $r \in R$. Conversely, if there exists an idempotent $e \in R^e$ satisfying this condition, then R is separable over C, and e is a separability idempotent of R.

25B.9. If a module P over a separable C-algebra R is projective as a C-module, then P is projective as an R-module.

25B.10. If R is separable over a field F, then R is separable in the classical sense; i.e., R is semisimple and $R \otimes_F \bar{F}$ is semisimple where \bar{F} is the algebraic closure of F.

25B.15. If R is separable over its center C, then any maximal ideal B of R has the form AR, where $A = B \cap C \triangleleft C$, and R/AR is central simple over the field C/A.

25B.17. Equivalent conditions for a C-algebra R to be Azumaya.

25B.20 (Artin-Procesi). A C-algebra R is Azumaya of rank n^2 iff R satisfies all polynomial identities of $M_n(\mathbb{Z})$, and no homomorphic image of R satisfies the standard identity s_{2n-2}. (Other equivalent PI-conditions are also given.)

25C.8. Any basic f.d. algebra with $J^2 = 0$ is a homomorphic image of the path algebra $\mathcal{P}(R)$.

25C.11 (Gabriel). Suppose R is a f.d. algebra over an algebraically closed field and $J^2 = 0$. Then R has finite representation type iff its quiver (viewed as an undirected graph) is a disjoint union of Dynkin diagrams of types $A_n, D_n, E_6, E_7,$ or E_8.

25C.17. Any F-subalgebra R of $M_n(F)$ can be put into block upper triangular form (with respect to a suitable change of base of $F^{(n)}$).

E25.6. Every submodule of a projective module over a hereditary ring is projective.

E25.7. A fractional ideal P of an integral domain C is invertible (as a fractional ideal) iff P is projective as a module.

E25.9, E25.10 (Bourbaki). An example of a module that is invertible and thus projective, but not principal.

E25.17. Equivalent conditions for a module over a commutative ring to be invertible.
E25.20 (Schanuel’s Lemma). If $0 \to K_i \to P_i \to M \to 0$ are exact with P_i projective for $i = 1, 2$, then $P_1 \oplus K_2 \cong P_2 \oplus K_1$.

E25.24. $\text{pd}_{R[\lambda]} M \leq \text{pd}_R M + 1$ for any $R[\lambda]$-module M.

E25.25. (Eilenberg). For any projective module P, the module $P \oplus F$ is free for some free module F.

E25.28. (Baer’s criterion). To verify injectivity, it is enough to check Equation (25.5) for $M = R$.

E25.37. $P^* = \text{Hom}_C(P, E)$ is injective, for any flat right R-module P and any injective C-module E.

E25.39. Any module has an injective hull.

E25.45. For any adjoint pair (F, G) of functors, F is right exact and G is left exact.

E25.47. Any homological δ-functor defined by a bifunctor is independent of the choice of component.

E25.53. The homology functor is a universal δ-functor.

E25.55 (Generic flatness). If $S^{-1}M$ is free as an $S^{-1}C$-module, then there is $s \in S$ such that $M[s^{-1}]$ is free as a $C[s^{-1}]$-module.

E25.56. Every finitely presented flat module is projective.

E25.58. Group algebras over a field are quasi-Frobenius.

E25.61. $\text{gl dim } R = \sup \{ n : \text{Ext}^n(M, N) \neq 0 \text{ for all } R\text{-modules } M, N \} = \sup \{ \text{injective dimensions of all } R\text{-modules} \}$.

E25.65. $\text{Ext}^1(M, N)$ can be identified with the equivalence classes of module extensions $0 \to N \to E \to M \to 0$.

E25.69. The corestriction map is compatible with the transfer in the cohomology of $H^2(G, K^\times)$.

E25.71. $H^1(L, M) = \text{Deriv}(L)/\text{InnDeriv}(L)$ for any Lie algebra L.

E25A.6. Morita equivalent commutative rings are isomorphic.

E25A.9. Properties of Morita contexts with τ, τ' onto.
E25B.6. If $H^2(R,_)=0$ and R has a nilpotent ideal N such that R/N is separable, then R has a subalgebra $S \cong R/N$ that is a complement to N as a C-module. 591

E25B.11. $0 \to M^R \to M \to \text{Deriv}_C(R,M) \to \text{Ext}^1_{R^e}(R,M) \to 0$ is an exact sequence. 592

E25B.12. Equivalent conditions for an algebra to be separable, in terms of derivations. 593

E25B.14 (Braun). A C-algebra R is Azumaya, iff there are $a_i,b_i \in R$ such that $\sum a_i b_i = 1$ and $\sum a_i R b_i \subseteq C$. 593

E25B.17. Any Azumaya algebra is a finite direct product of algebras of constant rank when the base ring has no nontrivial idempotents. 593

Chapter 26.

26.21 (The Fundamental Theorem of Hopf Modules). Any Hopf module M is isomorphic to $H \otimes M^{co H}$ as Hopf modules (the latter under the “trivial action” $h'(h \otimes a) = (h'h \otimes a)$). 558

26.28 (Nichols-Zoeller [NiZ]). If K is a Hopf subalgebra of a f.d. Hopf algebra H, then H is free as a K-module, and $\dim K \mid \dim H$. 561

26.30. A f.d. Hopf algebra H is semisimple iff $\varepsilon(1_H^1) \neq 0$. 562

E26.3, E26.5. For any algebra A and coalgebra C, $\text{Hom}(C,A)$ becomes an algebra under the convolution product (\ast). If H is a Hopf algebra, then its antipode S is the inverse to 1_H in $\text{Hom}(H,H)$ under the convolution product. $S(ab) = S(b)S(a)$, $\Delta \circ S = \tau \circ (S \otimes S) \circ \Delta$, and $\varepsilon \circ S = \varepsilon$. 594

E26.16 (Fundamental Theorem of Comodules). Any finite subset of a comodule M (over a coalgebra C) is contained in a finite-dimensional submodule of M. 595

E26.17 (Fundamental Theorem of Coalgebras). Any finite subset of a coalgebra C is contained in a f.d. subcoalgebra of C. 595

E26.28. The following equations hold for $R = \sum a_i \otimes b_i$ in a quasi-triangular Hopf algebra: $R^{-1} = \sum S(a_i) \otimes b_i$; $\sum \varepsilon(a_i)b_i = \sum a_i \varepsilon(b_i) = 1$; $(S \otimes S)(R) = R$. 596

E26.32. For any almost cocommutative Hopf algebra H with antipode S, there exists invertible $u \in H$ such that $uS(u)$ is central and S^2 is the inner automorphism given by conjugation with respect to u. 597
E26.38. The smash product naturally gives rise to a Morita context $(A \# H, A^H, A, A', \tau, \tau')$.

E26.40. The quantum groups of Examples 16A.3 are Hopf algebras.
Bibliography

Bibliography

Bibliography

Affine algebras of Gelfand-Kirillov dimension one are PI, J. Algebra 91 (1984), 386–389.

An affine prime non-semiprimitive algebra with quadratic growth, preprint.

Hopf Algebras, Benjamin, 1969.

Free subgroups in linear groups, J. Algebra 20 (1972), 250–270.

List of Names

Albert, 330, 478, 481
Artin, E., 33, 40, 183, 249, 269, 324, 364, 386, 575
Artin, M., 538
Auslander, 530, 543
Azumaya, 177, 530, 534, 535
Bass, 497
Beck, I., 177
Beidar, 415
Belov, 30, 412, 427–429, 431, 432, 434
Benkart, 277
Bergman, 179, 187, 192, 333
Bernstein, 351–353, 542
Block, 282
Bourbaki, 581
Brauer, 270, 478, 481, 483
Braun, 433, 435, 537, 593
Breuillard, 248
Brown, K.A., 558
Brown, K.S., 486
Burnside, 52, 58, 231, 249, 259, 260
Cartan, 271, 286, 288, 289, 293, 296, 297, 299, 516, 543
Chatelet, 478, 483
Chevalley, 56, 331, 379, 522
Cohen, 547
Cohn, P.M., 82, 187, 416, 442, 480
Dascalescu, 547
De Jong, 482
Dixon, 244
Drinfel’d, 557, 558
Eilenberg, 516, 522, 583
Engel, 283
Etingof, 561, 562
Farkas, 383
Formanek, 414, 468
Frobenius, 43, 219, 223, 267, 370
Gabriel, 76, 352, 484, 501, 542
Gelaki, 547, 561, 562
Gel’fand, 248
Gel’fand, 351–353, 484, 542
Gerstenhaber, 83
Goldie, 66, 72, 73, 75, 175
Goldman, 476, 530
Goodearl, 178, 382, 558
Greene, 226
Grigorchuk, 188, 189
Gubeladze, 498
Hall, M., 413
Hasse, 479, 481
Helling, 412
Herstein, 66, 277, 328, 358, 372, 390
Higman, 446
Hopkins, 52
Humphreys, 346, 349, 377, 396
List of Names

Jantzen, 334, 335, 558
Jordan, 362
Joseph, 484
Kac, G.I., 561
Kac, V., 316, 346, 380, 543
Kantor, 316, 330, 331, 391
Kaplansky, 61, 316, 414, 418, 429, 494, 561, 582
Kapovich, 186
Kemer, 427, 429, 433–435, 437–439, 569
Killing, 293
Kirillov, 484
Kostrikin, 442, 446, 571
Kraft, 543
Krull, 177, 211
Letzter, 383
Levitzki, 5, 52, 66, 75, 173, 411, 412, 417, 423, 429, 565, 566
Lie, 283
Mal’cev, 82, 175, 360
Martindale, 176, 415
McConnell, 484
McKinnie, 468
Merkurjev, 477, 478
Montgomery, 547, 597, 598
Morita, 523
Myasnikov, 186
Nagata, 423
Nastasescu, 547
Nazarova, 543
Ng, 552
Nichols, 559, 561
Nijenhuis, 226
Noether, 456, 460, 465, 481, 519, 573
Pak, 228
Passman, 211
Pierce, 82
Plücker, 483, 579
Ponomarev, 351–353, 542
Procesi, 412, 558
Quillen, 497, 498
Raianu, 547
Razmyslov, 412, 414, 415, 423, 429, 433, 435
Rentschler, 484
Riedtmann, 543
Rosset, 478, 565, 566
Rowen, 412, 415, 427–429, 431, 432, 434
Sagan, 224, 266
Saltman, 468, 481, 482, 532, 575
Samelson, 339
Schafer, 331
Schelter, 429, 433, 537
Schmidt, 177
Schofield, 82
Serre, 497, 498, 519
Shnider, 547, 596
Smale, 460
Small, L., 391, 563
Smoktunowicz, 184
Stafford, 178
Stefan, 561
Sternberg, 547, 596
Suslin, 477, 497, 498
Swan, 498
Sweedler, 547, 548, 552, 558, 560
Tate, 183, 478, 575
Teichmüller, 478
Tits, 244, 330, 331, 543
Tsen, 461, 574
Tsuchimoto, 30
Vinberg, 235, 253, 362
Vishne, 184
Von Neumann, 234
Wedderburn, 5, 33, 40, 52, 54, 177, 191, 212, 425, 447, 454, 461, 463, 464, 472, 573, 577
Weibel, 486
Westreich, 547, 562
Wilf, 226
Young, 219, 223
Zassenhaus, 291
Zelmanov, 330, 440, 442, 446, 570, 572
Zhu, 561
Zoeller, 559, 561
Index

ACC, 74f.
 on ideals, 74
 on T-ideals, 323
 acts
 nilpotently, 284
 solvably, 285
adjoint action, 595
adjoint algebra, 274
adjoint isomorphism, 162
adjoint map, 274
adjoint pair, 490f., 585
adjoint representation, 230, 278
affine
 algebra, see algebra
 Lie algebra, see Lie algebra
 variety, 157, 191f.
algebra
 affine, 87ff., 183
 filtered, 105, 183
 PI-, 429ff.
Albert, 330, 390
almost commutative, 184, 187
alternative, 324, 326, 385f., 387f., 569
Azumaya, 534ff., 593
Boolean, 413
central simple, see central simple
 algebra
Clifford, 156, 190f.
 composition, 324, 386, 396
 coordinate, 241, 595
crossed product, see crossed product
 cyclic, 448f., 463f., 481, 573, 577, 579
division, see division algebra
algebra (cont’d)
enveloping, 331, 391, 484
 universal, 331ff., 335f., 393, 551,
 556, 597
 quantized, see quantized
restricted universal, 392
finite-dimensional, 40, 54ff., 409ff.,
 426ff., 538ff.
split, 54
free, see free
Frobenius, 357
Grassmann, 156, 416, 427, 435f., 483,
 567f.
group, 204ff., 357, 551, 555f.
 of an infinite group, 211
Hopf, see Hopf
hyperword, 184
Jordan, see Jordan
Lie, see Lie
 H-module, 555
monoid, 180
monomial, 93, 184
nonassociative, 272
 simple, 272, 385
octonion, 325, 387f.
of generic matrices, 426, 450
path, 541
polynomial, 108, 180
quantized matrix, see quantized
quaternion, 41, 166, 325
 generalized, 166, 191, 449f.
relatively free, 424, 426
separable, 530ff., 591

637
algebra (cont’d)
 simple, 15, 418, 451; see also algebra,
 central simple
 symbol, 449, 464, 573
 generic, 450, 576
 element, 471
 symmetric (first meaning), 156
 symmetric (second meaning), 357
 tensor, 155
algebraic group, 237ff., 364ff., 552
 affine, 238
 irreducible component of, 239ff.
 morphism of, 238
 solvable, 367
alternator, 410
Amitsur-Levitzki Theorem, 411, 565f.
Amitsur’s Theorems, 58, 60, 171, 566
annihilator, 20
anti-automorphism, 15
anti-symmetric element, 43
antipode, 241, 551, 594
arrow, 541
Artin combing procedure, 364
Artinian
 module, 37
 ring, left, 15, 50, 169
 simple, 15, 51, 76
Artin-Procesi Theorem, 536f.
Artin-Tate symbol, 575
Artin’s Theorem on alternative algebras, 386
Artin’s Theorem on characters, 269
ascending chain condition, see ACC
associator, 322
augmentation
 ideal, 206
 map, 206, 553f.
 of a group algebra, 206, 357
 of a Hopf algebra, 552
 of a projective resolution, 495
 of a standard resolution, 517
 of a universal enveloping algebra, 332
automorphism
 inner, 31
averaging procedure, 210
Baer-Levitzki-Goldie-Herstein program, 66
Baer radical, 173
Baer’s criterion, 584
balanced map, 139
bar resolution, 517
basic subring, 540
Bergman Gap Theorem, 112
Bergman’s Method, 132ff.
bialgebra, 550ff.
bicomplex, 586
bifunctor, 586
bimodule, 20, 159
block upper triangular form, 544f.
boundary, 503
boundary map, 502
bouquet, 123, 185
Brauer equivalent, 452
Brauer group
 of a field, 453ff., 519, 573ff., 578
 of a commutative ring, 536
 relative, 454
Braun’s criterion, 593
Burnside Problem, 134, 187f., 231, 361
 generalized, 134
 restricted, 135, 374, 440ff.
Burnside’s Theorem, 259f.
Cartan
 matrix, 310
 equivalent, 310
 generalized, 316, 379, 396
 number, 310ff.
 subalgebra, 296ff., 377
Cartan’s first criterion, 287
Cartan’s second criterion, 289
Cartan-Stieffel diagram, 379
Casimir element 292, 375f., 393
categorical kernel, 487
category
 Abelian, 487
 monoidal, 554, 596
 braided, 597
 multiplication on, 554
 pre-additive, 486
 skeletally small, 593
cda, see division algebra
center
 of a group algebra, 215ff.
 of a Lie algebra, 276
 of a ring, 16
central localization, 149, 422
central simple algebra, 447ff., 536, 561ff.
 exponent of, 469, 477, 482
 in characteristic p, 466f., 575
 maximal subfields of, 460ff.
 order of, 469
central simple algebra (cont’d)
 over a local field, 478ff.
 over an algebraic number field, 482
 period of, 469
 separable subfields of, 465f., 574
 split, 447, 461f.
 splitting fields of, see splitting field
 subfields of, 455ff.
centralize, 65
centralizer, 455ff., 533
chain, 341
 complex, 502
 acyclic, 503
 bounded, 502
 concentrated in dimension 0, 502
 total, 586
 homotopy equivalent, 510
 map, 502
 homotopic, 512
character, 249, 368ff.
 irreducible, 250
 monomial, 263
 product of, 262
 table, 254, 368
 unit, 250
characteristic closure, 433
change of scalars, 149
Chevalley-Eilenberg complex, 522
Chinese Remainder Theorem, 17
circuit, 101
class function, 251
Clifford, see algebra
coalgebra, 548ff., 594ff.
 cooposite, 594
 cosemisimple, 560
 morphism of, 549
 simple, 560
coassociativity, 548
coboundary, 504, 575
coboundary map, 503
cocommutative, 549
cochain complex, 503, 586
cocycle, 504
codimension, 428
cohomology, 504, 516ff.
 of groups, 517ff., 588f.
 of Lie algebras, 522f., 589
coidal, 594
coinvariants, 555
cokernel, 486
column permutation, 220
comodule, 553, 595
compact, 233
comultiplication, 241, 261, 547ff.
conjugate
 in algebra, 460
 in group, 94
 subsets, 460
connected, 233
complement, 34
complex, 122, 503
 chain, see chain
 connected, 122
 covering, 123, 185
 essential, 35
 simplicial, 122
connected component, 233
convolution, 383, 550, 594
core, 167
corestriction, 475f., 520, 577f.
counit, 241, 547ff.
Coxeter
 bilinear form, 348
 generator, 347
 graph, 347, 398
 abstract, 349ff.
 group, 347, 397ff.
 system, 347
crossed product, 450f., 465f., 468, 519,
 574, 575
crossword dictionary order, 91
 weighted, 96
Coxeter-Dynkin graph, see Dynkin
diagram
csa, see central simple algebra
cycle, 503
DCC, 50
deformation, 83
degree
 of a central simple algebra, 454
 of a character, 249, 369f.
 of a group representation, 197
 of a monomial, 91
 of a polynomial, 91
 of a vertex, 100
Dehn’s algorithm, 130
denominator set, 174
Density Theorem, 56
derivation, 276, 291, 592f.
 inner, 276, 592
 σ-derivation, 164
descending chain condition, see DCC
diagonal action, 261
Diagram Lemma, 128, 335
dimension shifting, 514
direct product
 of rings, 16ff.
direct sum
 of modules, 23, 34, 142, 189, 492
discriminant, xxv
division
 algebra, 40ff., 60, 484, 574
 central, 447
 generic, 467, 576
 of quaternions, see quaternion
 underlying, 447
 universal, 467
 ring, 13, 15, 27, 40, 69, 181
 with valuation, 479, 578f.
Dixmier’s Conjecture, 30, 164
domain, 9, 92, 161, 162, 175
dominant eigenvalue, 246
Double Centralizer Theorem 359, 458
double complex, 586
dual
 algebra, 550
 basis lemma, 493
 category, 487, 506
 finite, 595
 Hopf algebra, see Hopf
 module, 499
 Pontrjagin, 584
 root system, 395
 space, 355
Dynkin diagram, 338ff., 394ff., 542f.
edge, 101
 opposite, 101
eigenspace decomposition, 294
Ellenberg’s trick, 583
Engel identity, 441, 570
 multilinearized, 441, 570
Engel Problem, 441ff.
Engel’s Theorem, 284
evaluation, 407
even element, 416, 435
exact sequence
 long, 508, 513
 of chain complexes, 506f.
 short, 487
exponent (of a central simple algebra),
 see central simple algebra
Ext, 513, 515, 520, 587ff., 592f.
extended centroid, 176f.
extension
 Abelian (of Hopf algebras), 595
 central, 65, 409
 centralizing, 65
 field, xxv
 separable, 191, 192, 531, 533
 normalizing, 170
 of a group representation, 217
 of a Lie algebra,
 by a bilinear form, 319
 by a derivation, 318
 of groups, 520
 of modules, 516
 Ore, 164f.
 split, 520
exterior algebra, see algebra,
 Grassmann
factor set, 451
faithful
 Lie representation, 278, 392
 module, 20.
 projective module, 500, 526
 representation, 21, 197
Farkas’ Theorem, 380
f.g., see finitely generated
field
 extension, see extension
finite-dimensional algebras, see algebra
finitely generated
 algebraic structure, 184
 group, see group
finitely presented, 121
finite representation type, 80
Fitting’s Lemma, 81
free
 Abelian, 89, 213
 algebra (associative), 90, 180ff., 182
 algebraic structure, 88
 group, 93ff., 129ff., 180ff., 182, 185
 module, see module
 monoid, 89
 nonassociative, 320
 relatively free, 439
Frobenius Reciprocity Theorem, 268,
 370ff.
Frobenius’ Theorem for degrees of
 characters, 258, 561
Frobenius’ Theorem for quaternion
 algebras, 43, 453, 572ff.
f.r.t., 80
functor
\delta-, 509, 586
morphism of, 510
universal, 515
additive, 487
contravariant, 486
covariant, 486
derived, 510ff.
extact, 488
half-, 488
left, 488, 489, 585
right, 488, 489, 585
tensor, 489
Fundamental Theorem of coalgebras, 595
Fundamental Theorem of comodules, 595
Fundamental Theorem of Game Theory, 381
Fundamental Theorem of Hopf modules, 556

G-module, 203
G-space, 203
topological, 234
Gabriel’s Theorem, 542
Galois descent, 474
Gelfand-Kirillov dimension, 109ff., 184
generator (of a category), 524f.
generic flatness, 587
global dimension, 496
gluing, 545
Goldie’s Theorems 67ff., 175
Goldman element, 476f.
graded 179
algebra, 83f., 192
ring, 178f.
graph, 100, 183, 503
Cayley, 102ff., 183
of group, 103
of monoid, 102
of monomial algebra 103
directed, 100
doubled, 101
finite, 101
foldings of, 186
Grassmann
algebra, see algebra
envelope, 437
identity, 416, 427, 567
involution, 436, 569
Grigorchik’s Example, 188
Gröbner basis, 187
group
algebra, see algebra
algebraic, see algebraic
braid, 363f.
Brauer, see Brauer group
cohomology, 517ff., 588f.
commutator, 94, 224
basic, 98, 182
higher, 96
conjugate, 94
crystallographic, 347, 398
cyclic, 254, 519, 588
dihedral, 121, 257, 369
continuous, 233
infinite, 121
finitely generated, xxiii, 115, 117ff., 360
free, see free
fundamental, 122ff., 185f.
general linear, 230
projective, 231
homology, 516ff.
hyperbolic, 130ff., 187
Klein, 199, 255
Lie, see Lie
linear, 120, 230f., 244, 248
irreducible, 231
locally compact, 233
nilpotent, see nilpotent
of fractions, xxiv
orthogonal, 230, 363, 365
periodic, 134, 231, 361f.
polycyclic, 118
quaternion, 257, 368
representation, 197ff., 249ff.
absolutely irreducible, 355
completely reducible, 209f., 356, 363
complex, 197
complexification, 217
continuous, 234
contragredient, 355
degree 1, 198ff., 355
direct sum of, 200
equivalent, 206
finite-dimensional, 197ff.
induced, 263ff.
irreducible, 207, 211ff., 218, 411
monomial, 264
permutation, 198
group representation (cont’d)
real, 197, 217ff., 368
reducible, 207
reflection, see reflection
regular, 198, 205, 252
unit, 198, 266
signed permutation, 395, 397
solvable, see solvable
special linear, 230
special orthogonal, 231, 363, 365
symmetric, 122, 198, 202, 218ff., 255, 359, 368, 428
symplectic, 231
topological, 232, 362
unipotent, 230
unitary, 230, 363
Coxeter presentation of, 184
virtually nilpotent, 114
virtually solvable, 117
grouplike, 549, 594
growth
exponential, 109
function, 104
intermediate, 109
linear, 108
of algebraic structures, 104ff., 184
of (associative) algebras, 104ff.
of groups, 104, 114ff.
of nonassociative algebras, 391
polynomial, 108
polynomially bounded, 108
rates, 108
subexponential, 109
Haar measure, 234
Hall’s collecting process, 98, 188
Hasse’s Theorem, 481
Herstein’s theorems
on Jordan structure, 328, 390
on Lie structure, 372f.
Hilbert series, 105ff., 184, 566
Hilbert’s Theorem 90, 519
Hochschild cohomology, 591
Hom 19, 23ff., 162
homological δ-functor, see δ-functor
homology, 503, 508ff., 516ff.
on projective resolutions, 510ff.
homotopy equivalence, 510ff.
hook, 226
Hopf
algebra, 550ff., 594ff.
amost cocommutative, 557, 597
Hopf (cont’d)
dual, 552
finite-dimensional, 559ff.
of Frobenius type, 561
of low dimension, 597
quasitriangular, 557f., 596f.
semisimple, 559, 561f.
triangular, 557f.
trivial, 561
cohomology, 558f.
duality, 598
ideal, 555
module, 553ff., 595
submodule, 555
Hopkins-Levitzki Theorem, 52
Horseshoe Lemma, 506
Hurwitz’ Theorem, 387
hyperplane, 379
reflection, 346
hyperword, 111, 184, 431
quasiperiodic, 112
IBN, 77f.
ideal, 5
Hopf, see Hopf
invertible, 495, 581ff.
left, see left
of a tensor product, 156
maximal, 38, 66
minimal, 74
prime, 65ff., 177
primitive, 46ff., 167
singular, 176
T-, 423f., 427f., 435ff., 566, 568
T-prime, 439, 568
T2-, 435ff.
idempotent, 8, 161ff., 191, 494, 531ff.
 basic, 540
central, 16
in an alternative algebra, 388
1-sum set, 8
orthogonal, 8
primitive, 539
separability, 531ff.
trivial, 8
identity, see also polynomial identity
linear generalized, 415
of an algebra, 322
weak, 414
index
finite, xxiii
index (cont’d)
of a central simple algebra, 454, 469f., 574
of nilpotence, 423, 432
reduction, 459, 469
injective
dimension, 501
hull, 500, 585
module, 500f., 584f.
resolution, 501
integral (of Hopf algebra), 560, 594
invariant base number, see IBN
invariants, 555
involution, 43, 166, 324, standard
canonical symplectic, 43, 166
exchange, 167
Grassmann, 436
of a group algebra, 353
standard, 43
transpose, 43
Hermitian, 43, 166

Jacobian conjecture, 30, 164
Jacobson Density Theorem, see Density Theorem
Jacobson program, 50
Jacobson radical, 50, 58f., 80, 169, 170f., 179, 192, 358, 564
Jordan
algebra, 327ff., 389
exceptional, 329
free, 439
free special, 440
simple, 327
norm form, 389
quadratic, 327, 389
simple, 327
special, 327, 389
ideal, 327, 389
triple product, 390
Jordan decomposition, xxivf., 281
Jordan’s Theorem, 362
Kac-Moody algebra, 380
Kaplansky’s conjectures, 561
Kaplansky’s Theorem, 418
Kemer’s correspondence, 435
Kemer’s Finite-Dimensionality Theorem, 434
Kemer index, 434
Killing form, 287, 289
Koethe-Noether-Jacobson Theorem, 465f., 573
Koethe question, 66
Kolchin problem, 62, 171f.
Kolchin’s Theorem, 61, 367
König Graph Theorem, 102, 183, 432
Kronecker delta, 7
Krull-Schmidt Theorem, 177, 539
Kurosh Problem, 134
large
left ideal, 70ff.
submodule, 35, 71, 166
left ideal
in semisimple rings, 37, 39
independent, 70
large, see large
maximal, 47
minimal, 14, 33, 162, 165
of semiprime rings, 169
length
of word, 89
Leibniz identities, 382
Levi’s Theorem, 377, 522
Levitzki problem, 134
LGI, 413
Lie
Abelian, 274
affine, 316ff., 379f., 561
exceptional, 329f., 339, 396
free, 439
Hom, 488
homomorphism of, 275
linear, 274, 375, 392
nilpotent, see nilpotent
of an algebraic group, 320, 383
of a Jordan algebra, 330, 390, 396
of upper triangular matrices, 274, 566
orthogonal, 372
restricted, 282, 392
semisimple, 288ff., 293ff., 298ff., 312ff., 345, 378f.
simple, 277, 372
symplectic, 372
unitary, 372
commutator, 273, 567
group, 235ff.
ideal, 275
homomorphism of, 236
Lie ideal (cont’d)
 nilpotent, 374
identities, 440, 570
module, 278ff., 301ff., 374
 simple, 278
representation, 278ff.
ingroup, 444
subalgebra, 273
 nilpotent, see nilpotent
toral, 299, 377
subgroup, 236
 closed, 366
submodule, 278
word, 440
Lie’s Theorem, 285
linearization, 413
 partial, 413
locally nilpotent, 443, 569
radical, 444
loop algebra, 319
lower central series, 95
lower p-central series, 446
MacLane’s pentagon, 555
Magnus’ Theorem, 182
Magnus-Witt Theorem, 182
mapping cone, 586f.
Maschke’s Theorem, 209ff., 358, 560
matrix
 generic, 426
 ring, see ring
 unit, 7, 11ff.
 unipotent, 60
maximal eigenvector, 302
Merkurjev-Suslin Theorem, 477f., 577f.
Milnor-Wolf Theorem, 117
module, 6
 coinduced, 267
 complemented, 34
 divisible, 584
 extended from N, 146
 finitely presented, 587
 flat, 514, 587
free, 14, 89, 143, 491
Hopf, see Hopf
indecomposable, 80ff., 356, 539ff.
injective, see injective
invertible, 499
LE, 81, 177
Noetherian, see Noetherian
 over a direct product, 18
 over a group, 203
module (cont’d)
 over a monoid, 203
 permutation, 356
 projective, see projective
 semisimple, 33ff
 simple, 6
 stably free, 497
monoid algebra, see algebra
monomial, 91, 408
algebra, see algebra
leading, 92
Morita
 context, 527ff., 590, 598
 dual, 527
duality, 527ff.
equivalence, 523, 589f.
ring, 590
Morita’s Theorem, 529, 590f.
Moufang identities, 286
multilinearization, 413, 564f.
Nichols-Zoeller Theorem, 560, 561
Nielsen-Schreier Theorem, 124
nil
 ideal, 58, 65, 169, 171, 211
 left ideal, 74
 of bounded index, 423
 subset, 11, 52, 77, 419
nilpotent
 algebra of index n, 423, 432
 element, 10
 group, 114, 184, 444, 570
 ideal, 65, 74
 Lie algebra, 282ff., 442ff., 571
 Lie subalgebra, 294ff.
nonassociative algebra, 443
 subset, 49
nilradical
 lower, 65, 173
 upper, 66, 173
Noetherian
 module, 37, 80
 ring, left 15, 63ff., 164, 172, 498
 prime, 75f.
 semiprime, 75
normalizer, 277
nucleus, 385
null component
 of ad a, 294
 of a nilpotent subalgebra, 295
odd element, 416
Ore condition, 68
Ore domain, 69
Ore extension, 164f.
partition, 219
path, 101
 infinite, 102
 monoid, 541
 reverse, 101
PBW Theorem,
 see Poincaré-Birkhoff-Witt
Peirce decomposition, 9, 162, 388
PI, 408, 544
 algebra, 408ff., 536
 class, 417ff.
 equivalent, 424, 465
 ring, 408
 prime, 419
 semiprime, 418
 simple, 418f.
 without 1, 422, 566
Picard group, 499
Pingpong Lemma, 94
PLID, 27, 29, 163, 494, 581
Plücker coordinates, 580
Plücker equations, 580
Poincaré-Birkhoff-Witt Theorem, 333, 391
Poincaré series, see Hilbert series
Poisson algebra, 382
Poisson bracket, 382
polarization, 565
polynomial (noncommutative), 90, 408
 alternating, 409, 420ff., 565
 Capelli, 410, 416
 central, 413, 566, 569
 completely homogeneous, 565, 567
 function, 108
 growth, see growth
 homogeneous, 91
 identity, 407; see also PI
 linear, 323, 408
 multilinear, 323, 408
 nonassociative, 321, 385ff., 439ff.
 Spechtian, 567
 standard, 410
polynomial algebra, see algebra
polynomial ring, see ring
polynomially bounded growth, see growth
presentation, 89
of groups, 121
prime spectrum 173
primitive element, 549
principal left ideal domain, see PLID
progenerator, 526ff.
projection formula, 578
projective
 cover, 585
 dimension, 496, 582f.
 faithfully, 526
 rank of, 499, 582, 593
 resolution, 496, 511
projectively equivalent, 582
quantization, 84
quantized
 enveloping algebra, 334f., 393f., 598
 matrix algebra, 85, 598
quantum
 affine space, 179
 coordinate algebra, 85
determinant, 85
 exterior algebra, 180
group, 334, 598
 plane, 85
torus, 180
 Yang-Baxter equations, see QYBE
quasicompact, 233
quaternion
 algebra, see algebra
 group, see group
Quillen-Suslin Theorem, 498
quiver, 541, 594
QYBE, 557f., 596f.
radiical
 Jacobson, see Jacobson
 of Lie algebra, 288, 375, 377
ramification degree, 480
rank
 of element, 168
 of free group, 93
 of projective module, see projective module
recursively enumerable, 126
reduced
 characteristic polynomial, 472
 norm, 472, 473, 574, 577
 trace, 472, 473, 574, 577
Index

reduction, 124
irreducible, 125
procedure, 124
on algebras, 131
on free groups, 129
on monoids, 127
reduction-final, 125
reflection, 305, 346, 348, 396
functor, 542
group, 346, 396ff., 400
Regev’s Theorem, 427ff.
regular element, 68
relation, 89
representation, see also group
representation
in bilinear forms, 360
into a left Artinian ring, 82
of an algebra, 21, 25, 79ff., 205
of a graph, 351
type
finite, 80, 542
tame, 543
wild, 543
of a group, see group
of a ring, 21, 163
regular, 25, 28ff., 78
residue degree, 480
residue ring, 479
resolution
for a group, 517
for a Hopf algebra, 558
for a Lie algebra, 522
of a module
f.g. free, 99, 183
free, 99
projective, see projective
restriction map, 454
ring
basic, 540
commutator, 28
basic, 182
differential polynomial, 164
division, see division ring
Goldie, 175, 184, 484
hereditary, 581
irreducible, 174
left Artinian, see Artinian
left Noetherian, see Noetherian
local, 170, 494, 535ff.
matrix, 7, 12ff., 410ff., 417
Noetherian, see Noetherian
ring (cont’d)
of central fractions, 419, 450
of formal power series, 27, 163, 550
over an ordered monoid, 181
of fractions, 69, 71, 75ff., 174
of quotients, 176, 585
opposite, 15, 167
polynomial, 27, 550
prime, 49ff., 64ff.
primitive, 46ff., 64, 168ff., 181
quasi-Frobenius, 516
representable, 405, 411, 418, 433,
561ff.
semiprime, 49, 66, 168
with involution, 168
semiprimitive, 50
semisimple, 37ff., 71, 80, 151, 191,
210, 493, 501, 540
simple, 15, 64
Artinian, 40
skew polynomial, 30, 164
tamely Noetherian, 176
weakly Noetherian, 74
weakly primitive, 173
with involution, 43;
see also involution
simple, 167
root (of nilpotent Lie subalgebra),
294ff., 307ff., 399ff.
height of, 309
positive, 307
simple, 308
space, 294, 299
decomposition, 294, 379
system, 307ff., 378
crystallographic, 307, 311
dual, 395
of a Coxeter group, 399ff.
of a reflection group, 396ff.
simple, 308
indecomposable 315
root (of polynomial), 472ff.
row permutation, 220
sandwich, 446
n-thick, 570ff.
Schanuel’s Lemma, 582ff.
Schur inner product, 251
Schur’s Lemma, 21, 41, 79, 355
Schur’s orthogonality relations, 250ff.,
368
semidirect product, 520
separability idempotent, 531f.
Serre’s Conjecture, 497
shape, 219
 reduced, 226
Shapiro’s Lemma, 519, 589
shift functor, 504
Shirshov’s Dichotomy Lemma, 431, 572
Shirshov’s Theorems, 430ff.
simple algebra, see algebra
simple tensor, 137, 189
simplex, 122
skew field, 13
skew group algebra, 358
skew-symmetric
 element, 43
 matrices, 272, 360
Skolem-Noether Theorem, 460
smash product, 597f.
Snake Lemma, 504
socle, 33, 166, 168
solvable
 group, 117ff., 260
 Lie algebra, 282ff., 286
specialization, 407
 radical, 434
 semisimple, 434
Specht’s problem, 427
splitting (of a group extension), 520
 conjugacy class of, 521
splitting field
 of an algebra, 151f.
 of a central simple algebra, 454f., 456, 460
 of a group, 212
string (of roots), 299, 303ff.
sub-comodule, 555, 595
subdiagram, 340
subdirect product, 18
submodule
 essential, 34
 Hopf, see Hopf
 large, see large
 simple, 37
 small, 585
superalgebra, 83, 435, 569
supercommutativity, 435
superidentity, 435
superpolynomial, 435
 supercentral, 569
support
 of polynomial, 91
 (cont’d)
 of root, 309
symmetric
 element, 43
 matrices, 272, 360
Sweedler complex, 558
syzygy, 495
tangent map, 236
tensor algebra, see algebra
tensor product, 139
 of algebras, 147, 190
 of bimodules, 141
 of central division algebras, 470
 of central simple algebras, 452ff.
 of crossed products, 575
 of generic symbols, 576
 of group algebras, 260f.
 of Hopf modules, 596
 of matrix algebras, 153
 of PI-algebras, 428f.
 of projective modules, 498f.
 of simple algebras, 451
 over a field, 150
Tits alternative, 244ff., 365f.
Tits quadratic form, 543
Tor, 513f., 587
trace
 bilinear form, xxv, 287, 290
 identity, 412
 Hamilton-Cayley, 412
 ideal, 525
 map (of group algebra), 357
transfer map, 520
transversal, 263
tree, 101
Tsen’s Theorem, 574
twist
 isomorphism, 145
 map, 549
valuation, 479
value group, 479
value ideal, 479
value ring, 479
variety
 defined over a field, 482
 of algebras, 423
 Severi-Brauer-Chatelet-Amitsur, 483
vector space over a group, 202
vertex, 100
Virasoro algebra, 380
Virasoro algebra (cont’d)
 initial, 100
 for graph 102
 terminal, 100

Wedderburn-Artin Theorem, 40, 48, 165, 530f.
Wedderburn decomposition, 55
Wedderburn’s factorization method, 472ff., 577
Wedderburn’s Principal Theorem, 54, 191, 592
Wedderburn’s Theorem (on finite division rings), 425ff., 461, 574
wedge, 156
weight
 in Dynkin diagram, 344
 in quiver, 541
 module, 378
 of higher commutator, 96
 of Lie module, 377
 space, 378

Weyl algebra, 28ff., 45, 63, 484, 598
Weyl chamber, 379
Weyl group, 307, 346, 394f.
Weyl’s Theorem, 292, 376, 589
Whitehead’s Lemmas, 376, 522
Witt algebra, 380
word, 89
 d-decomposable, 430, 572
 linear, 408
Word Problem, 127
 for groups, 130

Young
 diagram, 219
 tableau, 219, 359, 428ff., 568f.
 standard, 223

Zassenhaus’ Theorem, 291
Zelmanov’s Theorem, 442ff., 570ff.
Titles in This Series

97 David C. Ullrich, Complex made simple, 2008
96 N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, 2008
95 Leon A. Takhtajan, Quantum mechanics for mathematicians, 2008
94 James E. Humphreys, Representations of semisimple Lie algebras in the BGG category O, 2008
93 Peter W. Michor, Topics in differential geometry, 2008
92 I. Martin Isaacs, Finite group theory, 2008
91 Louis Halle Rowen, Graduate algebra: Noncommutative view, 2008
90 Larry J. Gerstein, Basic quadratic forms, 2008
89 Anthony Bonato, A course on the web graph, 2008
88 Nathaniel P. Brown and Narutaka Ozawa, C*-algebras and finite-dimensional approximations, 2008
86 Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, 2007
85 John M. Alongi and Gail S. Nelson, Recurrence and topology, 2007
84 Charalambos D. Aliprantis and Rabee Tourky, Cones and duality, 2007
83 Wolfgang Ebeling, Functions of several complex variables and their singularities (translated by Philip G. Spain), 2007
81 V. V. Prasolov, Elements of homology theory, 2007
80 Davar Khoshnevisan, Probability, 2007
79 William Stein, Modular forms, a computational approach (with an appendix by Paul E. Gunnells), 2007
78 Harry Dym, Linear algebra in action, 2007
77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, 2006
76 Michael E. Taylor, Measure theory and integration, 2006
75 Peter D. Miller, Applied asymptotic analysis, 2006
74 V. V. Prasolov, Elements of combinatorial and differential topology, 2006
73 Louis Halle Rowen, Graduate algebra: Commutative view, 2006
72 R. J. Williams, Introduction to the mathematics of finance, 2006
71 S. P. Novikov and I. A. Taimanov, Modern geometric structures and fields, 2006
70 Seán Dineen, Probability theory in finance, 2005
69 Sebastián Montiel and Antonio Ros, Curves and surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems, 2005
67 T.Y. Lam, Introduction to quadratic forms over fields, 2004
66 Yuli Eidelman, Vitali Milman, and Antonis Tsalomitis, Functional analysis, An introduction, 2004
65 S. Ramanan, Global calculus, 2004
64 A. A. Kirillov, Lectures on the orbit method, 2004
63 Steven Dale Cutkosky, Resolution of singularities, 2004
62 T. W. Körner, A companion to analysis: A second first and first second course in analysis, 2004
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003
58 Cédric Villani, Topics in optimal transportation, 2003
57 Robert Plato, Concise numerical mathematics, 2003
56 E. B. Vinberg, A course in algebra, 2003
55 C. Herbert Clemens, A scrapbook of complex curve theory, second edition, 2003
54 Alexander Barvinok, A course in convexity, 2002
53 Henryk Iwaniec, Spectral methods of automorphic forms, 2002
52 Ilka Agricola and Thomas Friedrich, Global analysis: Differential forms in analysis, geometry and physics, 2002
51 Y. A. Abramovich and C. D. Aliprantis, Problems in operator theory, 2002
50 Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, 2002
49 John R. Harper, Secondary cohomology operations, 2002
48 Y. Eliashberg and N. Mishachev, Introduction to the h-principle, 2002
46 Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, 2002
44 Jim Agler and John E. McCarthy, Pick interpolation and Hilbert function spaces, 2002
43 N. V. Krylov, Introduction to the theory of random processes, 2002
42 Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, 2002
41 Georgi V. Smirnov, Introduction to the theory of differential inclusions, 2002
40 Robert E. Greene and Steven G. Krantz, Function theory of one complex variable, third edition, 2006
39 Larry C. Grove, Classical groups and geometric algebra, 2002
38 Elton P. Hsu, Stochastic analysis on manifolds, 2002
37 Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, 2001
35 James F. Davis and Paul Kirk, Lecture notes in algebraic topology, 2001
34 Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001
33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001
31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001
30 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001
29 Javier Duandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
This book is a companion volume to *Graduate Algebra: Commutative View* (published as volume 73 in this series). The main and most important feature of the book is that it presents a unified approach to many important topics, such as group theory, ring theory, Lie algebras, and gives conceptual proofs of many basic results of noncommutative algebra. There are also a number of major results in noncommutative algebra that are usually found only in technical works, such as Zelmanov’s proof of the restricted Burnside problem in group theory, word problems in groups, Tits’s alternative in algebraic groups, PI algebras, and many of the roles that Coxeter diagrams play in algebra.

The first half of the book can serve as a one-semester course on noncommutative algebra, whereas the remaining part of the book describes some of the major directions of research in the past 100 years. The main text is extended through several appendices, which permits the inclusion of more advanced material, and numerous exercises. The only prerequisite for using the book is an undergraduate course in algebra; whenever necessary, results are quoted from *Graduate Algebra: Commutative View*.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-91