Lectures on Elliptic and Parabolic Equations in Sobolev Spaces

N. V. Krylov

Graduate Studies in Mathematics
Volume 96

American Mathematical Society
Lectures on Elliptic and Parabolic Equations in Sobolev Spaces
Lectures on Elliptic and Parabolic Equations in Sobolev Spaces

N. V. Krylov

in Mathematics
Volume 96
Contents

Preface xi

Chapter 1. Second-order elliptic equations in $W^2_2(\mathbb{R}^d)$ 1
§1. The simplest equation $\lambda u - \Delta u = f$ 2
§2. Integrating the determinants of Hessians (optional) 7
§3. Sobolev spaces $W^k_p(\Omega)$ 8
§4. Second-order elliptic differential operators 14
§5. Multiplicative inequalities 17
§6. Solvability of elliptic equations with continuous coefficients 20
§7. Higher regularity of solutions 25
§8. Sobolev mollifiers 32
§9. Singular-integral representation of u_{xx} 38
§10. Hints to exercises 42

Chapter 2. Second-order parabolic equations in $W^{1,k}_2(\mathbb{R}^{d+1})$ 45
§1. The simplest equation $u_t + a^{ij}(t)D_{ij}u - \lambda u = f$ 45
§2. Sobolev spaces $W^{r,k+2r}_p(\Omega)$ 51
§3. Parabolic equations with continuous coefficients 56
§4. Local or interior estimates 60
§5. The Cauchy problem 67
§6. Hints to exercises 70

Chapter 3. Some tools from real analysis 73
§1. Partitions and stopping times 73
§2. Maximal and sharp functions 78
 2:1. The Fefferman-Stein theorem 78
 2:2. Exercises (optional) 83
§3. Comparing maximal and sharp functions in the Euclidean space 87
§4. Hints to exercises 91

Chapter 4. Basic L_p estimates for parabolic and elliptic equations 93
§1. An approach to elliptic equations 94
§2. Preliminary estimates of L-caloric functions 98
§3. Solvability of model equations 104
§4. Divergence form of the right-hand side for the Laplacian 113
§5. Hints to exercises 115

Chapter 5. Parabolic and elliptic equations in $W^{1,k}_p$ and W^k_p 117
§1. Better regularity for equations with coefficients independent of x 117
§2. Equations with continuous coefficients. The Cauchy problem 119

Chapter 6. Equations with VMO coefficients 125
§1. Estimating L_q oscillations of u_{xx} 125
§2. Estimating sharp functions of u_{xx} 130
§3. A priori estimates for parabolic and elliptic equations with VMO coefficients 134
§4. Solvability of parabolic and elliptic equations with VMO coefficients. The Cauchy problem 139
§5. Hints to exercises 143

Chapter 7. Parabolic equations with VMO coefficients in spaces with mixed norms 145
§1. Estimating sharp functions of $\|u_{xx}(t, \cdot)\|_{L_q}$ 146
§2. Existence and uniqueness results 149
§3. Hints to exercises 155

Chapter 8. Second-order elliptic equations in $W^2_p(\Omega)$ 157
§1. Spaces of functions vanishing on the boundary 158
§2. Equations in half spaces 160
§3. Domains of class C^k. Equations near the boundary 165
§4. Partitions of unity and the regularizer 171
§5. Solvability of equations in domains for large λ 174
§6. Hints to exercises 179

Chapter 9. Second-order elliptic equations in $W^k_p(\Omega)$ 181
§1. Finite differences. Better regularity of solutions in \mathbb{R}^d_+
for model equations 181
§2. Equations in domains 187
§3. The oblique derivative problem in \mathbb{R}^d_+ 190
§4. Local regularity of solutions 196
§5. Hints to exercises 199

Chapter 10. Sobolev embedding theorems for $W^k_p(\Omega)$ 201
§1. Embedding for Campanato and Slobodetskii spaces 203
 1:1. Embeddings in C^α 203
 1:2. Exercises (optional) 207
§2. Embedding $W^1_p(\Omega) \subset C^{1-d/p}(\Omega)$. Morrey's theorem 209
§3. The Gagliardo-Nirenberg theorem 215
§4. General embedding theorems 216
§5. Compactness of embeddings. Kondrashov's theorem 223
§6. An application of Riesz's theory of compact operators 227
§7. Hints to exercises 229

Chapter 11. Second-order elliptic equations $Lu - \lambda u = f$
with λ small 231
§1. Maximum principle for smooth functions 232
 1:1. Maximum principle 232
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:2. Exercises (optional)</td>
<td>234</td>
</tr>
<tr>
<td>§2. Resolvent operator for λ large</td>
<td>236</td>
</tr>
<tr>
<td>§3. Solvability of equations in smooth domains</td>
<td>241</td>
</tr>
<tr>
<td>§4. The way we proceed further</td>
<td>245</td>
</tr>
<tr>
<td>§5. Decay at infinity of solutions of $Lu = f$ in \mathbb{R}^d</td>
<td>246</td>
</tr>
<tr>
<td>§6. Equations in \mathbb{R}^d with λ small</td>
<td>249</td>
</tr>
<tr>
<td>§7. Traces of $W^k_p(\Omega)$ functions on $\partial\Omega$</td>
<td>255</td>
</tr>
<tr>
<td>§8. The maximum principle in W^2_p. Green’s functions</td>
<td>262</td>
</tr>
<tr>
<td>§9. Hints to exercises</td>
<td>263</td>
</tr>
<tr>
<td>Chapter 12. Fourier transform and elliptic operators</td>
<td>267</td>
</tr>
<tr>
<td>§1. The space \mathcal{S}</td>
<td>268</td>
</tr>
<tr>
<td>§2. The notion of elliptic differential operator</td>
<td>269</td>
</tr>
<tr>
<td>§3. Comments on the oblique derivative and other boundary-value problems. Instances of pseudo-differential operators</td>
<td>272</td>
</tr>
<tr>
<td>§4. Pseudo-differential operators</td>
<td>274</td>
</tr>
<tr>
<td>§5. Green’s functions</td>
<td>280</td>
</tr>
<tr>
<td>§6. Existence of Green’s functions</td>
<td>285</td>
</tr>
<tr>
<td>7:1. Differentiability of G and estimates of its derivatives</td>
<td>288</td>
</tr>
<tr>
<td>7:2. Exercises (optional)</td>
<td>292</td>
</tr>
<tr>
<td>§8. Boundedness of the zeroth-order pseudo-differential operators in \mathcal{L}_p</td>
<td>293</td>
</tr>
<tr>
<td>§9. Operators related to the Laplacian</td>
<td>297</td>
</tr>
<tr>
<td>9:1. The operators $(1 - \Delta)^{\gamma/2}$, Cauchy’s operator, the Riesz and Hilbert transforms, the Cauchy-Riemann operator</td>
<td>297</td>
</tr>
<tr>
<td>9:2. Exercises (optional)</td>
<td>302</td>
</tr>
<tr>
<td>§10. An embedding lemma</td>
<td>304</td>
</tr>
<tr>
<td>§11. Hints to exercises</td>
<td>308</td>
</tr>
<tr>
<td>Chapter 13. Elliptic operators and the spaces H^γ_p</td>
<td>311</td>
</tr>
<tr>
<td>§1. The space \mathcal{H}</td>
<td>311</td>
</tr>
</tbody>
</table>
§2. Some properties of the space \mathcal{H} 315

§3. The spaces H_p^γ
 3:1. Definition, solvability of elliptic equations in H_p^γ, the equality $H_p^\gamma = W_p^\gamma$ 317
 3:2. Exercises (optional) 323

§4. Higher-order elliptic differential equations with continuous coefficients in H_p^γ 328

§5. Second-order parabolic equations. Semigroups (optional) 333

§6. Second-order divergence type elliptic equations with continuous coefficients 335

§7. Nonzero Dirichlet condition and traces 339

§8. Sobolev embedding theorems for H_p^γ spaces 342

§9. Sobolev mollifiers 346

§10. Hints to exercises 350

Bibliography 353

Index 355
This page intentionally left blank
Preface

These lectures concentrate on some basic facts and ideas of the modern theory of linear elliptic and parabolic partial differential equations (PDEs) in Sobolev spaces. We hope to show that this theory is based on some general and extremely powerful ideas and some simple computations. The main objects of study are the Cauchy problem for parabolic equations and the first boundary-value problem for elliptic equations, with some guidelines concerning other boundary-value problems such as the Neumann or oblique derivative problems or problems involving higher order elliptic operators acting on the boundary. The presentation has been chosen in such a way that after having followed the book the reader should acquire a good understanding of a wide variety of results and techniques.

These lecture notes appeared as the result of a two-quarter or a one-semester graduate course I gave at Moscow State University and the School of Mathematics, University of Minnesota, over a number of years and differ significantly from previous drafts. This book also includes some parts of the initial draft and as a whole is most appropriate for a two-quarter or a one-year course. Naturally, one cannot expect that in such a short course all important issues of the theory of elliptic and parabolic equations can be covered. Actually, even the area of second-order elliptic partial differential equations is so wide that one cannot imagine a book, let alone a textbook, of reasonable size covering all bases. Restricting further only to the theory of solvability in the Sobolev function spaces and linear equations still does not make the task realistic. Because of that we will only be concerned with some basic facts and ideas of the modern theory of linear elliptic and parabolic equations in Sobolev spaces. We refer the interested reader to the books [7], [9], and [15], which are classical texts and reference books in elliptic and
parabolic PDEs, and the literature therein for additional information on the subject.

I have been educated as a probabilist who in his early stages of research came across the necessity of using some PDE results and realized, with some deep disappointment mixed with astonishment, that at that time there were no simple introductory books about the modern theory available to a wide audience. The situation is slightly better now, forty-five years later, but yet by now, as has been pointed out above, the theory became so wide that it is impossible to have just one simple introductory book available to a wide audience. Indeed, one does have several introductory books in different areas of the theory including the book I wrote on Hölder space theory (see [12]) and the current textbook on Sobolev space theory.

As with almost any graduate textbook, this one is written for myself and my graduate students who, as I think, should know at least that much of the theory in order to be able to work on problems related to my own interests. That is why the choice of these “basic facts and ideas” and the exposition is by no means exhaustive but rather reflects the author’s taste and, in part, his view on what he should have known to be able to work in some areas of mathematics such as the theory of random diffusion processes. I also hope that the contents of the book will be useful to other graduate students and scientists in mathematics, physics, and engineering interested in the theory of partial differential equations.

Comments on the structure of the book

We start with the L_2 theory of elliptic second-order equations in the whole space, first developing it for the Laplacian on the basis of the Fourier transform. Then we go to the L_2 theory for equations with variable coefficients by using partitions of unity, the method of “freezing the coefficients”, the method of a priori estimates, and the method of continuity. This is done in Chapter 1.

In Chapter 2 we deal with the L_2 theory of second-order parabolic equations along similar lines. As far as parabolic equations are concerned, in these notes we only concentrate on equations in the whole space and the Cauchy problem.

After that, in Chapter 3, we present some tools from real analysis, helping to pass from L_2 theory to L_p theory with $p \neq 2$.

In Chapter 4 we derive basic L_p estimates first for parabolic and then for elliptic equations. The estimates for the elliptic case turn out to follow immediately from the estimates for parabolic equations. On the other hand, for elliptic equations such estimates can be derived directly and we outline
how to do this in Section 4.1 and in a few exercises (see Exercises 1.1.5, 1.3.23, and 4.3.2 and the proof of Theorem 4.3.7).

Chapter 5 is devoted to the L_p theory of elliptic and parabolic equations with continuous coefficients in the whole space. Chapter 6 deals with the same issues but for equations with VMO coefficients, which is quite a new development (only about 16 years old; compare it with the fundamental papers [1] of 1959–64).

Chapter 7 is the last one where we systematically consider parabolic equations. There the solvability of parabolic equations with VMO coefficients is proved in Sobolev spaces with mixed norms. Again as in Chapter 2, everything is done only for the equations in the whole space or for the Cauchy problem for equations whose coefficients are only measurable in the time variable. We return to this problem only briefly in Section 13.5 for equations with coefficients independent of time.

Starting from Chapter 8, we only concentrate on elliptic equations in

$$\mathbb{R}^d = \{ x = (x^1, ..., x^d) : x^i \in (-\infty, \infty) \}$$

or in domains $\Omega \subset \mathbb{R}^d$. It is worth noticing, however, that almost everything proved for the elliptic equations in Chapter 8 is easily shown to have a natural version valid for parabolic equations in $\mathbb{R} \times \Omega$. Also the Cauchy problem in $(0, \infty) \times \Omega$ can be treated very similarly to what is done in Section 5.2. We do not show how to do that. Here we again run into choosing between what basic facts your graduate students should know and what are other very interesting topics in PDEs. Anyway, the interested reader can find further information about parabolic equations in [14], [15], and [18].

The reader can consult the table of contents as to what issues are investigated in the remaining chapters. We will only give a few more comments.

Chapters 12 and 13 can be studied almost independently of all previous with the exception of Chapter 3. There are many reasons to include their contents in a textbook, although it could be that this is the first time this is done. I wanted my graduate students to be exposed to equations in the function spaces of Bessel potentials since the modern theory of stochastic partial differential equations is using them quite extensively.

Some important topics are scattered throughout the book, the most notable are:

- Equations in divergence form; see Sections 4.4, 8.2, and 13.6.
- Boundary-value problems involving boundary differential operators; see Exercises 1.1.11 and 13.3.15 and Sections 9.3 and 12.3.
• Elliptic equations with measurable coefficients in two dimensions including the Neumann problem; see Exercises 1.4.7, 1.4.8, 1.4.9, 1.6.7, 8.2.6, 8.2.11, 11.5.5, and 11.6.5.

These notes are designed as a textbook and contain about 271 exercises, a few of which (almost all of the 63 exercises marked with an *) are used in the main text. These are the simplest ones. However, many other exercises are quite difficult, despite the fact that their solutions are almost always short. Therefore, the reader should not feel upset if he/she cannot do them even after a good deal of thinking. Perhaps, hints for them should have been provided right after each exercise. We do give the hints to the exercises but only at the end of each chapter just to give the readers an opportunity to test themselves.

Some exercises which are not used in the main text are put in the main text where the reader has enough knowledge to solve them and thus learn more. Some other exercises less directly connected with the text are collected in optional subsections.

The theorems, lemmas, remarks, and such which are part of the main units of the text are numbered serially in a single system that proceeds by section. Exercise 1.7.6 is the sixth numbered unit in the seventh section in the first chapter. In the course of Chapter 1, this exercise is referred to as Exercise 7.6, and in the course of the seventh section of chapter 1 it is referred to as Exercise 6. Similarly and independently of these units formulas are numbered and cross-referenced.

Basic notation

A complete reference list of notation can be found in the index at the end of the book. We always use the summation convention and allow constants denoted by N, usually without indices, to vary from one appearance to another even in the same proof. If we write $N = N(\ldots)$, this means that N depends only on what is inside the parentheses. Usually, in the parentheses we list the objects that are fixed. In this situation one says that the constant N is *under control*. By domains we mean general open sets. On some occasions, we allow ourselves to use different symbols for the same objects, for example,

$$u_{x^i} = \frac{\partial u}{\partial x^i} = D_i u, \quad u_{x} = \text{grad} \ u = \nabla u, \quad u_{xx} = (u_{x^i, x^j}).$$

Any d-tuple $\alpha = (\alpha_1, \ldots, \alpha_d)$ of integers $\alpha_k \in \{0, 1, 2, \ldots\}$ is called a multi-index. For a multi-index α, $k, j \in \{1, \ldots, d\}$, and $\xi = (\xi_1, \ldots, \xi_d) \in \mathbb{R}^d$ we denote

$$D_{kj} u = D_j D_k u = u_{x^k x^j}, \quad |\alpha| = \alpha_1 + \ldots + \alpha_d,$$
\[D^\alpha = D_1^{\alpha_1} \cdots D_d^{\alpha_d}, \quad \xi^\alpha = (\xi^1)^{\alpha_1} \cdots (\xi^d)^{\alpha_d}. \]

We also use the notation \(Du = u_x\) for the gradient of \(u\), \(D^2u = u_{xx}\) for the matrix of second-order derivatives of \(u\), and \(D^n u\) for the set of all \(n\)th order derivatives of \(u\). These \(D^n u(x)\) for each \(x\) can be considered as elements of a Euclidean space of appropriate dimension. By \(|D^n u(x)|\) we mean any fixed norm of \(D^n u(x)\) in this space.

In the case of parabolic equations we work with

\[\mathbb{R}^{d+1} = \{(t, x) : t \in \mathbb{R}, x \in \mathbb{R}^d\}. \]

For functions \(u(t, x)\) given on subdomains of \(\mathbb{R}^{d+1}\) we use the above notation only for the derivatives in \(x\) and denote

\[\partial_t u = \frac{\partial u}{\partial t} = u_t, \quad \partial_x^k D_k u = u_{tx^k} = u_{x^k t}, \]

and so on.

If \(\Omega\) is a domain in \(\mathbb{R}^d\) and \(p \in [1, \infty]\), by \(L_p(\Omega)\) we mean the set of all Lebesgue measurable complex-valued functions \(f\) for which

\[\|f\|_{L_p(\Omega)} := \left(\int_{\Omega} |f(x)|^p \, dx \right)^{1/p} < \infty \]

with the standard extension of this formula if \(p = \infty\). We also define

\[L_p = L_p(\mathbb{R}^d). \]

One knows that \(L_p(\Omega)\) is a Banach space. In the cases when \(f\) and \(g\) are measurable functions defined in the same domain \(D \subset \mathbb{R}^d\), we write \(f = g\) in \(D\) to mean that \(f\) equals \(g\) almost everywhere in \(D\) with respect to Lebesgue measure.

By \(C_0^\infty(\Omega)\) we mean the set of all infinitely differentiable functions on \(\Omega\) with compact support (contained) in \(\Omega\). By the support of a function we mean the closure of the set where the function is different from zero. We call a subset of \(\mathbb{R}^d\) compact if it is closed and bounded. Of course, saying “compact support” is the same as saying “bounded support” and we keep “compact” just to remind us that we are talking about closed sets. We set

\[C_0^\infty = C_0^\infty(\mathbb{R}^d). \]
For $k \in \{0, 1, 2, \ldots\}$, by $C^k(\Omega)$ we denote the set of all k times continuously differentiable functions on Ω with finite norm

$$
\|u\|_{C^k(\Omega)} = \sum_{|\alpha| \leq k} \|D^\alpha u\|_{C(\Omega)},
$$

where

$$
\|u\|_{C(\Omega)} = \sup_{x \in \Omega} |u(x)|.
$$

As usual, $C(\Omega) = C^0(\Omega)$ and we drop Ω in $C^k(\Omega)$ and $L_p(\Omega)$ if $\Omega = \mathbb{R}^d$. The subset of C^k consisting of functions on \mathbb{R}^d with compact support is denoted C^k_0. In particular, C_0 is the set of continuous functions with compact support.

By $C^k(\overline{\Omega})$ we denote the subset of $C^k(\Omega)$ consisting of all functions u such that u and $D^\alpha u$ extend to functions continuous in $\overline{\Omega}$ (the closure of Ω) whenever $|\alpha| \leq k$. For these extensions we keep the same notation u and $D^\alpha u$, respectively.

If Ω is an unbounded domain, by $C^k_0(\overline{\Omega})$ we mean the subset of $C^k(\overline{\Omega})$ consisting of functions vanishing for $|x|$ sufficiently large. Mainly, the notation $C^k_0(\Omega)$ will be used for $\Omega = \mathbb{R}^d$ and $\Omega = \mathbb{R}^d_+$, where

$$
\mathbb{R}^d_+ = \{(x_1, x') : x_1 > 0, x' = (x_2, \ldots, x_d) \in \mathbb{R}^{d-1}\}.
$$

Generally, speaking about functions on \mathbb{R}^d, we mean Lebesgue measurable functions.

To the instructor

We begin with an L_2 theory of second-order elliptic equations of the type

$$
a^{ij}(x)u_{x^i x^j}(x) + b^i(x)u_{x^i}(x) + c(x)u(x) = f(x), \quad x \in \mathbb{R}^d,
$$

where the coefficients are assumed to be bounded and the matrix $a = (a^{ij})$ symmetric and uniformly positive definite. If the matrix a is uniformly continuous and c is sufficiently large negative, we show that the equation is solvable for $f \in L_2$. Much later in Section 11.6 on the basis of L_p theory, the restriction on c is replaced with $c \leq -\delta$, where $\delta > 0$ is any constant.

Then the general scheme set out in Chapter 1 is repeated several times in the succeeding text in various settings without going into all the minor details each time.

Chapter 3 contains all the tools from real analysis that we use. Here is a major difference between these notes and one of the previous drafts. At
some stage, I was presenting the L_p theory on the basis of the Calderón-Zygmund and Marzinkiewicz theorems interpolating between $p = 1$ and $p = 2$. The present course is based on using the Fefferman-Stein theorem on sharp functions. One could use this theorem along with Stampacchia’s interpolation theorem (and Marzinkiewicz’s interpolation theorem) to interpolate between $p = 2$ and $p = \infty$, which is done in some texts and in one of the drafts of these lectures. However, there is a shorter way to achieve the goal. The point is that it is possible to obtain pointwise estimates of the sharp function u_{xx}^p of the second-order derivatives u_{xx} of the unknown solution u through the maximal function of the right-hand side of the equation. This fact has actually been well known for quite a long time and allows one to get the L_p estimates of u_{xx} for $p > 2$ just by referring to the Fefferman-Stein and Hardy-Littlewood maximal function theorems.

A disadvantage of this approach is that the students are not exposed to such very powerful and beautiful tools as the Calderón-Zygmund, Stampacchia, and Marzinkiewicz theorems. On the other hand, there are two advantages. First, the Fefferman-Stein theorem is much more elementary than the Calderón-Zygmund theorem (see Chapter 3). Second, the approach based on the pointwise estimates allows us to prove existence theorems for equations with VMO coefficients with almost the same effort as in the case of equations with continuous coefficients.

Despite the fact that, as has been mentioned before, the L_p theory for elliptic equations can be developed independently of the theory of parabolic equations, in the main text we prefer to derive elliptic estimates from parabolic ones for the following reasons. In the first place, we want the reader to have some insight into the theory of parabolic equations. Secondly, to estimate the L_2 oscillation of u_{xx} over the unit ball B_1 centered at the origin for a C_0^∞ function u, through the maximal function of Δu we split $f := \Delta u$ into two parts: $f = h + g$ where $h \in C_0^\infty$ and $h = f$ in the ball of radius 2 centered at the origin. Then we define v and w as solutions of the equations $\Delta v = h$ and $\Delta w = g$. The trouble is that to find appropriate v and w is not so easy. Say, if $d = 1$ and we want the equations $\Delta v = h$ and $\Delta w = g$ to be satisfied in the whole space, quite often v and v will be unbounded. In the parabolic case this difficulty does not appear because we can find v and w as solutions of the Cauchy problem with zero initial condition, when the initial condition is given for t lying outside the domain where we are estimating the L_2 oscillation of the solution.

One more point worth noting is that one can have a short course on elliptic equations, and after going through Chapter 1, go directly to Chapters 8–10 if one is only interested in the case $p = 2$. If $d = 2$, one can also include Chapter 11. Adding to this list Chapter 3 and Section 4.1 would allow the
reader to follow all the material in full generality apart from what concerns parabolic equations and equations with VMO coefficients. In this case one also has to follow the proof of Lemma 6.3.8 in order to get control on the L_p norm of solutions. Finally, doing Exercise 4.3.2 allows one to include the results of Chapter 6 related to the elliptic equations with VMO coefficients.

If one wants to give a course containing both Hölder space and Sobolev space theories, then one can start with part of the present notes, use the possibility of obtaining basic $C^{2+\alpha}$ estimates by doing Exercises 4.3.2, 4.3.3, and 10.1.8, and then continue lecturing on Hölder space theory following one’s favorite texts. By the way, this switch to Hölder space theory can be done right after Chapter 1 if only elliptic equations are to be treated. For parabolic equations this switch is possible after going through Chapters 1 and 2 and doing Exercises 4.3.5, 4.3.6, 10.1.9, and 10.1.10.

Acknowledgements

I worked on these lecture notes and taught courses in Moscow and Minneapolis for a number of years. Many graduate students were exposed to constantly evolving versions of the notes and contributed to correcting a few errors and sometimes wrong or misleading hints to exercises. Their impact is greatly appreciated. Several of my colleagues have influenced the contents of the notes. One of them is my friend Eugene Fabes, who died prematurely in 1997. I learned a very substantial part of real analysis attending his brilliant and enthusiastic lectures and having many discussions.

My deepest thanks are due to N.N. Ural’tseva who heroically undertook the task of reading through the final draft of the notes. I have greatly profited from her comments.

Also, in the final stages of the work I was partially supported by the NSF grants DMS-0140405 and DMS-0653121.

Nicolai Krylov, Minneapolis, August 2007
Bibliography

Index

Miscellanea

(f, g), 267
(f, φ), 281
d_R^2(x), 130
d_R^2, 130
a±, 232
B, 87, 93
c_d, 2, 267
X^0, 73
f#, 80
f#, 82
f_{in}, 75
f_{17}, 75
p^2, 87
q_{11}(x, y), 262
κ(L), 277
κ(σ), 274
N^o(L, μ), 277
N^o(σ, μ), 274
N_n(L, μ), 277
N_n(σ, μ), 276
osc_x(a, Q_r(t, x)), 130
Q, 87, 93
ρ(Ω), 203
σ(ξ), 269
σ_L, 277
σ_{0Ω}, 260
x', xvi, 11, 160
ξ^α, xiv

Domains and sets

B_1, 7
B_r, 23, 60, 93
B_r(ξ), 60, 93, 165, 203
C_n(i_1, ..., i_d), 74
C_n(x), 73
Q_r, 60, 93
Q_r(t, x), 60, 93
R^{d+1}, 68
R^{d+1}, xvi
R^{d+1}, 149
R_T, 46
R^d, xiii
R_+, xvi, 11, 160
Z, 73
Ω ∈ C^k, 165
Ω_T, 67
Ω, xvi, 8
∂B, 3
∂Ω, 158

Function spaces

BMO, 83
BMO, 135
Camp_a(u), 208
C(Ω), xvi
C^k(Ω), xvi, 8
C^k_0, xvi
C^k_0(Ω), xvi, 11
C^n, 346
C^n(Ω), xvi
C^{r,k+2r}(Ω), 46
C^{r,k+2r}(Ω), 46
C^{r,k+2r}(Ω), 46
C^r, 203
C^∞_0, xvi, 267
C^∞_0(R^d), 267
C^∞_0(Ω), xv, 9
Index

C^\infty_b, 34
C^\infty_0(\Omega), 10
C^\infty, xvi
H^2_p, 318
H, 313
L_p(\Omega), xv
L, 73
L_1(\infty), 312
L_{1, loc}, 73
L_\partial(\Omega), 260
L_p L_q(\mathbb{R}^{d+1}), 150
L_{1, \infty}, 312
S, 268
VMO, 134
W^{1,2}_p, 153
W^{1,2}_p(\mathbb{R}^{d+1}), 153
W^{1,2}_p(\mathbb{R}^{d+1} T, S), 153
W^{k, \infty}_p, 10
W^{k}_p, 8
W^{k}_p(\Omega), 8
W^{k+2}_p, 51
W^{k+2, \infty}_p(\Omega), 51
W^{1,2}_p(\Omega), 155
W^{1,2}_p, 68
W^{1,2}_p(\Omega), 158

Operators

(1 - \Delta)^{\gamma/2}, 277, 297
\Delta, 1, 270
Du, xv
D^\alpha, xiv
D^\beta u(t, x'), 258
\partial u, xv, 45
\partial u, f, 181
D_k, xiv
I_A, 73
F, 2, 267
F^{-1}, 268
\Phi_\lambda, 54
\Phi_\lambda, 48
L_\psi, 278
M, 87
Mf, 78
u^{(n)}, 34
u(t), 190
u_B, 94, 208
u_B(t), 94
u_{(n)}, 93
u_t, xv
u_{zz}, xiv, xv
u_z, xiv
T, 256
f, 73, 87, 93
\frac{\partial}{\partial x}, 272
\partial, 272
\nabla u, xiv

Norms

\|u\|_{C^\alpha}, 203
\|u\|_{C^{\alpha}(\Omega)}, 207
\|u\|_{W^k_p(\Omega)}, 10, 182
\|u\|_{W^k (\mathbb{R}^d)}, 214
\|g\|_{BMO}, 83
\|f\|_{L_p(\mathbb{R}^d)}, xv
\|g\|_{H^2_p}, 318
\|u\|_{C^{\alpha}(\Omega)}, xvi
\|u\|_{C^{\alpha}}, 203
\|u\|_{C^\gamma}, 203
\|u\|_{C}, 203
\|u\|_{W^k_p(\Omega), 8, 10
\|u\|_{W^k, k+2(\Omega)}, 51

Sizes

|A|, 73
|B|, 87, 93
|Q|, 93
|\alpha|, xiv
|\Gamma|, 207

a priori estimate, 16
adapted sequences, 84
adjoint symbol, 274
Agmon's inequality, 326
analytic semigroup, 333

bounded mean oscillation, 135
Brouwer's fixed point theorem, 8
caloric function, 67
L-caloric function, 102
Campanato space, 207
Cauchy's operator, 297
Cauchy-Riemann operator, 272
characteristic polynomial, 43, 270
classical maximal function, 87
classical sharp function, 87
compact set, xv
constant of ellipticity, 14, 271, 274, 277
constant under control, xiv

Davis's inequality, 84, 85
defining sequence, 8, 51
derivative in the sense of distributions, 9
domain, xiv, 8
dyadic cubes, 74
dyadic maximal function, 91
dyadic sharp function, 87
eigenfunctions, 228
Index

357

eigenvalues, 228
elliptic symbol, 274

Fan Ky minimax theorem, 8
Fefferman-Stein theorem, 81
filtration of partitions, 74
first boundary-value problem, 158
formally adjoint operator, 270, 277
Fourier transform, 2, 267
freezing the coefficients, 22
functions of bounded mean oscillation, 83
generalized derivative, 8, 9
global barriers, 232
global regularity, 29, 57, 120, 189
grad, xiv
Green's function, 25, 254, 262
Green's measure, 245

Hardy's inequality, 160
Hardy-Littlewood theorem, 88
Hardy-Littlewood-Sobolev inequality, 343
harmonic function, 67
Hilbert transform, 299
Hilbert's identity, 334
Hölder space, 203
homogeneous Cauchy's operator, 299
homogeneous elliptic operator, 271
Hopf's lemma, 5

interior cone condition, 212
interior diameter, 203

John-Nirenberg class, 83
John-Nirenberg space, 135
John-Nirenberg theorem, 83

kernel, 301
Kondrashov's theorem, 223

Laplace's operator, 1, 270
Laplacian, 1
Lebesgue differentiating theorem, 80
Lipschitz continuous function, 38
local regularity, 30, 60, 122, 196, 237

mth order operator, 269
maximal function, 78
maximal inequality, 78
maximum principle, 4, 233, 243, 254, 262
method of continuity, 15
Minkowski's inequality, 33
modification, 32, 207, 342
multi-index, xiv
multiplicative inequalities, 17, 326

Neumann boundary-value condition, 190
Neumann problem, 191
Newtonian potential, 39

oblique derivative problem, 190
one-dimensional case, 50, 56

parabolic dilatation, 48
parabolic dyadic cubes, 74
parabolic Sobolev spaces, 51
partition of unity, 23, 172
Poincaré's inequality, 212, 226
principal part, 270
pseudo-differential operator, 277

quadratic variation, 84

resolvent operator, 236
Riesz transforms, 299
Riesz-Calderon-Zygmund decomposition, 77

Sarason's class, 134
second-order elliptic differential operator, 14
sharp function, 80
singular-integral operator, 41
Slobodetskii space, 207
Sobolev derivative, 9
Sobolev mollifier, 32, 35, 348
Sobolev spaces, 8, 158
Sobolev-Poincaré inequality, 226
spaces of Bessel potentials, 318
spectrum, 228
stopping time, 75
strongly elliptic operator, 269, 277
support, xv
symbol, 274
test function, 9
two-dimensional case, 17

uniformly elliptic operator, 328
vanishing mean oscillation, 134
von Neumann series, 241
Weierstrass function, 307
Young's inequality, 19, 33
Zygmund space, 307
This book concentrates on the basic facts and ideas of the modern theory of linear elliptic and parabolic equations in Sobolev spaces.

The main areas covered in this book are the first boundary-value problem for elliptic equations and the Cauchy problem for parabolic equations. In addition, other boundary-value problems such as the Neumann or oblique derivative problems are briefly covered. As is natural for a textbook, the main emphasis is on organizing well-known ideas in a self-contained exposition. Among the topics included that are not usually covered in a textbook are a relatively recent development concerning equations with VMO coefficients and the study of parabolic equations with coefficients measurable only with respect to the time variable. There are numerous exercises which help the reader better understand the material.

After going through the book, the reader will have a good understanding of results available in the modern theory of partial differential equations and the technique used to obtain them. Prerequisites are basics of measure theory, the theory of L_p spaces, and the Fourier transform.