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Introduction 

Complex Made Simple is intended as a text on complex analysis at the 
beginning graduate level — students who have already taken a course on 
this topic may nonetheless be interested in the results in the second half of 
the book, beginning somewhere around Chapter 16, and experts in the field 
may be amused by the proof of the Big Picard Theorem in Chapter 20. 

The main prerequisite is a course typically called "Advanced Calculus" 
or "Analysis", including topics such as uniform convergence, continuity and 
compactness in Euclidean spaces. A hypothetical student who has never 
heard of complex numbers should begin with Appendices 1 and 2 (students 
who are familiar with basic manipulations with complex numbers on an in
formal level can skip Appendix 2, although many such students should prob
ably read Appendix 1). Definitions and results concerning metric spaces are 
summarized in Appendix 4, with most proofs left as exercises. We decided 
not to include a similar summary of elementary point-set topology: General 
topological spaces occur in only a few sections, dealing with Riemann sur
faces (students unfamiliar with general topology can skip those sections or 
pretend that a topological space is just a metric space). The only abstract 
algebra required is a rudimentary bit of group theory (normal subgroups 
and homomorphisms), while the deepest fact from linear algebra used in the 
text is that similar matrices have the same eigenvalues. 

Of course the analysis here is really no simpler than that in any other text 
on the topic at the same level (although we hope we have made it simple to 
understand). A more accurate title might be Complex Explained in Excruci
ating Detail: Since our main intent is pedagogical, we place great emphasis 
on motivation, attempting to distinguish clearly between clever ideas and 
routine calculations, to explain what various results "really mean", to show 

IX 



X Introduction 

how one might have found a certain argument, etc. In several places we give 
two versions of a proof, one more "abstract" than the other; the reader who 
wishes to attain a clear understanding of the difference between the forest 
and the trees is encouraged to contemplate both proofs until he or she sees 
how they are really just different expositions of the same underlying idea. 

Many results in elementary complex analysis (pointwise differentiability 
implies smoothness, a uniform limit of holomorphic functions is holomorphic, 
etc.) are really quite surprising. Or at least they should be surprising; we 
include examples from real analysis for the benefit of readers who might not 
otherwise see what the big deal is. 

There are a few ways in which the content differs from that of the typical 
text. First, the reader will notice an emphasis on (holomorphic) automor
phism groups and an explicit mention of the notion of covering spaces. These 
concepts are used in incidental ways in the first half of the book; for exam
ple linear-fractional transformations arise naturally as the automorphisms 
of the Riemann sphere instead of being introduced as an ad hoc class of 
conformal maps in which it just happens that various calculations are easy, 
covering maps serve to unify various results on analytic continuation, etc.; 
then it turns out that some not-quite-trivial results on automorphisms and 
covering maps are crucial to the proof of the Big Picard Theorem. 

Probably the most unusual aspect of the content is the inclusion of a 
section on the relation between Brownian motion and the Dirichlet problem. 
In most of the text we have tried to achieve a fairly high standard of rigor, 
but in this section the notion of rigor simply flies out the window: We do not 
even include precise definitions of the things we're talking about! We de
cided to include a discussion of this topic even though we could not possibly 
do so rigorously (considering the prerequisites we assume) because Brownian 
motion gives the clearest possible intuition concerning the Dirichlet prob
lem. Readers who are offended by the informal nature of the exposition 
in this section are encouraged to think of it not so much as a lecture but 
rather a conversation in the departmental lounge or over a few beers on a 
Friday afternoon. 

Finally, the proof of the Big Picard Theorem will probably be new to 
most readers, possibly including many experts. The proof is certainly not 
simpler or shorter than the proofs found in typical texts, but it seems very 
interesting, at least to me: It proceeds by essentially a direct generalization 
of the standard "one-line" proof of the Little Picard Theorem. (See the 
discussion of Theorem A and Theorem B in Chapter 20.) 

It will be clear to many readers that I first learned much of this material 
from [R]. Very few references are given; all of the results are quite standard, 
and I doubt that any of the proofs are new. Indeed, for some time I thought 
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that the proof of the Big Picard Theorem was original with me — Anthony 
Kable discovered that it is essentially the same as the original proof [J]. 
(This raises the question of why the original proof is not so well known; I 
conjecture that it fell out of favor because various concepts and techniques 
were much newer and fuzzier in Picard's time than they are at present.) The 
list of references at the end of the book should not be construed as a guide to 
the literature or even as a list of suggestions for further reading; it is simply 
a list of the references that happened to come up in the text. (I decided that 
including a "Further Reading" section would border on arrogance — further 
reading here could include topics in almost any area of mathematics.) 

It is a pleasure to thank various students and past and present colleagues 
for mathematical and moral support through the years, including Benny 
Evans, Alan Noell, Wade Ramey, David Wright, and in particular Robert 
Myers, who gave a very careful reading of the sections on topology, and 
especially Anthony Kable, who made various valuable comments at every 
stage of the project. We enjoyed working with the people at the AMS: 
Barbara Beeton provided staggeringly competent and often witty TfrjKnical 
advice, and Edward Dunne was a very enthusiastic and helpful senior editor. 

Any errors or omissions are the responsibility of the author. However, 
readers who feel that the whole book is just one big mistake need to discuss 
the matter with Walter Rudin: Before reading Real and Complex Analysis 
I had no idea I was interested in the subject. It seems presumptuous to 
publish another book in a field where there already exists a text so beautiful 
it makes your eyes hurt, but several people kept bugging me to write up my 
lecture notes — this seemed like the only way to shut them up. 
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