Complex Made Simple
This page intentionally left blank
Complex Made Simple

David C. Ullrich

Graduate Studies in Mathematics
Volume 97

American Mathematical Society
Providence, Rhode Island
Contents

Introduction ix

Part 1. Complex Made Simple

Chapter 0. Differentiability and the Cauchy-Riemann Equations 3
Chapter 1. Power Series 9
Chapter 2. Preliminary Results on Holomorphic Functions 15
Chapter 3. Elementary Results on Holomorphic Functions 33
Chapter 4. Logarithms, Winding Numbers and Cauchy's Theorem 51
Chapter 5. Counting Zeroes and the Open Mapping Theorem 79
Chapter 6. Euler's Formula for \(\sin(z) \) 87
 6.0. Motivation 87
 6.1. Proof by the Residue Theorem 89
 6.2. Estimating Sums Using Integrals 96
 6.3. Proof Using Liouville's Theorem 99
Chapter 7. Inverses of Holomorphic Maps 105
Chapter 8. Conformal Mappings 113
 8.0. Meromorphic Functions and the Riemann Sphere 113
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Linear-Fractional Transformations, Part I</td>
<td>117</td>
</tr>
<tr>
<td>8.2</td>
<td>Linear-Fractional Transformations, Part II</td>
<td>120</td>
</tr>
<tr>
<td>8.3</td>
<td>Linear-Fractional Transformations, Part III</td>
<td>128</td>
</tr>
<tr>
<td>8.4</td>
<td>Linear-Fractional Transformations, Part IV: The Schwarz Lemma and Automorphisms of the Disk</td>
<td>130</td>
</tr>
<tr>
<td>8.5</td>
<td>More on the Schwarz Lemma</td>
<td>135</td>
</tr>
<tr>
<td>9</td>
<td>Normal Families and the Riemann Mapping Theorem</td>
<td>141</td>
</tr>
<tr>
<td>9.0</td>
<td>Introduction</td>
<td>141</td>
</tr>
<tr>
<td>9.1</td>
<td>Quasi-Metrics</td>
<td>143</td>
</tr>
<tr>
<td>9.2</td>
<td>Convergence and Compactness in $C(D)$</td>
<td>149</td>
</tr>
<tr>
<td>9.3</td>
<td>Montel’s Theorem</td>
<td>155</td>
</tr>
<tr>
<td>9.4</td>
<td>The Riemann Mapping Theorem</td>
<td>159</td>
</tr>
<tr>
<td>9.5</td>
<td>Montel’s Theorem Again</td>
<td>164</td>
</tr>
<tr>
<td>10</td>
<td>Harmonic Functions</td>
<td>167</td>
</tr>
<tr>
<td>10.0</td>
<td>Introduction</td>
<td>167</td>
</tr>
<tr>
<td>10.1</td>
<td>Poisson Integrals and the Dirichlet Problem</td>
<td>171</td>
</tr>
<tr>
<td>10.2</td>
<td>Poisson Integrals and $\text{Aut}(\mathbb{D})$</td>
<td>182</td>
</tr>
<tr>
<td>10.3</td>
<td>Poisson Integrals and Cauchy Integrals</td>
<td>183</td>
</tr>
<tr>
<td>10.4</td>
<td>Series Representations for Harmonic Functions in the Disk</td>
<td>184</td>
</tr>
<tr>
<td>10.5</td>
<td>Green’s Functions and Conformal Mappings</td>
<td>189</td>
</tr>
<tr>
<td>10.6</td>
<td>Intermission: Harmonic Functions and Brownian Motion</td>
<td>199</td>
</tr>
<tr>
<td>10.7</td>
<td>The Schwarz Reflection Principle and Harnack’s Theorem</td>
<td>215</td>
</tr>
<tr>
<td>11</td>
<td>Simply Connected Open Sets</td>
<td>225</td>
</tr>
<tr>
<td>12</td>
<td>Runge’s Theorem and the Mittag-Leffler Theorem</td>
<td>229</td>
</tr>
<tr>
<td>13</td>
<td>The Weierstrass Factorization Theorem</td>
<td>245</td>
</tr>
<tr>
<td>14</td>
<td>Carathéodory’s Theorem</td>
<td>257</td>
</tr>
<tr>
<td>15</td>
<td>More on $\text{Aut}(\mathbb{D})$</td>
<td>267</td>
</tr>
<tr>
<td>15.0</td>
<td>Classification of Elements of $\text{Aut}(\mathbb{D})$</td>
<td>267</td>
</tr>
<tr>
<td>15.1</td>
<td>Functions Invariant under Group Elements</td>
<td>271</td>
</tr>
<tr>
<td>16</td>
<td>Analytic Continuation</td>
<td>277</td>
</tr>
<tr>
<td>16.0</td>
<td>Introduction</td>
<td>277</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>16.1. Continuation along Curves</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>16.2. The Complete Analytic Function</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>16.3. Unrestricted Continuation — the Monodromy Theorem</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>16.4. Another Point of View</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>Chapter 17. Orientation</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>Chapter 18. The Modular Function</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>Chapter 19. Preliminaries for the Picard Theorems</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td>19.0. Holomorphic Covering Maps</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td>19.1. Examples of Holomorphic Covering Maps</td>
<td>343</td>
<td></td>
</tr>
<tr>
<td>19.2. Two More Automorphism Groups</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>19.3. Normalizers of Covering Groups</td>
<td>349</td>
<td></td>
</tr>
<tr>
<td>19.4. Covering Groups and Conformal Equivalence</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>Chapter 20. The Picard Theorems</td>
<td>357</td>
<td></td>
</tr>
<tr>
<td>Part 2. Further Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 21. Abel’s Theorem</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>Chapter 22. More on Brownian Motion</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>Chapter 23. More on the Maximum Modulus Theorem</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>23.0. Theorems of Hadamard and Phragmén-Lindelöf</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>23.1. An Application: The Hausdorff-Young Inequality</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Chapter 24. The Gamma Function</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td>Chapter 25. Universal Covering Spaces</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Chapter 26. Cauchy’s Theorem for Nonholomorphic Functions</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>Chapter 27. Harmonic Conjugates</td>
<td>441</td>
<td></td>
</tr>
<tr>
<td>Part 3. Appendices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appendix 1. Complex Numbers</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>Appendix 2. Complex Numbers, Continued</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>Appendix 3. Sin, Cos and Exp</td>
<td>455</td>
<td></td>
</tr>
<tr>
<td>Appendix 4. Metric Spaces</td>
<td>461</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Appendix 5. Convexity</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td>Appendix 6. Four Counterexamples</td>
<td>475</td>
<td></td>
</tr>
<tr>
<td>Appendix 7. The Cauchy-Riemann Equations Revisited</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td>Index of Notations</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>487</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Complex Made Simple is intended as a text on complex analysis at the beginning graduate level — students who have already taken a course on this topic may nonetheless be interested in the results in the second half of the book, beginning somewhere around Chapter 16, and experts in the field may be amused by the proof of the Big Picard Theorem in Chapter 20.

The main prerequisite is a course typically called “Advanced Calculus” or “Analysis”, including topics such as uniform convergence, continuity and compactness in Euclidean spaces. A hypothetical student who has never heard of complex numbers should begin with Appendices 1 and 2 (students who are familiar with basic manipulations with complex numbers on an informal level can skip Appendix 2, although many such students should probably read Appendix 1). Definitions and results concerning metric spaces are summarized in Appendix 4, with most proofs left as exercises. We decided not to include a similar summary of elementary point-set topology: General topological spaces occur in only a few sections, dealing with Riemann surfaces (students unfamiliar with general topology can skip those sections or pretend that a topological space is just a metric space). The only abstract algebra required is a rudimentary bit of group theory (normal subgroups and homomorphisms), while the deepest fact from linear algebra used in the text is that similar matrices have the same eigenvalues.

Of course the analysis here is really no simpler than that in any other text on the topic at the same level (although we hope we have made it simple to understand). A more accurate title might be *Complex Explained in Excruciating Detail*: Since our main intent is pedagogical, we place great emphasis on motivation, attempting to distinguish clearly between clever ideas and routine calculations, to explain what various results “really mean”, to show
how one might have found a certain argument, etc. In several places we give two versions of a proof, one more “abstract” than the other; the reader who wishes to attain a clear understanding of the difference between the forest and the trees is encouraged to contemplate both proofs until he or she sees how they are really just different expositions of the same underlying idea.

Many results in elementary complex analysis (pointwise differentiability implies smoothness, a uniform limit of holomorphic functions is holomorphic, etc.) are really quite surprising. Or at least they should be surprising; we include examples from real analysis for the benefit of readers who might not otherwise see what the big deal is.

There are a few ways in which the content differs from that of the typical text. First, the reader will notice an emphasis on (holomorphic) automorphism groups and an explicit mention of the notion of covering spaces. These concepts are used in incidental ways in the first half of the book; for example linear-fractional transformations arise naturally as the automorphisms of the Riemann sphere instead of being introduced as an ad hoc class of conformal maps in which it just happens that various calculations are easy, covering maps serve to unify various results on analytic continuation, etc.; then it turns out that some not-quite-trivial results on automorphisms and covering maps are crucial to the proof of the Big Picard Theorem.

Probably the most unusual aspect of the content is the inclusion of a section on the relation between Brownian motion and the Dirichlet problem. In most of the text we have tried to achieve a fairly high standard of rigor, but in this section the notion of rigor simply flies out the window: We do not even include precise definitions of the things we’re talking about! We decided to include a discussion of this topic even though we could not possibly do so rigorously (considering the prerequisites we assume) because Brownian motion gives the clearest possible intuition concerning the Dirichlet problem. Readers who are offended by the informal nature of the exposition in this section are encouraged to think of it not so much as a lecture but rather a conversation in the departmental lounge or over a few beers on a Friday afternoon.

Finally, the proof of the Big Picard Theorem will probably be new to most readers, possibly including many experts. The proof is certainly not simpler or shorter than the proofs found in typical texts, but it seems very interesting, at least to me: It proceeds by essentially a direct generalization of the standard “one-line” proof of the Little Picard Theorem. (See the discussion of Theorem A and Theorem B in Chapter 20.)

It will be clear to many readers that I first learned much of this material from [R]. Very few references are given; all of the results are quite standard, and I doubt that any of the proofs are new. Indeed, for some time I thought
that the proof of the Big Picard Theorem was original with me — Anthony
Kable discovered that it is essentially the same as the original proof [J].
(This raises the question of why the original proof is not so well known; I
conjecture that it fell out of favor because various concepts and techniques
were much newer and fuzzier in Picard’s time than they are at present.) The
list of references at the end of the book should not be construed as a guide to
the literature or even as a list of suggestions for further reading; it is simply
a list of the references that happened to come up in the text. (I decided that
including a “Further Reading” section would border on arrogance — further
reading here could include topics in almost any area of mathematics.)

It is a pleasure to thank various students and past and present colleagues
for mathematical and moral support through the years, including Benny
Evans, Alan Noell, Wade Ramey, David Wright, and in particular Robert
Myers, who gave a very careful reading of the sections on topology, and
especially Anthony Kable, who made various valuable comments at every
stage of the project. We enjoyed working with the people at the AMS:
Barbara Beeton provided staggeringly competent and often witty TÉXnical
advice, and Edward Dunne was a very enthusiastic and helpful senior editor.

Any errors or omissions are the responsibility of the author. However,
readers who feel that the whole book is just one big mistake need to discuss
the matter with Walter Rudin: Before reading Real and Complex Analysis
I had no idea I was interested in the subject. It seems presumptuous to
publish another book in a field where there already exists a text so beautiful
it makes your eyes hurt, but several people kept bugging me to write up my
lecture notes — this seemed like the only way to shut them up.
This page intentionally left blank
References

This is not meant to be a list of suggestions for further reading, a list of classic works in the field, or any such thing; it is simply a list of the works that happen to be cited in the text.

References

Index of Notations

<table>
<thead>
<tr>
<th>Notation</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{C}</td>
<td>3</td>
</tr>
<tr>
<td>O ("big-oh")</td>
<td>4</td>
</tr>
<tr>
<td>o ("little-oh")</td>
<td>4</td>
</tr>
<tr>
<td>$D(z, r), \overline{D}(z, r)$</td>
<td>9</td>
</tr>
<tr>
<td>$\dot{+}, \dot{-}$</td>
<td>20</td>
</tr>
<tr>
<td>$[a, b]$</td>
<td>21</td>
</tr>
<tr>
<td>$H(V)$</td>
<td>30</td>
</tr>
<tr>
<td>∞</td>
<td>37, 113</td>
</tr>
<tr>
<td>$Z(f)$</td>
<td>40</td>
</tr>
<tr>
<td>$D'(z, r)$</td>
<td>43</td>
</tr>
<tr>
<td>$A(a, r, R)$</td>
<td>46</td>
</tr>
<tr>
<td>Ind</td>
<td>56</td>
</tr>
<tr>
<td>$\gamma_0 \sim \gamma_1$</td>
<td>69</td>
</tr>
<tr>
<td>Res</td>
<td>71</td>
</tr>
<tr>
<td>\mathbb{C}_∞</td>
<td>113</td>
</tr>
<tr>
<td>$\text{Aut}(V)$</td>
<td>118</td>
</tr>
<tr>
<td>\mathcal{M}</td>
<td>120</td>
</tr>
<tr>
<td>$GL_2(\mathbb{C})$</td>
<td>121</td>
</tr>
<tr>
<td>Π^+</td>
<td>129</td>
</tr>
<tr>
<td>\mathbb{D}</td>
<td>130</td>
</tr>
<tr>
<td>ϕ_a</td>
<td>132</td>
</tr>
<tr>
<td>P_r (Poisson kernel)</td>
<td>173</td>
</tr>
<tr>
<td>$P[f]$ (Poisson integral)</td>
<td>175</td>
</tr>
<tr>
<td>Exit(D, z)</td>
<td>202</td>
</tr>
<tr>
<td>Pr(A) (probability of A)</td>
<td>205</td>
</tr>
<tr>
<td>$SL_2(\mathbb{R})$</td>
<td>220</td>
</tr>
<tr>
<td>\mathcal{R}_A</td>
<td>231</td>
</tr>
<tr>
<td>E_n</td>
<td>247</td>
</tr>
<tr>
<td>(f, D)</td>
<td>280</td>
</tr>
<tr>
<td>$\mathcal{O}_a, \mathcal{O}(D)$</td>
<td>281</td>
</tr>
<tr>
<td>$[f]_a$</td>
<td>281</td>
</tr>
<tr>
<td>$\Gamma, \Gamma(2)$ (modular groups)</td>
<td>319</td>
</tr>
<tr>
<td>σ, τ (generators for $\Gamma(2)$)</td>
<td>320</td>
</tr>
<tr>
<td>j (involution in Π^+)</td>
<td>321</td>
</tr>
<tr>
<td>Aut(Ω, p)</td>
<td>339</td>
</tr>
<tr>
<td>Γ (Gamma function)</td>
<td>399</td>
</tr>
<tr>
<td>\mathbb{R}</td>
<td>446</td>
</tr>
<tr>
<td>\bar{z}</td>
<td>449</td>
</tr>
<tr>
<td>Im</td>
<td>449</td>
</tr>
<tr>
<td>Re</td>
<td>449</td>
</tr>
<tr>
<td>$</td>
<td>z</td>
</tr>
<tr>
<td>arg(z)</td>
<td>452</td>
</tr>
<tr>
<td>\cos</td>
<td>455</td>
</tr>
<tr>
<td>exp</td>
<td>455</td>
</tr>
<tr>
<td>\sin</td>
<td>455</td>
</tr>
<tr>
<td>e^z</td>
<td>457</td>
</tr>
<tr>
<td>$C(X, Y), C(X)$</td>
<td>469</td>
</tr>
<tr>
<td>$[x, y]$</td>
<td>473</td>
</tr>
<tr>
<td>$\partial/\partial z, \partial/\partial \bar{z}$</td>
<td>479</td>
</tr>
</tbody>
</table>
Index

Abel summability, 187, 369
Abel's Theorem, 367–372
abelian theorem, 369
absolute convergence, 452
absolutely and uniformly, 10
affine map, 119
almost surely, 200
analytic
 continuation, 277–305
 function, 29
annulus, 46, 66
approximate identity, 174
argument, 452–453
Argument Principle, 80
Arzelà-Ascoli Theorem, 153–155
automorphism group, 118

ball (in a metric space), 462
big oh, 4
biholomorphic, 118
boundary, 463
branch of the logarithm, 54–56
Brownian motion, 199–215

Carathéodory's Theorem, 257–266
Cauchy
 Integral Formula, 26, 51–71, 89, 238, 435–440
 Integral Formula for derivatives, 34, 75
 -Riemann equations, 3–6, 169, 479–481
 sequence, 462
Cauchy's
 Estimates, 35
 Theorem, 17, 19, 22, 26, 30, 51–71, 243, 435–440
Cayley transform, 129–130

chain, 20
circuit, 194
closed set, 451, 463
closure, 463
compact, 465
 sequentially, 465
complete
 analytic function, 287–288
 metric space, 462
complex number, 445–453
component, 471
concave function, 143
conformal
 equivalence, 117
 mapping, 117
conjugate
 harmonic, 171, 441–442
 of a complex number, 449
connected, 470
 component, 471
 path-, 470
 polygonally, 471
continuation (of a function element along a path), 282
continuous function, 451, 465
contour integral, 17
convergence
 uniform, 452, 465
 uniform, on compact sets, 33
convergent sequence, 462
convex, 21
 combination, 473
 hull, 21, 473
 set, 473
convexity, 106
 source of all wisdom, 98
Index

cosine, 455–459
cotangent (infinite sum for), 91
counting zeroes, 79
covering
 map, 290, 337–354
 space, 58
curve, 16
cycle, 20
deleted disk, 43
diameter, diam, 463
differentiable function, 3–6
Dirichlet
 domain, 204
 problem, 171–182
diverges to zero, 94
Dominated Convergence Theorem, 146, 313
elementary
 factors, 246–247
 neighborhood, 290, 337
elliptic automorphism, 268
entire function, 37
equicontinuous, 152
essential singularity, 44
Euler, L., 87
Euler’s formula for the sine, 87–102, 254–255
Evans, Benny, 477
exhaustion, 150
exponential function, 455–459
extended plane, 113–115
field of quotients, 252
fixed points (of automorphisms), 268
Fourier
 coefficients, 185–187
 series, 185–187
free group, 324
freely generated, 324
Fubini’s Theorem, 64
function element, 280
fundamental domain, 322, 325
Fundamental Theorem of Algebra, 37
Gamma function, 399–420
Gauss, K.F., 404
general linear group, 121
germ of a holomorphic function, 281
graph, directed, 194–198
Green’s function, 191–193
Hadamard Factorization Theorem, 255
harmonic
 conjugate, 171, 441–442
 function, 167–224, 441–442
Harnack’s Inequality, Harnack’s Theorem, 220–224
Hausdorff-Young Inequality, 390–397
Heine-Borel Theorem, 466
holomorphic
 function, 30
 interpolation, 252
homotopic
 curves, 69–70
 null-, 286, 294
homotopy, 285
 path-, 285
Hurwitz’s Theorem, 85, 158, 224
hyperbolic automorphism, 268
impudence, 390
In principio, 3
index, 56
inequalities, source of, 98
infinite products, 92–94
infinity, 37
integral, 17
integral domain, 252
Integral Tests, 99
interior, 463
invariant Schwarz Lemma, 135–139
inverse functions, 105–109
isolated singularity, 43
Kable, Anthony, 129
Landau notation, 4
Laurent series, 46, 66
Lebesgue number, 467
lifting, 338
limit, 462
 point, 463
Lindelöf’s Theorem, 262
line integral, 17
linear-fractional transformation, 117–135
Liouville’s Theorem, 37
little oh, 4
Littlewood, J. E., 357, 390
locally
 connected, 471
 path-connected, 470
logarithm, 54–56
 branch of, 54–56
logarithmic derivative, 95
M-test, 452
manifold, 304–305
Maximum Modulus Theorem, 41–43, 191, 385
Mean Value Property, 28, 172, 173, 181
 weak, 179–182
meromorphic function, 113, 252
metric space, 461–471
Mittag-Leffler Theorem, 241
ML inequality, 18
Möbius transformation, 118
modular
 function, 319–335
 group, 319–335
modulus, 449
Monodromy Theorem, 286, 288–297
Montel’s Theorem, 155–157, 164–165
Morera’s Theorem, 30
multiplicity, 79

Noell, Alan, 218
normal family, 157
null-homotopic, 286, 294

open mapping, 83
Open Mapping Theorem, 83–84, 109–111
open set, 451, 462
order
 of a pole, 45
 of a zero, 39

parabolic automorphism, 268
Parseval, 42, 75, 391
path-connected, 470
path-homotopic, 285
Phragmén-Lindelöf Theorem, 385
ping, 325
ping pong lemma, 324
pointwise convergence, 465
Poisson
 integral, 171–187
 kernel, 173
polar coordinates, 452
pole, 44
polygonally connected, 471
pong, 325
power series, 9–13, 28
Prime Number Theorem, 417
principal part, 46
proper map, 119
pseudo-hyperbolic distance, 135–139
punctured disk, 43

quasi-metric, 143–149

radius of convergence, 10
rational function, 229–231
real-analytic, 29, 37
regular domain, 204
relatively
 closed, 464
 open, 464
removable singularity, 44
residue, 71

Residue Theorem, 71–74
Riemann
 Hypothesis, 417
 Mapping Theorem, 141, 159–163
 sphere, 113–115
 surface, 304–305
Riesz, M., 390
Rouché’s Theorem, 81, 85
Rudin, Walter, xi
Rudin-Shapiro Polynomials, 397
Runge’s Theorem, 229–241, 238

Schwarz Lemma, 130–139
 invariant, 135–139
 fancy version, 135–139
Schwarz Reflection Principle, 181, 215–220
sequence, 451
sequentially compact, 465
series, 451
sheaf of germs of holomorphic functions, 281
simple
 boundary point, 257
 pole, 45
 zero, 39
Sicut erat in principio, 479
simply connected, 26, 70, 225, 338
sine, 455–459
smooth curve, 17
source of all wisdom, 98
stereographic projection, 113
summability method, 369
summation by parts, 367
tauberian theorem, 369
Three-Lines Theorem, 385
topology, 462
totally bounded, 468
triangle inequality, 450

uniform convergence, 452, 465
 on compact sets, 33
Uniformization Theorem, 423
uniformly continuous function, 465
unrestricted continuation, 288–297

Weierstrass, 455
 elementary factors, 246–247
 Factorization Theorem, 245–251
 for entire functions, 249
 in an open set, 250
well defined, 53
winding number, 56

zeroes, counting, 79
This page intentionally left blank
Titles in This Series

97 David C. Ullrich, Complex made simple, 2008
96 N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, 2008
95 Leon A. Takhtajan, Quantum mechanics for mathematicians, 2008
94 James E. Humphreys, Representations of semisimple Lie algebras in the BGG category O, 2008
93 Peter W. Michor, Topics in differential geometry, 2008
92 I. Martin Isaacs, Finite group theory, 2008
91 Louis Halle Rowen, Graduate algebra: Noncommutative view, 2008
90 Larry J. Gerstein, Basic quadratic forms, 2008
89 Anthony Bonato, A course on the web graph, 2008
88 Nathaniel P. Brown and Narutaka Ozawa, C*-algebras and finite-dimensional approximations, 2008
86 Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, 2007
85 John M. Alongi and Gail S. Nelson, Recurrence and topology, 2007
84 Charalambos D. Aliprantis and Rabee Tourky, Cones and duality, 2007
83 Wolfgang Ebeling, Functions of several complex variables and their singularities (translated by Philip G. Spain), 2007
81 V. V. Prasolov, Elements of homology theory, 2007
80 Davar Khoshnevisan, Probability, 2007
79 William Stein, Modular forms, a computational approach (with an appendix by Paul E. Gunnells), 2007
78 Harry Dym, Linear algebra in action, 2007
77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, 2006
76 Michael E. Taylor, Measure theory and integration, 2006
75 Peter D. Miller, Applied asymptotic analysis, 2006
74 V. V. Prasolov, Elements of combinatorial and differential topology, 2006
73 Louis Halle Rowen, Graduate algebra: Commutative view, 2006
72 R. J. Williams, Introduction the the mathematics of finance, 2006
71 S. P. Novikov and I. A. Taimanov, Modern geometric structures and fields, 2006
70 Séan Dineen, Probability theory in finance, 2005
69 Sebastián Montiel and Antonio Ros, Curves and surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems, 2005
67 T.Y. Lam, Introduction to quadratic forms over fields, 2004
66 Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis, Functional analysis, An introduction, 2004
65 S. Ramanan, Global calculus, 2004
64 A. A. Kirillov, Lectures on the orbit method, 2004
63 Steven Dale Cutkosky, Resolution of singularities, 2004
62 T. W. Körner, A companion to analysis: A second first and first second course in analysis, 2004
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003
58 Cédric Villani, Topics in optimal transportation, 2003
57 Robert Plato, Concise numerical mathematics, 2003
56 E. B. Vinberg, A course in algebra, 2003
55 C. Herbert Clemens, A scrapbook of complex curve theory, second edition, 2003
54 Alexander Barvinok, A course in convexity, 2002
53 Henryk Iwaniec, Spectral methods of automorphic forms, 2002
52 Ilka Agricola and Thomas Friedrich, Global analysis: Differential forms in analysis, geometry and physics, 2002
51 Y. A. Abramovich and C. D. Aliprantis, Problems in operator theory, 2002
50 Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, 2002
49 John R. Harper, Secondary cohomology operations, 2002
48 Y. Eliashberg and N. Mishachev, Introduction to the h-principle, 2002
46 Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, 2002
44 Jim Agler and John E. McCarthy, Pick interpolation and Hilbert function spaces, 2002
43 N. V. Krylov, Introduction to the theory of random processes, 2002
42 Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, 2002
41 Georgi V. Smirnov, Introduction to the theory of differential inclusions, 2002
40 Robert E. Greene and Steven G. Krantz, Function theory of one complex variable, third edition, 2006
39 Larry C. Grove, Classical groups and geometric algebra, 2002
38 Elton P. Hsu, Stochastic analysis on manifolds, 2002
37 Hershel M. Parkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, 2001
35 James F. Davis and Paul Kirk, Lecture notes in algebraic topology, 2001
34 Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001
33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001
31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001
30 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001
29 Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
Perhaps uniquely among mathematical topics, complex analysis presents the student with the opportunity to learn a thoroughly developed subject that is rich in both theory and applications. Even in an introductory course, the theorems and techniques can have elegant formulations. But for any of these profound results, the student is often left asking: What does it really mean? Where does it come from?

In *Complex Made Simple*, David Ullrich shows the student how to think like an analyst. In many cases, results are discovered or derived, with an explanation of how the students might have found the theorem on their own. Ullrich explains why a proof works. He will also, sometimes, explain why a tempting idea does not work.

Complex Made Simple looks at the Dirichlet problem for harmonic functions twice: once using the Poisson integral for the unit disk and again in an informal section on Brownian motion, where the reader can understand intuitively how the Dirichlet problem works for general domains. Ullrich also takes considerable care to discuss the modular group, modular function, and covering maps, which become important ingredients in his modern treatment of the often-overlooked original proof of the Big Picard Theorem.

This book is suitable for a first-year course in complex analysis. The exposition is aimed directly at the students, with plenty of details included. The prerequisite is a good course in advanced calculus or undergraduate analysis.