Differential Algebraic Topology
From Stratifolds to Exotic Spheres
Differential Algebraic Topology
From Stratifolds to Exotic Spheres

Matthias Kreck

Graduate Studies
in Mathematics
Volume 110
Contents

INTRODUCTION

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A quick introduction to stratifolds</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Smooth manifolds revisited</td>
<td>5</td>
</tr>
<tr>
<td>§1</td>
<td>A word about structures</td>
<td>5</td>
</tr>
<tr>
<td>§2</td>
<td>Differential spaces</td>
<td>6</td>
</tr>
<tr>
<td>§3</td>
<td>Smooth manifolds revisited</td>
<td>8</td>
</tr>
<tr>
<td>§4</td>
<td>Exercises</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Stratifolds</td>
<td>15</td>
</tr>
<tr>
<td>§1</td>
<td>Stratifolds</td>
<td>15</td>
</tr>
<tr>
<td>§2</td>
<td>Local retractions</td>
<td>18</td>
</tr>
<tr>
<td>§3</td>
<td>Examples</td>
<td>19</td>
</tr>
<tr>
<td>§4</td>
<td>Properties of smooth maps</td>
<td>25</td>
</tr>
<tr>
<td>§5</td>
<td>Consequences of Sard’s Theorem</td>
<td>27</td>
</tr>
<tr>
<td>§6</td>
<td>Exercises</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Stratifolds with boundary: (c)-stratifolds</td>
<td>33</td>
</tr>
<tr>
<td>§1</td>
<td>Exercises</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>(\mathbb{Z}/2)-homology</td>
<td>39</td>
</tr>
<tr>
<td>§1</td>
<td>Motivation of homology</td>
<td>39</td>
</tr>
<tr>
<td>§2</td>
<td>(\mathbb{Z}/2)-oriented stratifolds</td>
<td>41</td>
</tr>
<tr>
<td>§3</td>
<td>Regular stratifolds</td>
<td>43</td>
</tr>
<tr>
<td>§4</td>
<td>(\mathbb{Z}/2)-homology</td>
<td>45</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>§5.</td>
<td>Exercises</td>
<td>51</td>
</tr>
<tr>
<td>Chapter 5.</td>
<td>The Mayer-Vietoris sequence and homology groups of spheres</td>
<td>55</td>
</tr>
<tr>
<td>§1.</td>
<td>The Mayer-Vietoris sequence</td>
<td>55</td>
</tr>
<tr>
<td>§2.</td>
<td>Reduced homology groups and homology groups of spheres</td>
<td>61</td>
</tr>
<tr>
<td>§3.</td>
<td>Exercises</td>
<td>64</td>
</tr>
<tr>
<td>Chapter 6.</td>
<td>Brouwer’s fixed point theorem, separation, invariance of dimension</td>
<td>67</td>
</tr>
<tr>
<td>§1.</td>
<td>Brouwer’s fixed point theorem</td>
<td>67</td>
</tr>
<tr>
<td>§2.</td>
<td>A separation theorem</td>
<td>68</td>
</tr>
<tr>
<td>§3.</td>
<td>Invariance of dimension</td>
<td>69</td>
</tr>
<tr>
<td>§4.</td>
<td>Exercises</td>
<td>70</td>
</tr>
<tr>
<td>Chapter 7.</td>
<td>Homology of some important spaces and the Euler characteristic</td>
<td>71</td>
</tr>
<tr>
<td>§1.</td>
<td>The fundamental class</td>
<td>71</td>
</tr>
<tr>
<td>§2.</td>
<td>$\mathbb{Z}/2$-homology of projective spaces</td>
<td>72</td>
</tr>
<tr>
<td>§3.</td>
<td>Betti numbers and the Euler characteristic</td>
<td>74</td>
</tr>
<tr>
<td>§4.</td>
<td>Exercises</td>
<td>77</td>
</tr>
<tr>
<td>Chapter 8.</td>
<td>Integral homology and the mapping degree</td>
<td>79</td>
</tr>
<tr>
<td>§1.</td>
<td>Integral homology groups</td>
<td>79</td>
</tr>
<tr>
<td>§2.</td>
<td>The degree</td>
<td>83</td>
</tr>
<tr>
<td>§3.</td>
<td>Integral homology groups of projective spaces</td>
<td>86</td>
</tr>
<tr>
<td>§4.</td>
<td>A comparison between integral and $\mathbb{Z}/2$-homology</td>
<td>88</td>
</tr>
<tr>
<td>§5.</td>
<td>Exercises</td>
<td>89</td>
</tr>
<tr>
<td>Chapter 9.</td>
<td>A comparison theorem for homology theories and CW-complexes</td>
<td>93</td>
</tr>
<tr>
<td>§1.</td>
<td>The axioms of a homology theory</td>
<td>93</td>
</tr>
<tr>
<td>§2.</td>
<td>Comparison of homology theories</td>
<td>94</td>
</tr>
<tr>
<td>§3.</td>
<td>CW-complexes</td>
<td>98</td>
</tr>
<tr>
<td>§4.</td>
<td>Exercises</td>
<td>99</td>
</tr>
<tr>
<td>Chapter 10.</td>
<td>Künnehn’s theorem</td>
<td>103</td>
</tr>
<tr>
<td>§1.</td>
<td>The cross product</td>
<td>103</td>
</tr>
<tr>
<td>§2.</td>
<td>The Künnehn theorem</td>
<td>106</td>
</tr>
<tr>
<td>§3.</td>
<td>Exercises</td>
<td>109</td>
</tr>
</tbody>
</table>
Chapter 11. Some lens spaces and quaternionic generalizations 111
 §1. Lens spaces 111
 §2. Milnor’s 7-dimensional manifolds 115
 §3. Exercises 117

Chapter 12. Cohomology and Poincaré duality 119
 §1. Cohomology groups 119
 §2. Poincaré duality 121
 §3. The Mayer-Vietoris sequence 123
 §4. Exercises 125

Chapter 13. Induced maps and the cohomology axioms 127
 §1. Transversality for stratifolds 127
 §2. The induced maps 129
 §3. The cohomology axioms 132
 §4. Exercises 133

Chapter 14. Products in cohomology and the Kronecker pairing 135
 §1. The cross product and the Künneth theorem 135
 §2. The cup product 137
 §3. The Kronecker pairing 141
 §4. Exercises 145

Chapter 15. The signature 147
 §1. Exercises 152

Chapter 16. The Euler class 153
 §1. The Euler class 153
 §2. Euler classes of some bundles 155
 §3. The top Stiefel-Whitney class 159
 §4. Exercises 159

Chapter 17. Chern classes and Stiefel-Whitney classes 161
 §1. Exercises 165

Chapter 18. Pontrjagin classes and applications to bordism 167
 §1. Pontrjagin classes 167
 §2. Pontrjagin numbers 170
 §3. Applications of Pontrjagin numbers to bordism 172
 §4. Classification of some Milnor manifolds 174
§5. Exercises 175

Chapter 19. Exotic 7-spheres 177
§1. The signature theorem and exotic 7-spheres 177
§2. The Milnor spheres are homeomorphic to the 7-sphere 181
§3. Exercises 184

Chapter 20. Relation to ordinary singular (co)homology 185
§1. $SH_k(X)$ is isomorphic to $H_k(X;\mathbb{Z})$ for CW-complexes 185
§2. An example where $SH_k(X)$ and $H_k(X)$ are different 187
§3. $SH^k(M)$ is isomorphic to ordinary singular cohomology 188
§4. Exercises 190

Appendix A. Constructions of stratifolds 191
§1. The product of two stratifolds 191
§2. Gluing along part of the boundary 192
§3. Proof of Proposition 4.1 194

Appendix B. The detailed proof of the Mayer-Vietoris sequence 197

Appendix C. The tensor product 209

Bibliography 215

Index 217
INTRODUCTION

In this book we present some basic concepts and results from algebraic and differential topology. We do this in the framework of differential topology. Homology groups of spaces are one of the central tools of algebraic topology. These are abelian groups associated to topological spaces which measure certain aspects of the complexity of a space.

The idea of homology was originally introduced by Poincaré in 1895 [Po] where homology classes were represented by certain global geometric objects like closed submanifolds. The way Poincaré introduced homology in this paper is the model for our approach. Since some basics of differential topology were not yet far enough developed, certain difficulties occurred with Poincaré’s original approach. Three years later he overcame these difficulties by representing homology classes using sums of locally defined objects from combinatorics, in particular singular simplices, instead of global differential objects. The singular and simplicial approaches to homology have been very successful and up until now most books on algebraic topology follow them and related elaborations or variations.

Poincaré’s original idea for homology came up again many years later, when in the 1950’s Thom [Th 1] invented and computed the bordism groups of smooth manifolds. Following on from Thom, Conner and Floyd [C-F] introduced singular bordism as a generalized homology theory of spaces in the 1960’s. This homology theory is much more complicated than ordinary homology, since the bordism groups associated to a point are complicated abelian groups, whereas for ordinary homology they are trivial except in degree 0. The easiest way to simplify the bordism groups of a point is to
generalize manifolds in an appropriate way, such that in particular the cone
over a closed manifold of dimension > 0 is such a generalized manifold.
There are several approaches in the literature in this direction but they
are at a more advanced level. We hope it is useful to present an approach
to ordinary homology which reflects the spirit of Poincaré’s original idea
and is written as an introductory text. For another geometric approach to
(co)homology see [B-R-S].

As indicated above, the key for passing from singular bordism to or-
dinary homology is to introduce generalized manifolds that are a certain
kind of stratified space. These are topological spaces S together with a de-
composition of S into manifolds of increasing dimension called the strata of
S. There are many concepts of stratified spaces (for an important paper
see [Th 2]), the most important examples being Whitney stratified spaces.
(For a nice tour through the history of stratification theory and an alterna-
tive concept of smooth stratified spaces see [Pf].) We will introduce a new
class of stratified spaces, which we call stratifolds. Here the decomposi-
tion of S into strata will be derived from another structure. We distinguish a
certain algebra C of continuous functions which plays the role of smooth
functions in the case of a smooth manifold. (For those familiar with the
language of sheaves, C is the algebra of global sections of a subsheaf of the
sheaf of continuous functions on S.) Others have considered such algebras
before (see for example [S-L]), but we impose stronger conditions. More
precisely, we use the language of differential spaces [Si] and impose on this
additional conditions. The conditions we impose on the algebra C provide
the decomposition of S into its strata, which are smooth manifolds.

It turns out that basic concepts from differential topology like Sard’s
theorem, partitions of unity and transversality generalize to stratifolds and
this allows for a definition of homology groups based on stratifolds which
we call “stratifold homology”. For many spaces this agrees with the most
common and most important homology groups: singular homology groups
(see below). It is rather easy and intuitive to derive the basic properties of
homology groups in the world of stratifolds. These properties allow comput-
ation of homology groups and straightforward constructions of important
homology classes like the fundamental class of a closed smooth oriented man-
ifold or, more generally, of a compact stratifold. We also define stratifold
cohomology groups (but only for smooth manifolds) by following an idea of
Quillen [Q], who gave a geometric construction of cobordism groups, the co-
homology theory associated to singular bordism. Again, certain important
cohomology classes occur very naturally in this description, in particular
the characteristic classes of smooth vector bundles over smooth oriented
manifolds. Another useful aspect of this approach is that one of the most fundamental results, namely Poincaré duality, is almost a triviality. On the other hand, we do not develop much homological algebra and so related features of homology are not covered: for example the general Künneth theorem and the universal coefficient theorem.

From (co)homology groups one can derive important invariants like the Euler characteristic and the signature. These invariants play a significant role in some of the most spectacular results in differential topology. As a highlight we present Milnor’s exotic 7-spheres (using a result of Thom which we do not prove in this book).

We mentioned above that Poincaré left his original approach and defined homology in a combinatorial way. It is natural to ask whether the definition of stratifold homology in this book is equivalent to the usual definition of singular homology. Both constructions satisfy the Eilenberg-Steenrod axioms for a homology theory and so, for a large class of spaces including all spaces which are homotopy equivalent to CW-complexes, the theories are equivalent. There is also an axiomatic characterization of cohomology for smooth manifolds which implies that the stratifold cohomology groups of smooth manifolds are equivalent to their singular cohomology groups. We consider these questions in chapter 20. It was a surprise to the author to find out that for more general spaces than those which are homotopy equivalent to CW-complexes, our homology theory is different from ordinary singular homology. This difference occurs already for rather simple spaces like the one-point compactifications of smooth manifolds!

The previous paragraphs indicate what the main themes of this book will be. Readers should be familiar with the basic notions of point set topology and of differential topology. We would like to stress that one can start reading the book if one only knows the definition of a topological space and some basic examples and methods for creating topological spaces and concepts like Hausdorff spaces and compact spaces. From differential topology one only needs to know the definition of smooth manifolds and some basic examples and concepts like regular values and Sard’s theorem. The author has given introductory courses on algebraic topology which start with the presentation of these prerequisites from point set and differential topology and then continue with chapter 1 of this book. Additional information like orientation of manifolds and vector bundles, and later on transversality, was explained when it was needed. Thus the book can serve as a basis for a combined introduction to differential and algebraic topology.
It also allows for a quick presentation of (co)homology in a course about differential geometry.

As with most mathematical concepts, the concept of stratifolds needs some time to get used to. Some readers might want to see first what stratifolds are good for before they learn the details. For those readers I have collected a few basics about stratifolds in chapter 0. One can jump from there directly to chapter 4, where stratifold homology groups are constructed.

I presented the material in this book in courses at Mainz (around 1998) and Heidelberg Universities. I would like to thank the students and the assistants in these courses for their interest and suggestions for improvements. Thanks to Anna Grinberg for not only drawing the figures but also for careful reading of earlier versions and for several stimulating discussions. Also many thanks to Daniel Müllner and Martin Olbermann for their help. Diarmuid Crowley has read the text carefully and helped with the English (everything not appropriate left over falls into the responsibility of the author). Finally Peter Landweber read the final version and suggested improvements with a care I could never imagine. Many thanks to both of them. I had several fruitful discussions with Gerd Laures, Wilhelm Singhof, Stephan Stolz, and Peter Teichner about the fundamental concepts. Theodor Bröcker and Don Zagier have read a previous version of the book and suggested numerous improvements. The book was carefully refereed and I obtained from the referees valuable suggestions for improvements. I would like to thank these colleagues for their generous help. Finally, I would like to thank Dorothea Heukäufer and Ursula Jagtiani for the careful typing.
Bibliography

Index

CW-decomposition, 96
\(\mathbb{Z}/2\)-Betti number, 74
\(\mathbb{Z}/2\)-homologically finite, 74
\(\mathbb{Z}/2\)-homology, 46
\(\mathbb{Z}/2\)-oriented, 42
\(\mathbb{Z}/2\)-cohomology groups, 121
\(\mathfrak{n}\), transverse intersection, 125
\(\sim\)-product, 135
\(\times\)-product, 102, 133
c-manifold, 33
c-stratifold, 35
p-stratifold, 24

algebra, 6

Betti numbers, 81
bicollar, 36, 195
Bockstein sequence, 88
bordant, 45
bordism, 45
boundary, 35
boundary operator, 57, 92
bump function, 16

canonical map to tensor product, 208
cells, 96
characteristic class, 151
Chern classes, 160
closed cone, 36
closed manifold, 119
closed unit ball \(D^n\), 67
cohomology ring, 138
cohomology theory, 131
collar, 33, 34
compact c-stratifold, 45
compactly supported homology theory, 93
complex projective space, 73
complex vector bundle, 159
conjugate bundle, 166
connected sum, 13
connective homology theory, 92
contractible space, 50
contravariant functor, 130
covariant functor, 130
cross product, 102, 133
cup product, 135
cutting along a codimension-1 stratifold, 36
cylinder, 35
degree, 83
derivation, 10
differential, 11
differential space, 7

Euler characteristic, 74
Euler class, 129, 151
exact sequence, 55

finite _CW_-complex, 96
functor, 49, 91, 92
fundamental class, 64, 82
fundamental theorem for finitely generated
abelian groups, 81
fundamental theorem of algebra, 84

germs, 9
good atlas, 135
graded commutativity, 136

hedgehog theorem, 85
homologically finite, 81
homology theory, 91

217
homology theory with compact supports, 93
homotopic, 49
homotopy, 49
homotopy axiom, 50
homotopy equivalence, 50
homotopy inverse, 50
Hopf bundle, 168

induced homomorphism in cohomology, 128
induced map, 48
integral cohomology group, 117
integral homology, 80
integral stratifold homology, 80
intersection form, 145
isomorphism, 8, 41

Künneth Theorem for cohomology, 135
Künneth Theorem for homology, 105
Kronecker homomorphism, 140
Kronecker pairing, 140
Kronecker product, 140

lens space, 110
local homology, 69
local retraction, 19
local trivialization, 109

Mayer-Vietoris sequence for homology, 57, 91
Mayer-Vietoris sequence for integral cohomology, 123
Milnor manifolds, 113
morphism, 11

natural equivalence, 93
natural transformation, 88, 92
nice space, 95

one-point compactification, 21
open cone, 20
open unit ball B^n, 67
oriented m-dimensional c-stratifold, 79

parametrized stratifold, 24
partition of unity, 25
path components, 47
path connected space, 47
Poincaré duality, 120
Poincaré duality for $\mathbb{Z}/2$-(co)homology, 121
Pontrjagin classes, 165
Pontrjagin numbers, 168
product formula for Pontrjagin classes, 166
proper map, 117
pure tensors, 207

quaternions, 113

rank of a finitely generated abelian group, 211
rational cohomology, 134
rational homology, 104
reduced homology groups, 61
reduced stratifold homology groups, 80
reduction mod 2, 87
regular c-stratifold, 43
regular stratifold, 43
regular value, 27
relative homology, 70

signature, 146
Signature Theorem, 177
skeleton, 16
smooth fibre bundle, 109
smooth manifold, 9
smooth maps, 25
Stiefel-Whitney classes, 162
stratification, 17
stratifold, 16
stratifold homology, 80
stratifold homology group, 46
stratum, 16
subordinate partition of unity, 25
support of a function, 17
tangent space, 10
tautological bundle, 153
tensor product, 208, 210
top Stiefel-Whitney class, 157
top stratum, 17
topological sum, 23
total Chern class, 161
total Pontrjagin class, 166
transverse, 127
transverse intersection, 125

vector field, 85
Whitney formula, 161, 163
Titles in This Series

113 Thomas M. Liggett, Continuous time Markov processes: An introduction, 2010

112 Fredi Tröltzsch, Optimal control of partial differential equations: Theory, methods and applications, 2010

111 Simon Brendle, Ricci flow and the sphere theorem, 2010

110 Matthias Kreck, Differential algebraic topology: From stratifolds to exotic spheres, 2010

109 John C. Neu, Training manual on transport and fluids, 2010

108 Enrique Outerelo and Jesús M. Ruiz, Mapping degree theory, 2009

107 Jeffrey M. Lee, Manifolds and differential geometry, 2009

106 Robert J. Daverman and Gerard A. Venema, Embeddings in manifolds, 2009

105 Giovanni Leoni, A first course in Sobolev spaces, 2009

104 Paolo Aluffi, Algebra: Chapter 0, 2009

103 Branko Grünbaum, Configurations of points and lines, 2009

102 Mark A. Pinsky, Introduction to Fourier analysis and wavelets, 2009

101 Ward Cheney and Will Light, A course in approximation theory, 2009

100 I. Martin Isaacs, Algebra: A graduate course, 2009

99 Gerald Teschl, Mathematical methods in quantum mechanics: With applications to Schrödinger operators, 2009

98 Alexander I. Bobenko and Yuri B. Suris, Discrete differential geometry: Integrable structure, 2008

97 David C. Ullrich, Complex made simple, 2008

96 N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, 2008

95 Leon A. Takhtajan, Quantum mechanics for mathematicians, 2008

94 James E. Humphreys, Representations of semisimple Lie algebras in the BGG category \mathcal{O}, 2008

93 Peter W. Michor, Topics in differential geometry, 2008

92 I. Martin Isaacs, Finite group theory, 2008

91 Louis Halle Rowen, Graduate algebra: Noncommutative view, 2008

90 Larry J. Gerstein, Basic quadratic forms, 2008

89 Anthony Bonato, A course on the web graph, 2008

86 Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, 2007

85 John M. Alongi and Gail S. Nelson, Recurrence and topology, 2007

84 Charalambos D. Aliprantis and Rabee Tourky, Cones and duality, 2007

83 Wolfgang Ebeling, Functions of several complex variables and their singularities (translated by Philip G. Spain), 2007

81 V. V. Prasolov, Elements of homology theory, 2007

80 Davar Khoshnevisan, Probability, 2007

79 William Stein, Modular forms, a computational approach (with an appendix by Paul E. Gunnells), 2007

78 Harry Dym, Linear algebra in action, 2007

77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, 2006
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Publication Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure theory and integration</td>
<td>Michael E. Taylor</td>
<td>2006</td>
</tr>
<tr>
<td>Applied asymptotic analysis</td>
<td>Peter D. Miller</td>
<td>2006</td>
</tr>
<tr>
<td>Elements of combinatorial and differential topology</td>
<td>V. V. Prasolov</td>
<td>2006</td>
</tr>
<tr>
<td>Graduate algebra: Commutative view</td>
<td>Louis Halle Rowen</td>
<td>2006</td>
</tr>
<tr>
<td>Introduction the the mathematics of finance</td>
<td>R. J. Williams</td>
<td>2006</td>
</tr>
<tr>
<td>Modern geometric structures and fields</td>
<td>S. P. Novikov and I. A. Taimanov</td>
<td>2006</td>
</tr>
<tr>
<td>Probability theory in finance</td>
<td>Seán Dineen</td>
<td>2005</td>
</tr>
<tr>
<td>Curves and surfaces</td>
<td>Sebastián Montiel and Antonio Ros</td>
<td>2005</td>
</tr>
<tr>
<td>A geometric approach to free boundary problems</td>
<td>Luis Caffarelli and Sandro Salsa</td>
<td>2005</td>
</tr>
<tr>
<td>Introduction to quadratic forms over fields</td>
<td>T.Y. Lam</td>
<td>2004</td>
</tr>
<tr>
<td>Functional analysis, An introduction</td>
<td>Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis</td>
<td>2004</td>
</tr>
<tr>
<td>Global calculus</td>
<td>S. Ramanan</td>
<td>2004</td>
</tr>
<tr>
<td>Lectures on the orbit method</td>
<td>A. A. Kirillov</td>
<td>2004</td>
</tr>
<tr>
<td>Resolution of singularities</td>
<td>Steven Dale Cutkosky</td>
<td>2004</td>
</tr>
<tr>
<td>A companion to analysis: A second first and first second course in</td>
<td>T. W. Körner</td>
<td>2004</td>
</tr>
<tr>
<td>Cartan for beginners: Differential geometry via moving frames and</td>
<td>Thomas A. Ivey and J. M. Landsberg</td>
<td>2003</td>
</tr>
<tr>
<td>Foliations II</td>
<td>Alberto Candel and Lawrence Conlon</td>
<td>2003</td>
</tr>
<tr>
<td>Representation theory of finite groups: algebra and arithmetic</td>
<td>Steven H. Weintraub</td>
<td>2003</td>
</tr>
<tr>
<td>Topics in optimal transportation</td>
<td>Cédric Villani</td>
<td>2003</td>
</tr>
<tr>
<td>Concise numerical mathematics</td>
<td>Robert Plato</td>
<td>2003</td>
</tr>
<tr>
<td>A course in algebra</td>
<td>E. B. Vinberg</td>
<td>2003</td>
</tr>
<tr>
<td>A scrapbook of complex curve theory</td>
<td>C. Herbert Clemens</td>
<td>2003</td>
</tr>
<tr>
<td>A course in convexity</td>
<td>Alexander Barvinok</td>
<td>2002</td>
</tr>
<tr>
<td>Spectral methods of automorphic forms</td>
<td>Henryk Iwaniec</td>
<td>2002</td>
</tr>
<tr>
<td>Global analysis: Differential forms in analysis, geometry and physics</td>
<td>Ilka Agricola and Thomas Friedrich</td>
<td>2002</td>
</tr>
<tr>
<td>Problems in operator theory</td>
<td>Y. A. Abramovich and C. D. Aliprantis</td>
<td>2002</td>
</tr>
<tr>
<td>An invitation to operator theory</td>
<td>Y. A. Abramovich and C. D. Aliprantis</td>
<td>2002</td>
</tr>
<tr>
<td>Secondary cohomology operations</td>
<td>John R. Harper</td>
<td>2002</td>
</tr>
<tr>
<td>Introduction to the h-principle</td>
<td>Y. Eliashberg and N. Mishachev</td>
<td>2002</td>
</tr>
<tr>
<td>Several complex variables with connections to algebraic geometry and</td>
<td>Joseph L. Taylor</td>
<td>2002</td>
</tr>
<tr>
<td>Lie groups</td>
<td>Inder K. Rana</td>
<td>2002</td>
</tr>
<tr>
<td>Pick interpolation and Hilbert function spaces</td>
<td>Jim Agler and John E. McCarthy</td>
<td>2002</td>
</tr>
<tr>
<td>Introduction to the theory of random processes</td>
<td>N. V. Krylov</td>
<td>2002</td>
</tr>
<tr>
<td>Introduction to quantum groups and crystal bases</td>
<td>Jin Hong and Seok-Jin Kang</td>
<td>2002</td>
</tr>
<tr>
<td>Introduction to the theory of differential inclusions</td>
<td>Georgi V. Smirnov</td>
<td>2002</td>
</tr>
<tr>
<td>Function theory of one complex variable</td>
<td>Robert E. Greene and Steven G. Krantz</td>
<td>2006</td>
</tr>
<tr>
<td>Classical groups and geometric algebra</td>
<td>Larry C. Grove</td>
<td>2002</td>
</tr>
</tbody>
</table>

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
This book presents a geometric introduction to the homology of topological spaces and the cohomology of smooth manifolds. The author introduces a new class of stratified spaces, so-called stratifolds. He derives basic concepts from differential topology such as Sard’s theorem, partitions of unity and transversality. Based on this, homology groups are constructed in the framework of stratifolds and the homology axioms are proved. This implies that for nice spaces these homology groups agree with ordinary singular homology. Besides the standard computations of homology groups using the axioms, straightforward constructions of important homology classes are given. The author also defines stratifold cohomology groups following an idea of Quillen. Again, certain important cohomology classes occur very naturally in this description, for example, the characteristic classes which are constructed in the book and applied later on. One of the most fundamental results, Poincaré duality, is almost a triviality in this approach.

Some fundamental invariants, such as the Euler characteristic and the signature, are derived from (co)homology groups. These invariants play a significant role in some of the most spectacular results in differential topology. In particular, the author proves a special case of Hirzebruch’s signature theorem and presents as a highlight Milnor’s exotic 7-spheres.

This book is based on courses the author taught in Mainz and Heidelberg. Readers should be familiar with the basic notions of point-set topology and differential topology. The book can be used for a combined introduction to differential and algebraic topology, as well as for a quick presentation of (co)homology in a course about differential geometry.