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Preface

In this book, we study the evolution of Riemannian metrics under the
Ricci flow. This evolution equation was introduced in a seminal paper by
R. Hamilton [44], following earlier work of Eells and Sampson [33] on the
harmonic map heat flow. Using the Ricci flow, Hamilton proved that ev-
ery compact three-manifold with positive Ricci curvature is diffeomorphic
to a spherical space form. The Ricci flow has since been used to resolve
longstanding open questions in Riemannian geometry and three-dimensional
topology. In this text, we focus on the convergence theory for the Ricci flow
in higher dimensions and its application to the Differentiable Sphere Theo-
rem. The results we describe have all appeared in research articles. How-
ever, we have made an effort to simplify various arguments and streamline
the exposition.

In Chapter 1, we give a survey of various sphere theorems in Riemannian
geometry (see also [22]). We first describe the Topological Sphere Theorem
of Berger and Klingenberg. We then discuss various generalizations of that
theorem, such as the Diameter Sphere Theorem of Grove and Shiohama [42]
and the Sphere Theorem of Micallef and Moore [60]. These results rely on
the variational theory for geodesics and harmonic maps, respectively. We
will discuss the main ideas involved in the proof; however, this material will
not be used in later chapters. Finally, we state the Differentiable Sphere
Theorem obtained by the author and R. Schoen [20].

In Chapter 2, we state the definition of the Ricci flow and describe
the short-time existence and uniqueness theory. We then study how the
Riemann curvature tensor changes when the metric evolves under the Ricci
flow. This evolution equation will be the basis for all the a priori estimates
established in later chapters.

v
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In Chapter 3, we describe Shi’s estimates for the covariant derivatives
of the curvature tensor. As an application, we show that the Ricci flow
cannot develop a singularity in finite time unless the curvature is unbounded.
Moreover, we establish interior estimates for solutions of linear parabolic
equations. These estimates play an important role in Sections 4.3 and 5.4.

In Chapter 4, we consider the Ricci flow on S2. In Section 4.1, we show
that any gradient Ricci soliton on S2 has constant curvature. We then study
solutions to the Ricci flow on S2 with positive scalar curvature. A theorem of
Hamilton [46] asserts that such a solution converges to a constant curvature
metric after rescaling. A key ingredient in the proof is the monotonicity of
Hamilton’s entropy functional. This monotonicity formula will be discussed
in Section 4.2. Alternative proofs of this theorem can be found in [4], [6],
[48], or [82]. The arguments in [4] and [48] are based on a careful study
of the isoperimetric profile, while the proofs in [6] and [82] employ PDE
techniques.

In Chapter 5, we describe Hamilton’s maximum principle for the Ricci
flow and discuss the notion of a pinching set. We then describe a general
convergence criterion for the Ricci flow. This criterion was discovered by
Hamilton [45] and plays an important role in the study of Ricci flow.

In Chapter 6, we explain how Hamilton’s classification of three-manifolds
with positive Ricci curvature follows from the general theory developed in
Chapter 5. We then describe an important curvature estimate, due to Hamil-
ton and Ivey. This inequality holds for any solution to the Ricci flow in
dimension 3.

In Chapter 7, we describe various curvature conditions which are pre-
served by the Ricci flow. We first prove that nonnegative isotropic curvature
is preserved by the Ricci flow in all dimensions. This curvature condition
originated in Micallef and Moore’s work on the Morse index of harmonic
two-spheres and plays a central role in this book. We then consider the
condition that M×R has nonnegative isotropic curvature. This condition is
stronger than nonnegative isotropic curvature, and is also preserved by the
Ricci flow. Continuing in this fashion, we consider the condition thatM×R

2

has nonnegative isotropic curvature, and the condition that M × S2(1) has
nonnegative isotropic curvature. (Here, S2(1) denotes a two-dimensional
sphere of constant curvature 1.) We show that these conditions are pre-
served by the Ricci flow as well.

In Chapter 8, we present the proof of the Differentiable Sphere Theorem.
More generally, we show that every compact Riemannian manifold M with
the property that M × R has positive isotropic curvature is diffeomorphic
to a spherical space form. This theorem is the main result of Chapter 8. It
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can be viewed as a generalization of Hamilton’s work in dimension 3 and
was originally proved in [17].

In Chapter 9, we prove various rigidity theorems. In particular, we clas-
sify all compact Riemannian manifolds M with the property that M × R

has nonnegative isotropic curvature. Moreover, we show that any Einstein
manifold with nonnegative isotropic curvature is necessarily locally symmet-
ric. This generalizes classical results due to Berger [10], [11] and Tachibana
[84]. In order to handle the borderline case, we employ a variant of Bony’s
strict maximum principle for degenerate elliptic equations.

The material presented in Chapters 2–9 is largely, though not fully, self-
contained. In Section 2.2, we employ the existence and uniqueness theory
for parabolic systems. In Section 4.2, we use the convergence theory for Rie-
mannian manifolds developed by Cheeger and Gromov. Finally, in Chapter
9, we use Berger’s classification of holonomy groups, as well as some basic
facts about Kähler and quaternionic-Kähler manifolds.

There are some important aspects of Ricci flow which are not mentioned
in this book. For example, we do not discuss Hamilton’s differential Harnack
inequality (cf. [47], [49]) or Perelman’s crucial monotonicity formulae (see
[68], [69]). A detailed exposition of Perelman’s entropy functional can be
found in [63] or [85]. A generalization of Hamilton’s Harnack inequality is
described in [18] (see also [24]).

This book grew out of a Nachdiplom course given at ETH Zürich. It
is a pleasure to thank the Department of Mathematics at ETH Zürich for
its hospitality. I am especially grateful to Professor Michael Struwe and
Professor Tristan Rivière for many inspiring discussions. Without their en-
couragement, this book would never have been written. Finally, I thank
Professor Camillo De Lellis for valuable comments on an earlier version of
this manuscript.
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[26] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, AMS
Chelsea Publishing, Providence RI (2008)

[27] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci
curvature, J. Diff. Geom. 6, 119–128 (1971)

[28] H. Chen, Pointwise 1/4-pinched 4-manifolds, Ann. Global Anal. Geom. 9, 161–176
(1991)

[29] X. Chen, P. Lu, and G. Tian, A note on uniformization of Riemann surfaces by Ricci
flow, Proc. Amer. Math. Soc. 134, 3391–3393 (2006)

[30] B. Chow, The Ricci flow on the 2-sphere, J. Diff. Geom. 33, 325–334 (1991)

[31] B. Chow and L.F. Wu, The Ricci flow on compact 2-orbifolds with curvature negative
somewhere, Comm. Pure Appl. Math. 44, 275–286 (1991)

[32] D. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Diff. Geom.
18, 157–162 (1983)

[33] J. Eells, Jr., and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer.
J. Math. 86, 109–160 (1964)

[34] J.-H. Eschenburg, Local convexity and nonnegative curvature – Gromov’s proof of the
sphere theorem, Invent. Math. 84, 507–522 (1986)

[35] A. Fraser, Fundamental groups of manifolds with positive isotropic curvature, Ann.
of Math. (2) 158, 345–354 (2003)

[36] M.H. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom. 17, 357–
453 (1982)

[37] S. Goldberg and S. Kobayashi, Holomorphic bisectional curvature, J. Diff. Geom. 1,
225–233 (1967)



Bibliography 171

[38] D. Gromoll, Differenzierbare Strukturen und Metriken positiver Krümmung auf
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[40] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Rie-
mann, Amer. J. Math. 79, 121–138 (1957)

[41] K. Grove, H. Karcher, and E. Ruh, Jacobi fields and Finsler metrics on compact Lie
groups with an application to differentiable pinching problems, Math. Ann. 211, 7–21
(1974)

[42] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106,
201–211 (1977)

[43] M. Gursky and C. LeBrun, On Einstein manifolds of positive sectional curvature,
Ann. Global Anal. Geom. 17, 315–328 (1999)

[44] R. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17, 255–
306 (1982)

[45] R. Hamilton, Four-manifolds with positive curvature operator, J. Diff. Geom. 24, 153–
179 (1986)

[46] R. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71, 237–262, Amer. Math.
Soc., Providence RI (1988)

[47] R. Hamilton, The Harnack estimate for the Ricci flow, J. Diff. Geom. 37, 225–243
(1993)

[48] R. Hamilton, An isoperimetric estimate for the Ricci flow on the two-sphere, Modern
Methods in Complex Analysis (Princeton 1992), 191–200, Ann. of Math. Stud. 137,
Princeton University Press, Princeton NJ (1995)

[49] R. Hamilton, The formation of singularities in the Ricci flow, Surveys in Differential
Geometry, vol. II, 7–136, International Press, Somerville MA (1995)

[50] R. Hamilton, Lectures given at Harvard University (1996)

[51] R. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom.
5, 1–92 (1997)

[52] R. Hamilton, Three-orbifolds with positive Ricci curvature, Collected Papers on Ricci
flow, 521–524, Ser. Geom. Topol. 37, International Press, Somerville MA (2003)

[53] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York
(1962)

[54] G. Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Diff.
Geom. 21, 47–62 (1985)

[55] T. Ivey, Ricci solitons on compact three-manifolds, Diff. Geom. Appl. 3, 301–307
(1993)
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In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian 
metrics with the aim of finding canonical metrics on manifolds. This evolution 
equation is known as the Ricci flow, and it has since been used widely and with 
great success, most notably in Perelman’s solution of the Poincaré conjecture. 
Furthermore, various convergence theorems have been established.

This book provides a concise introduction to the subject as well as a comprehensive 
account of the convergence theory for the Ricci flow. The proofs rely mostly on 
maximum principle arguments. Special emphasis is placed on preserved curvature 
conditions, such as positive isotropic curvature. One of the major consequences of 
this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold, 
whose sectional curvatures all lie in the interval (1,4], is diffeomorphic to a spherical 
space form. This question has a long history, dating back to a seminal paper by H. E. 
Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen.

This text originated from graduate courses given at ETH Zürich and Stanford 
University, and it is directed at graduate students and researchers. The reader is 
assumed to be familiar with basic Riemannian geometry, but no previous knowledge 
of Ricci flow is required.


