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Preface

Is it really necessary to classify partial differential equations (PDEs) and to
employ different methods to discuss different types of equations? Why is it
important to derive a priori estimates of solutions before even proving the
existence of solutions? These are only a few questions any students who
just start studying PDEs might ask. Students may find answers to these
questions only at the end of a one-semester course in basic PDEs, sometimes
after they have already lost interest in the subject. In this book, we attempt
to address these issues at the beginning. There are several notable features
in this book.

First, the importance of a priori estimates is addressed at the beginning
and emphasized throughout this book. This is well illustrated by the chapter
on first-order PDEs. Although first-order linear PDEs can be solved by
the method of characteristics, we provide a detailed analysis of a priori
estimates of solutions in sup-norms and in integral norms. To emphasize the
importance of these estimates, we demonstrate how to prove the existence
of weak solutions with the help of basic results from functional analysis.
The setting here is easy, since L2-spaces are needed only. Meanwhile, all
important ideas are in full display. In this book, we do attempt to derive
explicit expressions for solutions whenever possible. However, these explicit
expressions of solutions of special equations usually serve mostly to suggest
the correct form of estimates for solutions of general equations.

The second feature is the illustration of the necessity to classify second-
order PDEs at the beginning. In the chapter on general second-order linear
PDEs, immediately after classifying second-order PDEs into elliptic, para-
bolic and hyperbolic type, we discuss various boundary-value problems and
initial/boundary-value problems for the Laplace equation, the heat equation

ix



x Preface

and the wave equation. We discuss energy methods for proving uniqueness
and find solutions in the plane by separation of variables. The explicit
expressions of solutions demonstrate different properties of solutions of dif-
ferent types of PDEs. Such differences clearly indicate that there is unlikely
to be a unified approach to studying PDEs.

Third, we focus on simple models of PDEs and study these equations in
detail. We have chapters devoted to the Laplace equation, the heat equation
and the wave equation, and use several methods to study each equation.
For example, for the Laplace equation, we use three different methods to
study its solutions: the fundamental solution, the mean-value property and
the maximum principle. For each method, we indicate its advantages and
its shortcomings. General equations are not forgotten. We also discuss
maximum principles for general elliptic and parabolic equations and energy
estimates for general hyperbolic equations.

The book is designed for a one-semester course at the graduate level.
Attempts have been made to give a balanced coverage of different classes
of partial differential equations. The choice of topics is influenced by the
personal tastes of the author. Some topics may not be viewed as basic by
others. Among those not found in PDE textbooks at a comparable level
are estimates in L∞-norms and L2-norms of solutions of the initial-value
problem for the first-order linear differential equations, interior gradient es-
timates and differential Harnack inequality for the Laplace equation and the
heat equation by the maximum principle, and decay estimates for solutions
of the wave equation. Inclusions of these topics reflect the emphasis on
estimates in this book.

This book is based on one-semester courses the author taught at the Uni-
versity of Notre Dame in the falls of 2007, 2008 and 2009. During the writing
of the book, the author benefitted greatly from comments and suggestions of
many of his friends, colleagues and students in his classes. Tiancong Chen,
Yen-Chang Huang, Gang Li, Yuanwei Qi and Wei Zhu read the manuscript
at various stages. Minchun Hong, Marcus Khuri, Ronghua Pan, Xiaodong
Wang and Xiao Zhang helped the author write part of Chapter 8. Hairong
Liu did a wonderful job of typing an early version of the manuscript. Special
thanks go to Charles Stanton for reading the entire manuscript carefully and
for many suggested improvements.

I am grateful to Natalya Pluzhnikov, my editor at the American Math-
ematical Society, for reading the manuscript and guiding the effort to turn
it into a book. Last but not least, I thank Edward Dunne at the AMS for
his help in bringing the book to press.

Qing Han
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This is a textbook for an introductory graduate course on partial differential 
equations. Han focuses on linear equations of fi rst and second order. An impor-
tant feature of his treatment is that the majority of the techniques are applicable 
more generally. In particular, Han emphasizes a priori estimates throughout the 
text, even for those equations that can be solved explicitly. Such estimates are 
indispensable tools for proving the existence and uniqueness of solutions to PDEs, 
being especially important for nonlinear equations. The estimates are also crucial 
to establishing properties of the solutions, such as the continuous dependence on 
parameters.

Han’s book is suitable for students interested in the mathematical theory of partial 
differential equations, either as an overview of the subject or as an introduction 
leading to further study.


