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Preface

The aim of this book is to present the Galois theory of homogeneous lin-
ear differential equations. This theory goes back to the work of Picard and
Vessiot at the end of the 19th century and bears their names. It paral-
lels the Galois theory of algebraic equations. The notions of splitting field,
Galois group, and solvability by radicals have their counterparts in the no-
tions of Picard-Vessiot extension, differential Galois group, and solvability
by quadratures. The differential Galois group of a homogeneous linear dif-
ferential equation has a structure of linear algebraic group; hence it is en-
dowed, in particular, with the Zariski topology. The fundamental theorem of
Picard-Vessiot theory establishes a bijective correspondence between inter-
mediate differential fields of a Picard-Vessiot extension and closed subgroups
of its differential Galois group. Solvability by quadratures is characterized
by means of the differential Galois group. Picard-Vessiot theory was clari-
fied and generalized in the work of Kolchin in the mid-20th century. Kolchin
used the differential algebra developed by Ritt and also built the foundations
of the theory of linear algebraic groups. Kaplansky’s book “Introduction to
Differential Algebra” made the theory more accessible, although it omits an
important point, namely the construction of the Picard-Vessiot extension.
The more recent books by Magid and van der Put and Singer assume that
the reader is familiar with algebraic varieties and linear algebraic groups,
although the latter book compiles the most important topics in an appen-
dix. We point out that not all results on algebraic varieties and algebraic
groups needed to develop differential Galois theory appear in the standard
books on these topics. For our book we have decided to develop the theory
of algebraic varieties and linear algebraic groups in the same way that books
on classical Galois theory include some chapters on group, ring, and field
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xii Preface

theories. Our text includes complete proofs, both of the results on algebraic
geometry and algebraic groups which are needed in Picard-Vessiot theory
and of the results on Picard-Vessiot theory itself.

We have given several courses on Differential Galois Theory in Barcelona
and Kraków. As a result, we published our previous book “Introduction to
Differential Galois Theory” [C-H1]. Although published by a university
publishing house, it has made some impact and has been useful to graduate
students as well as to theoretical physicists working on dynamical systems.
Our present book is also aimed at graduate students in mathematics or
physics and at researchers in these fields looking for an introduction to
the subject. We think it is suitable for a graduate course of one or two
semesters, depending on students’ backgrounds in algebraic geometry and
algebraic groups. Interested students can work out the exercises, some of
which give an insight into topics beyond the ones treated in this book.
The prerequisites for this book are undergraduate courses in commutative
algebra and complex analysis.

We would like to thank our colleagues José Maŕıa Giral, Andrzej No-
wicki, and Henryk Żo�la̧dek who carefully read parts of this book and made
valuable comments, as well as Jakub Byszewski and S�lawomir Cynk for
interesting discussions on its content. We are also grateful to the anonymous
referees for their corrections and suggestions which led to improvements in
the text. Our thanks also go to Dr. Ina Mette for persuading us to expand
our previous book to create the present one and for her interest in this
project.

Finally our book owes much to Jerry Kovacic. We will always be thankful
to him for many interesting discussions and will remember him as a brilliant
mathematician and an open and friendly person.

Both authors acknowledge support by Spanish Grants MTM2006-04895
and MTM2009-07024, Polish Grant N20103831/3261 and European Network
MRTN-CT-2006-035495.

Barcelona and Kraków, October 2010

Teresa Crespo and Zbigniew Hajto



Introduction

This book has been conceived as a self-contained introduction to differential
Galois theory. The self-teaching reader or the teacher wanting to give a
course on this subject will find complete proofs of all results included. We
have chosen to make a classical presentation of the theory. We refer to the
Picard-Vessiot extension as a field rather than introducing the notion of
Picard-Vessiot ring so as to keep the analogy with the splitting field in the
polynomial Galois theory. We also refer to differential equations rather than
differential systems, although the differential systems setting is given in the
exercises.

The chapters on algebraic geometry and algebraic groups include all
questions which are necessary to develop differential Galois theory. The
differential Galois group of a linear differential equation is a linear algebraic
group, hence affine. However, the construction of the quotient of an algebraic
group by a subgroup needs the notion of abstract affine variety. Once we
introduce the notion of geometric space, the concept of algebraic variety
comes naturally. We also consider it interesting to include the notion of
projective variety, which is a model for algebraic varieties, and present a
classical example of an algebraic group which is not affine, namely the elliptic
curve.

The chapter on Lie algebras aims to prove the equivalence between the
solvability of a connected linear algebraic group and the solvability of its Lie
algebra. This fact is used in particular to determine the algebraic subgroups
of SL(2,C). We present the characterization of differential equations solv-
able by quadratures. In the last chapter we consider differential equations
defined over the field of rational functions over the complex field and present
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xiv Introduction

classical notions such as the monodromy group, Fuchsian equations and hy-
pergeometric equations. The last section is devoted to Kovacic’s powerful
algorithm to compute Liouvillian solutions to linear differential equations of
order 2. Each chapter ends with a selection of exercise statements ranging
in difficulty from the direct application of the theory to dealing with some
topics that go beyond it. The reader will also find several illuminating ex-
amples. We have included a chapter with a list of further reading outlining
the different directions in which differential Galois theory and related topics
are being developed.

As guidance for teachers interested in using this book for a postgraduate
course, we propose three possible courses, depending on the background and
interests of their students.

(1) For students with limited or no knowledge of algebraic geometry
who wish to understand Galois theory of linear differential equa-
tions in all its depth, a two–semester course can be given using the
whole book.

(2) For students with good knowledge of algebraic geometry and alge-
braic groups, a one–semester course can be given based on Part 3
of the book using the first two parts as reference as needed.

(3) For students without a good knowledge of algebraic geometry and
eager to learn differential Galois theory more quickly, a one–semester
course can be given by developing the topics included in the fol-
lowing sections: 1.1, 3.1, 3.2, 3.3, 4.4 (skipping the references to
Lie algebra), 4.6, and Part 3 (except the proof of Proposition 6.3.5,
i.e. that the intermediate field of a Picard-Vessiot extension fixed
by a normal closed subgroup of the differential Galois group is a
Picard-Vessiot extension of the base field). This means introducing
the concept of affine variety, defining the algebraic group and its
properties considering only affine ones, determining the subgroups
of SL(2,C) assuming as a fact that a connected linear group of
dimension less than or equal to 2 is solvable, and developing differ-
ential Galois theory (skipping the proof of Proposition 6.3.5).
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[An] Y. André, Sur la conjecture des p-courbures de Grothendieck-Katz et un
problème de Dwork, Geometric aspects of Dwork theory. Vol. I, Walter de
Gruyter GmbH & Co. KG, Berlin, 2004, pp. 55-112.

[A-M] M. F. Atiyah, I. G. MacDonald, Introduction to commutative algebra,
Addison-Wesley, 1969.
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des modèles, [Ba] pp. 555–565.

[Po] E. G. C. Poole, Introduction to the theory of linear differential equations,
Clarendon Press, 1936.

[P-S1] M. van der Put, M. F. Singer, Galois Theory of Linear Differential Equations,
Grundlehren der mathematischen Wissenschaften 328, Springer, 2003.

[P-S2] M. van der Put, M. F. Singer, Galois Theory of Difference Equations, Lecture
Notes in Mathematics 1666, Springer-Verlag, 1997.

[R] J. F. Ritt, Differential Algebra, Dover, 1966.

[Sch] H. A. Schwarz, Ueber diejenigen Fälle, in welchen die Gaussische Hyperge-
ometrische Reihe eine algebraische Function ihres vierten Elementes darstellt,
J. reine angew. Math. 75 (1873), 292–335.

[Sc] W. R. Scott, Group theory, Dover, 1987.

[Se] A. Seidenberg, Contribution to the Picard-Vessiot theory of homogeneous lin-
ear differential equations, Amer. J. Math 78 (1956), 808–817.

[Sh] I. R. Shafarevich, Basic Algebraic Geometry 1, Springer, 1994.

[Si] J. H. Silverman, The arithmetic of elliptic curves, Springer, 1986.

[S] M. F. Singer, Direct and inverse problems in differential Galois theory, [Ba]
pp. 527–554.

[S-U] M. F. Singer, F. Ulmer, Galois groups of second and third order differential
equations, J. Symbolic Computation 16 (1993), 9–36.

[So] E. Sowa, Picard-Vessiot extensions for real fields, Proc. Amer. Math. Soc.,
electronically published, December 2010.

[Sp] T. A. Springer, Linear Algebraic Groups, Progress in Mathematics 9,
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Differential Galois theory has seen intense research activity during the last decades 
in several directions: elaboration of more general theories, computational aspects, 
model theoretic approaches, applications to classical and quantum mechanics as 
well as to other mathematical areas such as number theory.

This book intends to introduce the reader to this subject by presenting Picard-
Vessiot theory, i.e. Galois theory of linear differential equations, in a self-contained 
way. The needed prerequisites from algebraic geometry and algebraic groups are 
contained in the fi rst two parts of the book. The third part includes Picard-Vessiot 
extensions, the fundamental theorem of Picard-Vessiot theory, solvability by quad-
ratures, Fuchsian equations, monodromy group and Kovacic’s algorithm. Over one 
hundred exercises will help to assimilate the concepts and to introduce the reader 
to some topics beyond the scope of this book.

This book is suitable for a graduate course in differential Galois theory. The last 
chapter contains several suggestions for further reading encouraging the reader 
to enter more deeply into different topics of differential Galois theory or related 
fi elds.


