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Preface

What
This book presents certain parts of the basic theory of Riemann surfaces through

methods of complex analytic geometry, many of which were developed at one time

or another in the past 50 years or so.

The first chapter of the book presents a rapid review of the elementary part

of basic complex analysis, introducing holomorphic, meromorphic, harmonic, and

subharmonic functions and establishing some of the basic local properties of these

functions. In the second chapter we define Riemann surfaces and give some exam-

ples, both of a concrete and abstract nature. The most abstract example is that any

oriented 2-dimensional real manifold has a complex structure. In fact, we state the

classical theorem of Korn-Lichtenstein: given any metric on an oriented surface,

there is a complex structure that makes that metric locally conformal to the Eu-

clidean metric in any holomorphic chart. The proof of this theorem is given only

in Chapter 11.

Riemann surfaces are non-linear spaces on which, roughly speaking, local

complex analysis makes sense, and so we can extend the inherently local notions

of holomorphic, meromorphic, harmonic, and subharmonic functions to such sur-

faces. This point of view starts the third chapter, but by the end we prove our first

main result, namely the constancy of the degree of a holomorphic map between

two compact Riemann surfaces. With the recollection of some basic topology of

surfaces, we are then able to establish the Riemann-Hurwitz Formula, which puts

constraints on holomorphic maps between compact Riemann surfaces. The chap-

ter ends with a proof of the Harnack Principle. Up to this point, the presentation

is mostly classical, in the sense that it does not differ markedly from other presen-

tations of the same material (though perhaps the particular blend of the ideas is

unusual).

xi
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The novelty of the book begins in the fourth chapter, where we first define and

give examples of complex and holomorphic line bundles. There are a number of

important, albeit elementary, ideas that are presented in this chapter, and among

these the correspondence between divisors and holomorphic line bundles with sec-

tions is first established. Another key idea is the correspondence between finite-

dimensional vector spaces of sections of a holomorphic line bundle and projective

maps. The chapter ends with an elementary proof of the finite-dimensionality of

the space of all global holomorphic sections of a holomorphic line bundle over a

compact Riemann surface.

The fifth chapter begins by defining complex differential forms. These forms

play a central role in the rest of the book, but in this particular chapter we focus on

their formal aspects—how to integrate them and how to describe the topology of a

Riemann surface with them.

In the sixth chapter we develop the theory of differentiation for sections of

complex line bundles (which is known as defining a connection). A complex line

bundle admits many connections and, unlike the trivial bundle, there is no canon-

ical choice of a connection for a general complex line bundle. The first goal of

the chapter is to describe geometric structures that isolate a subset of the possible

ways to differentiate sections. If a geometry is symmetric enough, there will be

a canonical way to define differentiation of sections. The first instance of such a

scenario is the classical Levi-Čivita Theorem for vector fields on a Riemannian

manifold. The main fact we establish in Chapter 6, due to Chern, is that for each

holomorphic line bundle with Hermitian metric there is a unique connection that

is compatible with these structures in the appropriate sense. We also define the

curvature of a connection, though we postpone a thorough demonstration of how

curvature got its name. We demonstrate Chern’s crucial observation that average

curvature captures topological information.

We begin the seventh chapter with a discussion of potential theory. We use Per-

ron’s Method to solve the Dirichlet Problem and, what is almost the same thing, de-

fine a Green’s Function on any Riemann surface that admits bounded non-constant

subharmonic functions. Our use of the Green’s Function is, to our knowledge,

somewhat novel; we obtain a Cauchy-Green-type representation formula and use it

to solve ∂̄ on large (so topologically non-trivial) relatively compact domains with

smooth boundary in a Riemann surface. In the second half we use the method

of Runge-Behnke-Stein, together with our solution of ∂̄, to approximate any lo-

cal holomorphic function by global ones on an open Riemann surface, provided

the complement of domain of the function to be approximated has no relatively

compact components.

What was done in Chapter 7 immediately applies to obtain global solutions of

the ∂̄-equation on any open Riemann surface, and this is the first main result of

Chapter 8. We then use this result to establish a number of classical facts about
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holomorphic and meromorphic functions on that Riemann surface. The chapter

ends with an adaptation of the method of solving ∂̄ to the problem of solving ∂∂̄.

If it were obvious that all Riemann surfaces admit holomorphic line bundles

with metrics of positive curvature, our next chapter would be Chapter 11. However,

the problem of finding a positive line bundle, especially on a compact Riemann

surface, is a little bit subtle. We have three ways to find positive line bundles, and

the first of these is linked to the intimate relationship between the Poisson Equation

and curvature. We therefore establish in Chapter 9 the celebrated Hodge Theorem,

in the case of Riemann surfaces. The Hodge Theorem is fundamental in its own

right, and the higher-dimensional analog (whose proof is not much different) plays

a significant role in algebraic geometry. After establishing the Hodge Theorem, we

use it to complete the proofs of two theorems on cohomology of compact Riemann

surfaces and to obtain positive line bundles.

Another approach to the existence of positive line bundles is through the Uni-

formization Theorem of Riemann-Köbe. We therefore establish this theorem in

Chapter 10. From a direct observation, one then obtains the positivity of either the

tangent or cotangent bundle of any Riemann surface, compact or open, that is not

a complex torus. The case of a complex torus is treated in an ad hoc manner using

Theta functions, which were defined in an example in Chapter 3.

In Chapter 11 we prove Hörmander’s Theorem. By this point, we have all the

geometric machinery we need, and we set up the Hilbert space method, which is

a twisted version of part of the method in the proof of the Hodge Theorem. We

then adapt the method to prove the Korn-Lichtenstein Theorem that we stated in

Chapter 2.

Chapter 12 concerns the embedding problem for Riemann surfaces. If a Rie-

mann surface is compact without boundary, it cannot be embedded in Euclidean

space. (Indeed, if a Riemann surface is embedded in Euclidean space, the co-

ordinate functions of the ambient space restrict to holomorphic functions on the

surface, and since the surface is compact without boundary, the real parts (as well

as the moduli) of these restricted coordinate functions have interior local maxima.

By the Maximum Principle, the restrictions of the coordinate functions are thus

locally constant, which contradicts the assumption that the surface is embedded.)

The classical remedy for this problem was to puncture a few holes in the surface

and embed the punctured surface using meromorphic functions with ‘poles in the

holes’. There is an interpretation of the resulting embedded surface as lying in

projective space, but we take a more direct geometric approach and work directly

on projective spaces. It is here that one sees the need for holomorphic line bundles

most clearly.

In Chapter 13 we establish the Riemann-Roch Theorem. For an advanced

book, our approach is elementary and admittedly less illuminating than a more

sheaf-theoretic approach might be. Though the approach looks different from other
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proofs, it is simply a combination of two known facts: the usual sheaf-theoretic

approach to the proof together with the realization of Serre duality (a result that is

stated in the language of sheaf-theory) via residues.

The final chapter of the book states and proves Abel’s Theorem, which charac-

terizes linearly trivial divisors, i.e., divisors of meromorphic functions, on a com-

pact Riemann surface. It is elementary to see—as we do on several occasions—that

such a divisor must have degree zero and that if the surface in question has positive

genus, this necessary condition is not sufficient. Based on computing the periods

of global holomorphic forms, Abel constructed a map from the surface into a com-

plex torus whose dimension is the genus of the surface. Abel’s map extends to

divisors in the obvious way because the torus is an additive group, and the map is

a group homomorphism. Abel showed that a necessary and sufficient condition for

a divisor to be linearly trivial is that this divisor is mapped to 0 in the torus under

Abel’s map. The torus is called the Jacobian of the Riemann surface, and Jacobi

showed that the set of divisors on the surface maps surjectively onto the Jacobian.

We do not prove Jacobi’s Theorem, but we do give a sketch of the idea. The chap-

ter, and thus the book, ends with an interpretation of the Abel-Jacobi Theorem as a

classification of all holomorphic line bundles on a compact Riemann surface.

Why
The present book arose from the need to bridge what I perceived as a substantial

gap between what graduate students at Stony Brook know after they have passed

their qualifying exams and higher-dimensional complex analytic geometry in its

present state. At present, the generic post-qual student at Stony Brook is relatively

well-prepared in algebraic topology and differential geometry but far from so in

real and complex analysis or in partial differential equations (though two years after

the first draft of this book, the number of students at Stony Brook interested either

in algebraic geometry or in partial differential equations has increased significantly;

those interested in both still form a very small, nearly empty set).

Courses in complex analysis do not typically emphasize the points most im-

portant in the study of Riemann surfaces, focusing instead on functions. For exam-

ple, the courses focus on direct consequences of Cauchy’s Theorem, the Schwarz

Lemma, and the Riemann Mapping Theorem.

In this book, the Riemann Mapping Theorem makes way for results based on

solving the inhomogeneous Cauchy-Riemann equations (and sometimes Poisson’s

equation). We present a number of methods for solving these equations, intro-

ducing and discussing Green’s Functions and Runge-type approximation theorems

for this purpose and giving a proof of the Hodge Theorem using basic Hilbert

and Sobolev space theory. Perhaps the centerpiece is the Andreotti-Vesentini-

Hörmander Theorem on the solution of ∂̄ with L2 estimates. (The theorem has

come to be called Hörmander’s Theorem, though the history is well known and the
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presentation we use here is closer in geometric spirit to Andreotti and Vesentini’s

version of the theorem.) The proof of Hörmander’s Theorem in one complex di-

mension simplifies greatly, most naively because the ∂̄-equation does not come

with a compatibility condition, and more technically because a certain bound-

ary condition that arises in the functional analytic formulation of the ∂̄-problem

on Hilbert spaces is a Dirichlet boundary condition, as opposed to its higher-

dimensional and more temperamental relative, the ∂̄-Neumann boundary condition

of Spencer-Kohn-Morrey, which requires the introduction of the notion of pseudo-

convexity of the boundary of a domain.

Line bundles play a major role in the book, providing the backdrop and geo-

metric motivation for much of what is done. The 1-dimensional aspect makes the

Hermitian geometry rather easy to deal with, and gives the novice a gentle introduc-

tion to the higher-dimensional differential geometry of Hermitian line bundles and

vector bundles. For example the Kähler condition, which plays such an important

role in the higher-dimensional theory, is automatic. Moreover, the meaning of cur-

vature of line bundles, which is beautifully demonstrated in establishing what has

come to be known as the Bochner-Kodaira Identity, is greatly simplified in com-

plex dimension 1. (The Bochner-Kodaira Identity is used to estimate from below

the smallest eigenvalue of the Laplace-Beltrami operator on sections of a Hermit-

ian holomorphic line bundle.) The identity is obtained through integration by parts.

At a certain point one must interchange the order of some exterior differential op-

erators. When a non-flat geometry is present, the commutator of these operators

is non-trivial and is the usual definition of curvature. If this commutator, which

is a multiplier, is positive, then we obtain a positive lower bound for the smallest

eigenvalue of a certain geometric Laplacian, and this lower bound is precisely what

is needed to apply the functional analytic method to prove Hörmander’s Theorem.

The main application of Hörmander’s Theorem is to the existence and plen-

itude of holomorphic sections of sufficiently positive line bundles. Using these

sections, we prove the existence of non-trivial meromorphic functions on Riemann

surfaces, non-trivial meromorphic sections of any holomorphic line bundle, and

the existence of a projective embedding for any compact Riemann surface—the

Kodaira Embedding Theorem. Almost simultaneously, we prove that any open

Riemann surface embeds in C3.

Despite embracing line bundles, I made the choice to avoid both vector bundles

and sheaves, two natural extensions of line bundles. This choice shows simultane-

ously that (i) sheaves and higher-rank vector bundles are not needed in the basic

theory of Riemann surfaces and (ii) at times the absence of vector bundles and

sheaves makes the presentation cumbersome in certain places. A good example

of (i) is the proof of Kodaira embedding without the artifice of sheaf cohomology,

but rather through a simple-minded direct construction of certain sections using a

beautiful idea first introduced by Bombieri. (Steve Zelditch has coined the perfect
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name: designer sections.) A reasonable example of (ii) is provided by a number

of the results proved in Chapter 8, such as the Mittag-Leffler Theorem. A second

example of (ii) is seen in our proof of the Riemann-Roch Theorem without the use

of sheaves.

The book ends with two classical results, namely the theorems of Riemann-

Roch and Abel. These results constitute an anti-climax of sorts, since they make

little use of what was done in the book up to that point. In this regard, we do not

add much to what is already in the literature, especially in the case of Abel’s Theo-

rem. The inclusion of the two theorems is motivated by seeing them as concluding

remarks: the Riemann-Roch Theorem allows one to sharpen the Kodaira Embed-

ding Theorem (or in the language of modern analytic geometry, give an effective

embedding result), while Abel’s Theorem and its complement, Jacobi’s Inversion

Theorem, are included because they provide a kind of classification for perhaps the

most central group of characters in the book, namely, holomorphic line bundles.

At the urging of many people, I have included exercises for the first 12 chapters

of the book. I chose to omit exercises for the last two chapters because, as I have

suggested, they do not fall in line with the main pedagogical point of the book,

namely, the use of the ∂̄- and ∂∂̄-equations.

Of course, there are many glaring omissions that would appear in a standard

treatise on Riemann surfaces. We do not discuss Weierstrass points and the finite-

ness of the automorphism group of a compact Riemann surface of genus at least

two. Riemann’s Theta Functions are not studied in any great detail. We bring them

up only on the torus as a demonstrative tool. As a consequence, we do not discuss

Torelli’s Theorem. We also omit any serious discussion of basic algebraic geome-

try of curves (except a few brief remarks mostly scattered around the beginning and

end of the book) or of monodromy. There are certainly other omissions, some of

which I am not even aware of. Psychologically, the most difficult omission for me

was that of a discussion of interpolation and sampling on so-called finite open Rie-

mann surfaces. The theory of interpolation and sampling provides a natural setting

(in fact, the only non-trivial natural setting I know in one complex dimension) in

which to introduce the twisted ∂̄-technique of Ohsawa-Takegoshi. This technique

has had incredibly powerful applications in both several complex variables and al-

gebraic geometry, and at the time of the writing of this book there remain many

avenues of research to pursue. I chose to omit this topic because, by comparison

with the rest of the book, it is disproportionately technical in nature.

Who
The ideal audience for this book consists of students who are interested in analysis

and geometry and have had basic first courses in real and complex analysis, differ-

entiable manifolds, and topology. My greatest motivation in writing the book was

to help such students in the transition from complex analysis to complex analytic
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geometry in higher dimensions, but I hope that the book will find a much wider

audience.

In order to get through this book and emerge with a reasonable feeling for the

subject, the reader must be at least somewhat prepared in the following sense.

I assume that the reader is well versed in advanced calculus and has seen basic

differential topology. For example, the reader should be at ease with the definition

of a manifold and the basics of integration of differential forms.

The reader should certainly have taken a first serious course in complex anal-

ysis. We state and basically prove all that we need from the early parts of such a

course in the first chapter, but the presentation, though fairly complete, is terse and

would not be the ideal place to learn the material.

Some minimal amount of real analysis is required in the book. For example, the

reader should have seen the most elementary parts of the Riemann and Lebesgue

theories of integration. On a couple of occasions we make use of the Hahn-Banach

Theorem, the Banach-Alaoglu Theorem, and the Spectral Theorem for Compact,

Self-adjoint Operators, but a deep understanding of the proofs of these theorems is

not essential.

The topology of a Riemann surface certainly plays a role in much of the book,

and in the later chapters the reader encounters a little bit of algebraic topology.

Though the notions of homotopy, covering space, and fundamental group are in-

troduced, there is not much detail for the uninitiated, and the reader truly interested

in that part of the book should have preparation in those subjects and is moreover

probably reading the wrong book on Riemann surfaces.

Very little basic familiarity with linear and, just barely, multilinear algebra is

required on the part of the reader. So little is assumed that if the reader is not

familiar with some of it but has the mathematical maturity of the aforementioned

requirements, there should be no problem in filling the gaps during reading.

How
In my days as a pizza delivery guy for Pizza Pizza in Toronto, I had a colleague

named Vlad who used to say in a thick Russian accent: “No money, no funny!” I

am grateful to the NSF for its generous financial support.

Much of what is presented in this book is motivated by the work of Jean-Pierre

Demailly and Yum-Tong Siu, and I am grateful to both of them for all that they

have taught me, both in their writings and in person. John D’Angelo and Jeff

McNeal were very encouraging in the early parts of the project and gave me the

inspiration I needed to start the project. Andy Raich and Colleen Robles read a

preliminary version of these notes at Texas A&M, and Colleen communicated cor-

rections and suggestions that were extremely useful. I am grateful to both of them.

Steve Zelditch has used the notes for part of his course on Riemann surfaces and
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has sent back comments for which I owe him a debt of gratitude, as does the future

reader of this book. The final blow was delivered at the University of Cincinnati,

where I was fortunate enough to be the Taft Fellow for the spring quarter of 2010,

for which I am grateful to the Charles Phelps Taft Foundation and all those in-

volved in administering various parts of my fellowship. During the tenure of my

Taft Fellowship I gave a mini-course, covering some of the material in the text,

and most importantly I came up with exercises for the text. I am grateful to David

Herron and David Minda for arranging the lectures and my visit. They attended

my mini-course, as did Anders and Jana Bjorn, Robbie Buckingham, Andy Lorent,

Diego Mejia, Mihaela Poplicher, and Nages Shanmugalingam, and I am grateful

to all of them for their patience with my lectures and their generous hospitality.

There were a number of anonymous referees who communicated a number of

valuable suggestions and corrections. I would like to thank them all for their ser-

vice and help and apologize to them if I did not agree with all of their suggestions,

perhaps wrongly.

The book would certainly not exist were it not for the efforts of Ina Mette,

to whom I warmly express my heartfelt gratitude. Two other people at the AMS,

namely Marcia Almeida and Arlene O’Sean, were instrumental in helping me to

get the book finished, and I thank them for their help and their kind dealings.

Most of all, I am indebted to Mohan Ramachandran. Our frequent conver-

sations, beyond giving me great pleasure, led to the inclusion of many important

topics and to the correction of many errors, and Mohan’s passion for the old lit-

erature taught me an enormous amount about the history and development of the

subject.

Where and when

Dror Varolin

Brooklyn, NY

2010
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This book establishes the basic function theory and complex geometry of Riemann 
surfaces, both open and compact. Many of the methods used in the book are adapta-
tions and simplifi cations of methods from the theories of several complex variables 
and complex analytic geometry and would serve as excellent training for mathemati-
cians wanting to work in complex analytic geometry.

After three introductory chapters, the book embarks on its central, and certainly 
most novel, goal of studying Hermitian holomorphic line bundles and their sections. 
Among other things, fi nite-dimensionality of spaces of sections of holomorphic line 
bundles of compact Riemann surfaces and the triviality of holomorphic line bundles 
over Riemann surfaces are proved, with various applications. Perhaps the main result 
of the book is Hörmander’s Theorem on the square-integrable solution of the 
Cauchy-Riemann equations. The crowning application is the proof of the Kodaira and 
Narasimhan Embedding Theorems for compact and open Riemann surfaces.

The intended reader has had fi rst courses in real and complex analysis, as well as 
advanced calculus and basic differential topology (though the latter subject is not 
crucial). As such, the book should appeal to a broad portion of the mathematical and 
scientifi c community.

This book is the first to give a textbook exposition of Riemann surface theory from the 
viewpoint of positive Hermitian line bundles and Hörmander  ̄ ∂  estimates. It is more analyt-
ical and PDE oriented than prior texts in the field, and is an excellent introduction to the 
methods used currently in complex geometry, as exemplified in J. P. Demailly’s online but 
otherwise unpublished book “Complex analytic and differential geometry.” I used it for a one 
quarter course on Riemann surfaces and found it to be clearly written and self-contained. 
It not only fills a significant gap in the large textbook literature on Riemann surfaces but is 
also rather indispensible for those who would like to teach the subject from a differential 
geometric and PDE viewpoint.                                                    —Steven Zelditch


